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Preface

This book about the g factor has its origin in the aftermath of an almost book- 
length article (my 77th publication) that I wrote almost thirty years ago, titled 
“ How Much Can We Boost IQ and Scholastic Achievement?” and published 
in the Harvard Educational Review  in 1969. It had five main themes: (1) the 
malleability of IQ (or the latent trait it measures) by special psychological and 
educational interventions in the course of children’s mental development; (2) 
the heritability of IQ; (3) social class and race differences in IQ; (4) the question 
of cultural bias in mental tests; (5) the need for universal education to tap types 
of learning ability that are relatively unrelated to IQ in order to achieve the 
benefits of education for all children throughout the wide range of abilities in 
the population. It made four main empirically based claims: (1) individual dif­
ferences in IQ are largely a result of genetic differences but environment also 
plays a part; (2) the experimental attempts to raise the IQs of children at risk 
for low IQ and poor scholastic performance by various psychological and ed­
ucational manipulations had yielded little, if any, lasting gains in IQ or scholastic 
achievement; (3) since most of the exclusively cultural-environment explana­
tions for racial differences in these important variables were inconsistent and 
inadequate, genetic as well as environmental factors should be considered; (4) 
certain abilities, particularly rote-learning and memory, had little relation to IQ, 
which suggested that these non-IQ abilities could to some extent compensate 
for low IQ to improve the benefits of schooling for many children at risk for 
failure under traditional classroom instruction.

According to the Institute for Scientific Information (ISI), which publishes 
the Science Citation Index (SCI) and the Social Science Citation Index (SSCI), 
this 1969 article soon became what the ISI terms a “ citation classic” — an article 
(or book) with an unusually high frequency of citations in the scientific and 
professional journals. The onslaught of critiques and commentaries on the arti­
cle, in both the popular media and the professional literature, made it clear that
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there was sufficient misunderstanding and misinformation, as well as reasonable 
criticism and argument, concerning some of the article’s main topics to warrant 
a more thorough explication of the issues and the empirical evidence than was 
possible in the 124-page journal article. Moreover, certain questions raised in 
my article could not be answered adequately without doing further research 
based on adequate data— inquiries that had not been undertaken by anyone at 
that time.

Hence some of the issues raised by my 1969 article in the Harvard Educa­
tional Review  determined my research and publication agenda during the sub­
sequent years— empirical studies, methodological papers, and reviews, which, 
over a period of nearly thirty years, averaged over ten publications a year in 
journals and book chapters. The main themes in much of this work, I decided, 
should be consolidated into separate books, each dealing with one of the key 
topics of my 1969 article.

The first book in this series was Educability and Group Differences (1973), 
which dealt almost entirely with social class and racial differences in IQ and 
other psychometric abilities and their important role in accounting for individual 
and group differences in scholastic achievement. Probably the book’s most con­
troversial conclusion was that all of the most popular and purely environmental 
theories of the causes of the well-established average black-white differences in 
IQ and scholastic achievement were either contradicted by the factual evidence 
or were inadequate as a scientific explanation, and that the total body of evidence 
at that time was better explained by the hypothesis that the racial differences 
involved both genetic and environmental factors and in about the same propor­
tions as they determined individual differences within either racial group. ISI, 
in its journal Current Contents (1987), announced that this book had also be­
come a “ citation classic.”

The second book in the series was Bias in Mental Testing (1980), in which 
I examined as comprehensively as was possible at that time the then controver­
sial question of whether the psychometric tests of mental ability that were widely 
used in schools, colleges, industry, and the armed services yielded biased scores 
for those racial and cultural minority groups in the United States that, on av­
erage, score below the mean of the rest of the population. My conclusion from 
this research was that the currently most widely used standardized tests of mental 
ability yield unbiased measures for all native-born English speaking segments 
of contemporary American society, regardless of their sex, race, or social class 
background, and that the observed mean differences between various groups are 
not an artifact of the tests themselves, but are attributable to factors that are 
causally independent of the tests. In brief, the tests do not create the observed 
group differences, they simply register them. This conclusion has since been 
accepted and affirmed by the majority of experts in the field of psychometrics. 
This book, too, was later written up as a “ citation classic”  in the ISI’s Current 
Contents (1987).

The following year I wrote a smaller, popular book, Straight Talk about M en­
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tal Tests (1981), to explain the gist of the two previous books to readers without 
a background in psychometrics and behavioral genetics. (Those about to delve 
into the present volume may find this little book a helpful introduction.)

Having addressed those points, I realized that the critical issue was the ex­
istence and nature of the g factor itself. Although it was mentioned in my 1969 
article, g was largely taken for granted, as if there had long ceased to exist any 
serious controversy about the sovereignty of g in the study of human mental 
abilities. Yet some people, mostly from outside the field, viewed g not as a 
phenomenon o f nature, but as merely an artifact created by subjecting a partic­
ular set of mental tests to the arcane mathematical machinations of factor anal­
ysis. And I discovered that more than a few psychologists had misconceived 
notions or prejudices about g. It became clear to me that the real basis of my 
1969 article was g itself and that it deserved a book-length exposition in its own 
right, even more than the other topics that, at the time, I thought were most 
interesting and in need of investigation.

So this— The g Factor— became the third volume in the series of books grow­
ing out of my 1969 article. Charles Spearman’s great work, The Abilities o f  Man 
(1927), in which he summarized the results of his pioneer studies o f g, was then 
the best exposition of the subject, and it is still well worth reading. But Spear­
m an’s book, of course, does not take account of the important research involving 
g that has accumulated during the seventy years since its publication. Also, not 
all of the issues related to g that are the focal point of psychometrics and dif­
ferential psychology today are the same as the problems faced by Spearman in 
his day.

Therefore, since the publication of my last major book, in 1980, I have de­
voted my research to the empirical study of g. As this line of study was actually 
begun by Sir Francis Galton more than 100 years ago, I decided to take up 
where he left off in his attempt, which appeared unsuccessful at the time, to 
relate measurements of reaction time to other criteria of general mental ability. 
The initial success of this work in my chronometric laboratory encouraged me 
to institute a long-term research program using modern electronic techniques for 
precisely measuring an individual’s reaction time (RT) in performing extremely 
simple elementary cognitive tasks (ECTs, as they are now called), and deter­
mining how these RT measures are related to performance on complex tests of 
mental ability, such as those used for measuring IQ. This Galtonian paradigm 
has proved a successful tool for probing the essential nature of psychometric g 
at the behavioral level, and it has pointed up fruitful hypotheses for further 
investigations of g at a physiological level, the new frontier of research on 
mental ability. All of my own empirical and methodological studies related to 
g, as well as virtually all of the research by the great many other investigators 
cited in the present book, have been published in the peer-reviewed scientific 
literature. I hope that my synthesis and theoretical interpretation of this massive 
body of research have done it justice. In any case, it had to be done.

My research has led me to regard the g factor in a much broader perspective
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than I had envisaged at the outset. I have come to view g as one of the most 
central phenomena in all of behavioral science, with broad explanatory powers 
at least as important for understanding human affairs as E. L. Thorndike’s Law 
of Effect (or Skinner’s reinforcement principle). Moreover, it became apparent 
that the g construct extends well beyond its psychometric origin and definition. 
The ^ fac to r is actually a biologically based variable, which, like other biological 
functions in the human species, is necessarily a product of the evolutionary 
process. The human condition in all of its aspects cannot be adequately described 
or understood in a scientific sense without taking into account the powerful 
explanatory role of the g  factor. Students in all branches of the behavioral and 
social sciences, as well as students of human biology and evolution, need to 
grasp the essential psychometric meaning of g, its basis in genetics and brain 
physiology, and its broad social significance.

A MOTE TO THE READER
Although much of the material in this book is admittedly, though unavoidably, 

at a fairly difficult conceptual level, I have tried to present it in such a way that 
it can be understood not only by specialized readers with a background in psy­
chology, psychometrics, statistics, or behavioral genetics, but by any interested 
persons of whatever educational background whose reading comprehension is 
up to the level of what I presume is typical of college graduates. I had thought 
of providing a glossary of the more specialized terms, but discovered that nearly 
all of the entries I would have included are given quite adequate definitions in 
the Random House Unabridged Dictionary (Second Edition, 1993).

Each chapter is preceded by a brief summary of its content, as an “ advance 
organizer”  for the reader. Notes at the end of each chapter are keyed by nu­
merical superscripts in the text; they are of two kinds: (1) definitions or expla­
nations of technical terms or statistical concepts, or a more detailed explanation 
or analysis of some point in the text, that appear as end-notes to avoid inter­
rupting the main text (indicated in the text by superscript numbers); and (2) 
literature citations accompanied by little or no commentary (indicated in the text 
by bracketed superscript numbers). Germane but more specialized topics are 
explicated in the appendices. The references (all of them cited at some point in 
the text) provide a comprehensive bibliography of the scientific literature on 
human mental ability.
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Chapter 1
A Little History

In the 2,000-year prehistory o f psychology, which was dominated 
by Platonic philosophy and Christian theology, the cognitive aspect 
of mind was identified with the soul, and conceived of as a perfect, 
immaterial, universal attribute of humans. This vastly delayed the 
study of mental ability, or intelligence, as an attribute discernible in 
people’s idiosyncratic behavior and therefore as manifesting indi­
vidual differences.

The formal recognition of individual differences in mental ability 
as a subject for study in its own right arose as an outgrowth of the 
idea of evolution in the mid-nineteenth century. For the first time in 
history, animals’ behavioral capacities and humans’ mental ability 
were recognized as a product of the evolutionary process, just as the 
physical systems of organisms. Darwin’s theory of natural selection 
as the mechanism of evolution implied that organisms’ behavioral 
capacities, along with their anatomy and physiology, evolved as ad­
aptations to particular environments. In Darwin’s theory, hereditary 
variation is a necessary condition for the working of natural selec­
tion. From this insight, Herbert Spencer, the early philosopher of 
evolution, interpreted individual differences in intelligence as intrin­
sic to the human condition. He further introduced the notion that 
human intelligence evolved as a unitary attribute.

Individual differences in mental qualities, however, did not be­
come a subject for empirical study in its own right until the latter 
half of the nineteenth century, with the pioneer efforts of Sir Francis 
Galton, who is generally regarded as the father of differential psy­
chology (the study of individual and group differences in human 
traits, which includes behavioral genetics). Galton introduced the 
idea of objective measurement of human capacities, devised tests to
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measure simple sensory and motor functions, and invented many of 
the statistical concepts and methods still used in the study of indi­
vidual differences. He was the first to apply empirical methods to 
studying the inheritance of mental ability. Galton’s conclusions, or 
beliefs, are consistent with his empirical findings but are not at all 
adequately supported by them. They may be briefly summarized as 
follows:

Human mental ability has both general and specific components; 
the general component is the larger source of individual differences; 
it is predominantly a product of biological evolution, and is more 
strongly hereditary than are specific abilities, or special talents. Men­
tal ability, which ranges widely in every large population, is nor­
mally distributed, and various human races differ, on average, in 
mental ability. General ability is best measured by a variety of fairly 
simple tests o f sensory discrimination and reaction time.

Thus, Spencer and Galton, in putting forth their ideas, which har­
monized with the Darwinian revolution in biology, set the stage, by 
the end of the nineteenth century, for nearly all the basic ideas and 
questions that have dominated research and theoretical controversy 
in twentieth century differential psychology.

History helps us understand the present. In science, past events set the stage 
for the substantive questions and arguments that face contemporary researchers. 
Current methods of investigation and standards of evidence are based on the 
philosophy o f science, a viewpoint so deeply embedded in modern Western 
thought that it is unquestioned by working scientists. It has two outstanding 
virtues: Its rules of empirical observation, controlled experimentation, and hy­
pothesis testing produce eventual agreement on statements about natural 
phenomena, and the knowledge so produced often has consequences that affect 
other disciplines and life in general.

It is worthwhile, therefore, to sketch the origins of the study of human mental 
ability.' The “ prehistory”  of this topic extends from ancient times to approxi­
mately the beginning of the twentieth century. Since then, at least, no major 
issue has arisen that lacks historical precedent. As in other branches of science, 
the main lines of contemporary thought in the study of mental ability can be 
traced back to a few principal themes.

THE LATE ARRIVAL OF THE CONCEPT OF INTELLIGENCE IN 
PSYCHOLOGY

Almost a hundred years ago, the German psychologist Hermann Ebbinghaus 
(1850-1909) remarked that psychology has a long past, but only a short history. 
This is still true, particularly for the branch known as differential psychology, 
the study of individual differences in behavior. Surprising as it may seem, abil­
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ity, intelligence, and individual differences were not mentioned in most of the 
early textbooks of psychology (written during the last half of the nineteenth 
century). One of the most important and comprehensive textbooks, William 
James’s Principles o f  Psychology (1890), mentions “ intelligence”  only once— 
as a synonym for “ intellect”  and “ reason,”  and that only in the context of 
defining the properties of the mind. Totally absent is any notion of mental ability 
or individual differences. The same is true of James’s Talks to Teachers (1899), 
the first influential textbook of educational psychology in America.2 Another 
well-known textbook, James Mark Baldwin’s Handbook o f Psychology (1890), 
briefly mentions “ intellect,”  but completely ignores individual differences. 
Baldwin’s encyclopedic Dictionary o f  Philosophy and Psychology (1901) has 
no separate entry for “ intelligence,”  which is merely listed in a generic sense 
as a synonym under “ intellect.”

It may seem puzzling that such intentionally comprehensive textbooks and 
dictionaries o f psychology, even as late as 1900, are devoid of such a conspic­
uous and often controversial psychological topic as individual differences in 
mental ability. Why was this phenomenon, so universal to human experience, 
absent from academic psychological discourse for so long, in stark contrast to 
the prominence o f the “ IQ controversy”  in contemporary psychology and social 
science?

The reason was clearly not a lack of awareness in the past. Individual differ­
ences in mental ability and other personality traits have been portrayed in lit­
erature (often in detail) since ancient times. Fictional characters were described 
as clever, bright, keen-witted; or dull, addled, and stupid. Geniuses and the 
feebleminded have figured in novels and plays for centuries. Historians and 
biographers recognized exceptional abilities or their absence. Nor was the sub­
ject ever shunned because of an egalitarian taboo against openly recognizing 
human differences in abilities. Thinkers of the past were hardly egalitarians. 
Rather they accepted a highly stratified society as a matter of course. To most, 
it was simply part of the natural order that individuals were born and remained 
in rigid classes, as aristocrats, artisans, peasants, serfs, and slaves. Every civi­
lization has had at least a two-tiered society, but more typically a three-tiered 
one. Plato, in The Republic (circa 400 B.C.), classified individuals as gold, silver, 
and bronze, according to the rarity of their valued qualities, and suggested that 
in the ideal society— in his view, a pure meritocracy— they should be selected 
for different occupations according to these qualities.

PREHISTORY OF PSYCHOLOGY
Why, then, was the subject of individual differences in mental ability per se 

absent from systematic thought before the latter part of the nineteenth century? 
Two main factors seem to be responsible. One was the pervasive influence of 
Plato on the concept of the mind  in philosophical and theological thought. The
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other was that the discipline of psychology itself grew out of the philosophic 
tradition.

Plato (427-347 B.C.). Since Plato’s time, the doctrine of dualism— the sep­
aration of mind and body, each as a distinct entity— has been deeply entrenched 
in Christian theology and Western philosophy. This dogma influenced the de­
velopment of psychology. In Platonism, mind and soul are almost synonymous. 
The soul, with universal and eternal properties, was a central theme. The perfect 
and immaterial soul was the essence o f being human, the defining attribute that 
unequivocally separated humankind from all other creatures. The idea of soul, 
or divine mind, as a perfect and universal quality o f humans, therefore, was 
incompatible with the notion of individual differences in this attribute. The soul 
transcends all that is mundane, including individual differences in behavior. 
Reason, thought, and intellect, as the essence of mind (or soul) were regarded 
as universal qualities, distinct from behavioral idiosyncracies. Plato also distin­
guished two lower aspects of the human psyche, emotion and will. There is a 
famous metaphor in Plato’s Phaedra depicting intellect as the charioteer who 
holds the reins, with emotion and will as the horses that draw the chariot. This 
triarchic model of the human psyche, comprising intellect, emotion, and will, is 
perhaps the most easily recognizable aspect of philosophy’s legacy to psychol­
ogy.

A ristotle (384-323 B.C.). Plato’s illustrious student Aristotle came closer to 
a naturalistic or scientific conception of psychology than did his mentor. He 
wrote about psychological functions, such as sensation, reaction, desire, recog­
nition memory and recall memory, knowing, and thinking. These all resemble 
modern distinctions. More significantly, Aristotle rejected Plato’s dualistic par­
tition of mind and body. Instead, he claimed that the m ind’s higher functions— 
acquiring knowledge, thinking, and reasoning— depended on sensation and 
memory, although because these functions are also possessed by animals, he 
assigned them a lower status than thought and reason. He also held that inten­
tional behavior is causally connected to the mental state that immediately pre­
cedes it. His description of thought as “ deliberation preceding action” 
anticipated the Watsonian behaviorism of the 1920s. Although this approach 
implies that consistent individual differences in behavior (judged as clever or 
stupid) have an underlying mental counterpart, Aristotle did not develop this 
point or discuss individual differences in mentality.

Aristotle was also responsible for the word intelligence, although indirectly. 
He had reduced Plato’s triarchic division of the psyche to only two main func­
tions, termed dianoetic (cognitive functions) and orectic (emotion, will, and 
moral sense). The Roman orator and statesman Cicero (106^13 B.C.), in trans­
lating Aristotle’s Greek, coined the equivalent of “ dianoetic” in Latin as intel- 
ligentia— Anglicized as intelligence. Thus originated this now commonplace 
term, which later became perhaps the most controversial subject in all of psy­
chology.

Social Facto rs in P ast H istory. Another historical factor that probably ac­
counts for the scarcity of references to individual differences in the philosophic
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literature of ancient and medieval times was the social system itself. Consisting 
of aristocracies and serfdoms, it allowed narrow scope for the salience of indi­
vidual differences in mental ability. The coming of industrialization, with the 
proliferation of specialized occupations and the availability of formal schooling 
for a large part of the population, made individual differences in ability more 
clearly visible. In preindustrial eras, an individual’s social status at birth severely 
restricted his chances for education and choice of occupation. Formal schooling, 
which tends to highlight differences in mental ability, was the privilege of a 
small elite. Thus the great inequality of opportunity in education and occupa­
tional choice obscured the perception of individual, inborn differences in mental 
ability.

The earliest explicit statement regarding individual differences that I have 
been able to find in the philosophic literature is attributed to the Roman orator 
Quintilian (a.d . 35-95). His advice to teachers would not look out of place in 
a present-day textbook of educational psychology: “ It is generally, and not 
without reason, regarded as an excellent quality in a master to observe accurately 
differences in ability in those whom he has undertaken to instruct, and to as­
certain in what direction the nature of each particularly inclines him; for there 
is in talent an incredible variety, and the forms of mind are not less varied than 
those of bodies” (quoted in Stoddard, 1943, p. 79). But Quintilian evidently had 
no impact on psychology. His name was not even indexed in W iley’s four- 
volume Encyclopedia o f  Psychology (1984).

Locke and  B ritish Em piricism . The English philosopher John Locke (1632— 
1704) made a lasting mark on our topic. He was probably the first formal “ en­
vironmentalist.”  In his famous Essay Concerning Human Understanding 
(1690), he expounded that the human mind, at birth, is a tabula rasa, or blank 
tablet. Through the special senses— vision, hearing, touch, taste, and smell— 
the mind accumulates impressions from the environment. All knowledge, Locke 
argued, comes from only two sources, sensation and reflection (or the “ asso­
ciation of ideas” ). Experience, he said, is the sole basis of mind. Thus he op­
posed nativism, the notion that the mind comes equipped with certain built-in 
propensities, instincts, ideas, or qualities. He advocated empiricism, the belief 
that the properties of mind are wholly attributable to individual experience. 
Locke’s tabula rasa theory implied to followers that differences in intelligence 
resulted from differences in people’s life experience. The philosophic argument 
between the rival doctrines of nativism and empiricism moved into psychology, 
where it had profound ramifications, most notably the so-called nature-nurture 
controversy over the relative importance of heredity and environment as causes 
of variation in psychological traits.

THE DARWINIAN REVOLUTION
Full recognition of individual differences in psychological traits, however, had 

to wait for the revolution in biological thought ushered in by Darwin’s theory 
of evolution through natural selection. The British philosopher Herbert Spencer



6 The g  Factor
(1820-1903) was ready and waiting to make the connection. He had originally 
promoted his own pre-Darwinian theory of evolution along Lamarckian lines, 
which held that characteristics acquired through experience could be passed from 
parents to offspring through biological heredity. According to this theory, par­
ticular learned behavior, if habitual, could be passed on to later generations as 
an inborn instinct. The publication of The Origin o f Species (1858), however, 
converted Spencer to Darwin’s theory of natural selection as the mechanism of 
biological evolution, and he became the leading philosopher of Darwinism. But 
even before he had read Darwin, he wrote a textbook, The Principles o f  Psy­
chology (1855), which had an evolutionary orientation. It has the important 
distinction of being the first psychology textbook to use the word intelligence 
and to pay specific attention to the fact of individual differences in intelligence.

Spencer considered intelligence a unitary biological characteristic that evolved 
through the differential adaptation of organisms to their environment over time. 
Behavior itself evolved biologically in conjunction with physical systems. This 
was a clear break from the dualism handed down since Plato. The mind— 
intelligence in particular— was for the first time viewed in the same way as 
anatomical and physiological systems, that is, as an organically evolved adaptive 
mechanism used in the competition for survival in a particular environment. 
This was a large step, for which Spencer is seldom given enough credit. His 
notion o f intelligence as a unitary trait, instead of as a number of separate 
faculties, also marks the beginning of another long-lived controversy. Still a 
lively issue in psychology, it is taken up in a later chapter.

Darwin’s theory of evolution emphasized hereditary variation as the raw ma­
terial on which natural selection operates. From this new perspective, Spencer 
realized the biological significance of individual differences, because Homo sap­
iens would not have evolved without the existence of individual variation. 
Therefore, Spencer saw individual variation in hereditary traits as intrinsic to 
the human condition. In his philosophizing about society, he used the catchy 
phrase “ survival of the fittest,”  and produced a primitive precursor of socio­
biology known as Social Darwinism. Both the term and the concept eventually 
were strongly reproached. Anthropologists and sociologists, in particular, de­
cried its antiegalitarian overtones and reviled the whole idea as misconstrued 
Darwinian theory. However, Spencer’s view of intelligence as a biologically 
adaptive function for achieving, in his words, “ the adjustment of internal to 
external relations”  was a precursor of later efforts to investigate the continuity 
of brain and intelligence in animals and humans from an evolutionary perspec­
tive. This has become a major frontier of research in biological psychology.

GALTON AND THE COMING OF EMPIRICAL PSYCHOLOGY
All the early influences on differential psychology mentioned so far came 

from philosophers. None was an empirical scientist. Darwin was, of course, but 
Darwinian ideas were introduced into psychology by Herbert Spencer, a pro­
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fessional philosopher. The empirical study of mental ability and individual dif­
ferences could not begin until someone took up the methods of empirical 
science, that is, asking definite questions of nature and discovering the answers 
through analysis of data based on systematic observation, objective measure­
ment, and experimentation. The first person to do this was the Victorian eccen­
tric, polymath, and genius Sir Francis Galton (1822-1911).3 Galton was Charles 
Darwin’s younger half-cousin— half-cousin because they had only one grand­
parent in common, Erasmus Darwin, a noted physician, physiologist, naturalist, 
and poet. Born into a prominent and wealthy family, Galton was a child prodigy, 
who could read and write before the age of four. He intensely disliked school, 
however, and his parents transferred him from one private boarding school to 
another, each as boring and frustrating to him as the others, and he begged his 
parents to let him quit. In his Memories o f  My Life (1908), written when he was 
86, he still complained of his unsatisfying school experience. At age fifteen, he 
was sent away to college, which offered more challenge. To satisfy his parents’ 
ambition that he follow in his eminent grandfather’s footsteps and become a 
physician, he entered medical school. There he soon discovered that the basic 
sciences— physics, chemistry, biology, and physiology— were far more to his 
liking than medical practice. So he left medical school for Cambridge Univer­
sity, there to major in mathematics in preparation for a career in science.

Soon after Galton graduated, at age twenty-one, his father died, and Galton 
received a large inheritance that made him independently wealthy for the rest 
of his very long life. It allowed him to pursue his extremely varied interests 
freely in all things scientific. His enthusiastic and catholic curiosity about natural 
phenomena drove him to became perhaps the greatest scientific dilettante of all 
time. Because he was also a genius, he made original contributions to many 
fields, some of them important enough to be accorded chapters in books on the 
history of several fields: criminology, eugenics, genetics, meteorology, psy­
chology, and statistics. He first gained fame in geography, as an explorer, ex­
pertly describing, surveying, and mapping previously unexplored parts of Africa. 
For this activity, his name is engraved on the granite facade of the Royal Ge­
ographical Society’s building in London, along with the names of the most 
famous explorers in British history. (His fascinating book The Art o f  Travel 
[1855] was a long-time best seller and went through nine editions.) He also 
made contributions to meteorology, inventing isobar mapping, being the first to 
write a daily newspaper weather report, and formulating a widely accepted the­
ory of the anticyclone. He made other original contributions to photography, 
fingerprint classification, genetics, statistics, anthropology, and psychometrics. 
His prolific achievements and publications brought worldwide recognition and 
many honors, including knighthood, Fellow of the Royal Society, and several 
gold medals awarded by scientific societies in England and Europe. As a famous 
man in his own lifetime, Galton also had what Hollywood calls “ star quality.”

Biographies of Galton also reveal his charming eccentricities. His profuse 
intellectual energy spilled over into lesser achievements or activities that often
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seem trivial. He was almost obsessed with counting and measuring things (his 
motto: “ When you can, count!” ), and he devised mechanical counters and other 
devices to help in counting and tabulating. He loved data. On his first visit to 
a city, for example, he would walk around with a small, hand-held mechanical 
counter and tally the number of people passing by, tabulating their character­
istics— tall, medium, short; blond, brunette, redhead— separately for males and 
females, the latter also rated for attractiveness. To be able to manage all these 
data while walking about, he had his tailor make a special vest with many little 
pockets, each one for a particular tabulated characteristic. He could temporarily 
store the data from his counters by putting into designated pockets the appro­
priate number of dried peas. Back in his hotel room, he counted the peas in 
each pocket and entered the numerical results in his notebook for later statistical 
calculations.

He devised an objective measure of the degree to which a lecturer bored the 
audience, and tried it out at meetings of the Royal Society. It consisted of 
counting the involuntary noises— coughs, feet shuffling, and the like— that is­
sued from the audience, and, with a specially rigged protractor, he measured the 
angle that listeners’ heads were tilted from a vertical position during the lecture. 
A score derived from the data obtained with this procedure showed that even 
the most eloquently written lecture, if read verbatim, was more boring than an 
extempore lecture, however rambling and inelegant.

He also invented a special whistle (now called a Galton whistle), which is 
familiar to many dog owners. Its high-frequency pitch is beyond humans’ au­
dible range and can be heard only by dogs and certain other animals. Galton 
made a series of these whistles, ranging widely in pitch, and used them to find 
the upper limits of pitch that could be heard by humans of different ages. To 
compare the results on humans with the auditory capacities of many species in 
the London Zoo, he would attach the whistles to the end of a tube that could 
be extended like a telescope, so it could reach into a cage and direct the sound 
right at the animal’s ear. While quickly squeezing a rubber bulb attached to one 
end o f the long tube to force a standard puff of air through the whistle attached 
to the other end, he would note whether or not the animal reacted to a particular 
pitch.

In another amusing project, he used the mathematics of solid geometry to 
figure out the optimal way to cut a cake of any particular shape and dimensions 
into any given number of pieces to preserve the freshness of each piece. He 
published his clever solution in a mathematics journal. There are many other 
quaint anecdotes about Galton’s amazing scientific curiosity and originality, but 
the several already mentioned should suffice to round out the picture of his 
extraordinary personality.

Although he died (at age ninety) as long ago as 1911, his legacy remains 
remarkably vivid. It comprises not only his many pioneering ideas and statistical 
inventions, still in use, but also the important endowments, permitted by his 
personal wealth, for advancing the kinds of research he thought would be of
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greatest benefit to human welfare. He founded the Department of Eugenics (now 
Genetics) at the University of London and endowed its Chair, which has been 
occupied by such luminaries as Karl Pearson, Sir Ronald Fisher, and Lionel 
Penrose; he furnished a psychological laboratory in University College, London; 
he founded two prestigious journals that are still active, Biometrika and The 
Annals o f  Human Genetics', and he founded (in 1904) the Eugenics Society 
(recently renamed The Galton Institute), which maintains an extensive library, 
publishes journals and books, and sponsors many symposia, all related to the 
field now known as social biology.

THE TWO DISCIPLINES OF SCIENTIFIC PSYCHOLOGY
Galton’s position in the history of behavioral science is stellar. He is ac­

knowledged as one o f the two founding fathers of empirical psychology, along 
with Wilhelm W undt (1832-1920), who established the first laboratory of ex­
perimental psychology in 1879 in Leipzig. As Wundt is recognized as the father 
of experimental psychology, Galton can certainly be called the father of differ­
ential psychology, including psychometrics and behavioral genetics. Each is now 
a major branch of modern behavioral science. The leading historian of experi­
mental psychology, Edwin G. Boring (1950), drew the following interesting 
contrast between the scientific personalities of Galton and Wundt:

W undt was erudite where Galton was original; Wundt overcame massive obstacles 
by the weight of his attack; Galton dispatched a difficulty by a thrust of insight. 
Wundt was forever armored by his system; Galton had no system. Wundt was 
methodical; Galton was versatile. W undt’s science was interpenetrated by his 
philosophy; G alton’s science was discursive and unstructured. Wundt was 
interminably arguing; Galton was forever observing. Wundt had a school, a formal 
self-conscious school; Galton had friends, influence and effects only. Thus, Wundt 
was personally intolerant and controversial, whereas Galton was tolerant and ready 
to be convicted of error, (pp. 461-62)

W undt and Galton were the progenitors of the two main branches of scientific 
psychology— experimental (Wundt) and differential (Galton). These two disci­
plines have advanced along separate tracks throughout the history of psychology. 
Their methodological and even philosophical differences run deep, although 
both branches embrace the scientific tradition of objective testing of hypotheses.

Experimental psychology searches for general laws of behavior. Therefore, it 
treats individual differences as unwanted variance, termed “ error variance,” 
which must be minimized or averaged out to permit the discovery of universal 
regularities in the relation between stimulus and response. The method of ex­
perimental psychology consists of controlling variables (or treatment conditions) 
and randomizing the assignment of subjects to the different treatments. The 
experimental conditions are intentionally manipulated to discover their average 
effects, unconfounded by individual differences. In general, the stimulus pre­
sented to the subject is varied by the experimenter, while the subject’s responses
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are recorded or measured. But the data of primary interest to the experimental 
psychologist consist of the averaged performance of the many subjects randomly 
assigned to each condition.

Differential psychology, on the other hand, seeks to classify, measure, and 
then explain the variety and nature of both individual and group differences in 
behavioral traits as phenomena worthy of investigation in their own right. It uses 
statistical analysis, such as correlation, multiple regression, and factor analysis, 
applied to data obtained under natural conditions, rather than the controlled 
conditions of the laboratory. Obviously, when human characteristics are of in­
terest, individual differences and many other aspects of behavior cannot feasibly 
or ethically be controlled or manipulated by the investigator. Therefore, scien­
tists must study human variation as it occurs under natural conditions. During 
the latter half of this century, however, a rapprochement has begun between the 
two disciplines. Both experimental and correlational methods are being used in 
the study of cognition.

G alto n ’s M ethodological C ontributions. Galton made enduring contribu­
tions to the methodology of differential psychology. He was the first to devise 
a precise quantitative index of the degree of relationship, or co-relation (as he 
called it) between any two metric variables obtained from the same individuals 
(or relatives) in a given population. Examples are individuals’ height and weight 
or the resemblance between parents and children, or between siblings, in a given 
trait.

In 1896, Karl Pearson (1857-1936), a noted mathematician, who became a 
Galton disciple and has been rightly called the “ father of statistics,”  revamped 
Galton’s formulation of co-relation, to make it mathematically more elegant and 
enhance its general applicability. Pearson’s formula yields what now is called 
“ the Pearson product-moment coefficient of correlation.”  In the technical lit­
erature, however, the word correlation, without a modifier, always signifies 
Pearson’s coefficient.4 (The many other types of correlation coefficient are al­
ways specified, e.g., intraclass correlation, rank-order correlation, tetrachoric 
correlation, biserial correlation, point-biserial correlation, partial correlation, 
semipartial correlation, multiple correlation, canonical correlation, correlation 
ratio, phi coefficient, contingency coefficient, tau coefficient, concordance co­
efficient, and congruence coefficient. Each has its specialized use, depending on 
the type of data.) Pearson’s correlation is the most generally used. Universally 
symbolized by a lower-case italic r (derived from Galton’s term regression), it 
is a ubiquitous tool in the biological and behavioral sciences. In differential 
psychology, it is absolutely essential.

Galton invented many other statistical and psychometric concepts and meth­
ods familiar to all present-day researchers, including the bivariate scatter dia­
gram, regression (related to correlation), multiple regression and multiple 
correlation (by which two or more different variables are used to predict another 
variable), the conversion o f measurements or ranks to percentiles, standardized 
or scale-free measurements or scores, various types of rating scales, the use of
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the now familiar normal or bell-shaped curve (originally formulated by the great 
mathematician Karl Friedrich Gauss [1777-1855]) as a basis for quantifying 
psychological traits on an equal-interval scale, and using either the median or 
the geometric mean (instead of the arithmetic mean) as the indicator of central 
tendency of measurements that have a markedly skewed frequency distribution.

In his Inquiries into Human Faculty and Its Development (1883), Galton 
described an odd assortment of clever tests and techniques, devised mostly by 
himself, for measuring basic human capacities, particularly keenness o f sensory 
discrimination in the different modalities, imagery, and reaction times to audi­
tory and visual stimuli. Although Galton’s use of gadgetry has been disparaged 
as “ brass instrument psychology,” it was a seminal innovation— the objective 
measurement of human capacities. Compared with modern technology, of 
course, Galton’s methods were fairly crude, sometimes even inadequate for their 
purpose. His intense interest in human variation and his passion for quantitative 
data, however, led him to apply his “ brass instrument”  techniques to almost 
every physical and mental characteristic that could be counted, ranked, or mea­
sured.

Galton obtained many types of data on more than 9,000 persons who, from 
1884 to 1890, went through his Anthropometric Laboratory in London’s South 
Kensington Science Museum. Each had to pay threepence to serve as subjects 
for these tests and measurements. Unfortunately, Galton lacked the powerful 
tools of statistical inference that were later developed by Karl Pearson (1857- 
1936) and Sir Ronald A. Fisher (1890-1962), and therefore he could only draw 
much weaker conclusions than the quality of his massive data really warranted. 
He was dismayed that the measurements of sensory discrimination and speed of 
reaction appeared to show so little relationship to a person’s level of general 
mental ability (as indicated by educational and occupational attainments). It soon 
became a widely accepted and long-lasting conclusion that the simple functions 
assessed by Galton are unrelated to individual differences in the higher mental 
processes, or intelligence. Galton’s “ brass instrument”  approach to the study 
of human abilities, therefore, was abandoned for nearly a century.

Recently, Galton’s original data have been analyzed by modern methods of 
statistical inference.151 It turned out that his original hypotheses were largely 
correct after all. R. A. Fisher’s method known as analysis o f  variance revealed 
highly significant differences between groups differing in educational and oc­
cupational level on Galton’s discrimination and reaction-time tests. Galton’s 
scientific intuitions were remarkably good, but the psychometric and statistical 
methods then available were not always up to the task of validating them.

G alton In troduces G enetics into Psychology. Galton’s most famous work, 
Hereditary Genius (1869), was the forerunner of behavior genetics, nearly a 
century before either the term or the field of behavior genetics came into being. 
Galton was especially interested in the inheritance of mental ability. Because 
there was then no objective scale for measuring mental ability, he devised an­
other criterion of high-level ability: eminence, based on illustrious achievements
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that would justify published biographies, encyclopedia articles, and the like. By 
this criterion, he selected many of the most famous intellects of the nineteenth 
century, whom he classed as “ illustrious,”  and he obtained information about 
their ancestors, descendants, and other relatives. His extensive biographical and 
genealogical research revealed that the relatives of his illustrious probands were 
much more likely to attain eminence than would a random sample of the pop­
ulation with comparable social background. More telling, he noticed that the 
probability of eminence in a relative of an illustrious person decreased in a 
regular stepwise fashion as the degree of kinship was more remote. Galton 
noticed that the same pattern was also true for physical stature and athletic 
performance.

Galton made other observations that gave some indication of the power of 
family background in producing eminence. In an earlier period of history, it was 
customary for popes to adopt orphan boys and rear them like sons, with all the 
advantages of culture and education that papal privilege could command. Galton 
noted that far fewer of these adopted boys ever attained eminence than did the 
natural sons of fathers whose eminence was comparable to a pope’s. From such 
circumstantial evidence, Galton concluded that mental ability is inherited in 
much the same manner, and to about the same degree, as physical traits.

Galton further concluded that what was inherited was essentially a general 
ability, because eminent relatives in the same family line were often famous in 
quite different fields, such as literature, mathematics, and music. He supposed 
that this hereditary general ability could be channeled by circumstance or interest 
into different kinds of intellectual endeavor. He also recognized special abilities, 
or talent, in fields like art and music, but considered them less important than 
general ability in explaining outstanding accomplishment, because a high level 
of general ability characterized all of his illustrious persons. (Galton noted that 
they were also characterized by the unusual zeal and persistence they brought 
to their endeavors.) He argued, for example, that the inborn musical gift o f a 
Beethoven could not have been expressed in works of genius were it not ac­
companied by superior general ability. In Hereditary Genius, he summarized his 
concept of general ability in his typically quaint style: “ Numerous instances 
recorded in this book show in how small a degree eminence can be considered 
as due to purely special powers. People lay too much stress on apparent spe­
cialities, thinking that because a man is devoted to some particular pursuit he 
would not have succeeded in anything else. They might as well say that, because 
a youth has fallen in love with a brunette, he could not possibly have fallen in 
love with a blonde. As likely as not the affair was mainly or wholly due to a 
general amorousness”  (p. 64).

G alto n ’s A necdotal R eport on Twins. The use of twins to study the inher­
itance of behavioral traits was another of Galton’s important “ firsts.”  He noted 
that there were two types of twins, judging from their degree of resemblance. 
“ Identical”  twins come from one egg (hence they are now called monozygotic, 
or MZ, twins), which divides in two shortly after fertilization. Their genetic
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makeup is identical; thus their genetic correlation is unity (r =  1). And they are 
very alike in appearance. “ Fraternal”  twins (now called dizygotic, or DZ) come 
from two different fertilized eggs and have the same genetic relationship as 
ordinary siblings, with a genetic correlation of about one-half (on average). That 
is, DZ twins are, on average, about one-half as similar, genetically, as MZ twins. 
DZ twins are no more alike in appearance than ordinary siblings when they are 
compared at the same age.

Galton was interested in twins’ similarities and differences, especially in MZ 
twins, as any difference would reflect only the influence of environment or 
nongenetic factors. He located some eighty pairs of twins whose close physical 
resemblance suggested they were MZ, and he collected anecdotal data on their 
behavioral characteristics from their relatives and friends and from the twins 
themselves. He concluded that since the twins were so strikingly similar in their 
traits, compared to ordinary siblings, heredity was the predominant cause of 
differences in individuals’ psychological characteristics.

Because Galton obtained no actual measurements, systematic observations, or 
quantitative data, his conclusions are of course liable to the well-known short­
comings of all anecdotal reports. Later research, however, based on the more 
precise methods of modern psychometrics and biometrical genetics, has largely 
substantiated Galton’s surmise about the relative importance of heredity and 
environment for individual differences in general mental ability. But Galton’s 
research on heredity is cited nowadays only for its historical interest as the 
prototype of the essential questions and methods that gave rise to modern be­
havioral genetics. It is a fact that most of the questions of present interest to 
researchers in behavioral genetics and differential psychology were originally 
thought of by Galton. His own answers to many of the questions, admittedly 
based on inadequate evidence, have proved to be remarkably close to the con­
clusions of present-day researchers. In the history of science, of course, the 
persons remembered as great pioneers are those who asked the fundamental 
questions, thought of novel ways to find the answers, and, in retrospect, had 
many correct and fruitful ideas. By these criteria, Galton unquestionably quali­
fies.

G alto n ’s C oncept of M ental Ability. Galton seldom used the word intelli­
gence and never offered a formal definition. From everything he wrote about 
ability, however, we can well imagine that, if he had felt a definition necessary, 
he would have said something like innate, general, cognitive ability. The term 
cognitive clearly distinguishes it from the two other attributes of Plato’s triarchic 
conception of the mind, the affective and conative. Galton’s favored term, men­
tal ability, comprises both general ability and a number of special abilities— he 
mentioned linguistic, mathematical, musical, artistic, and memorial. General 
ability denotes a power of mind that affects (to some degree) the quality of 
virtually everything a person does that requires more than simple sensory acuity 
or sheer physical strength, endurance, dexterity, or coordination.

Analogizing from the normal, bell-shaped distribution of large-sample data
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on physical features, such as stature, Galton assumed that the frequency distri­
bution of ability in the population would approximate the normal curve. He 
divided the normal curve’s baseline into sixteen equal intervals (a purely arbi­
trary, but convenient, number) to create a scale for quantifying individual and 
group differences in general ability. But Galton’s scale is no longer used. Ever 
since Karl Pearson, in 1893, invented the standard deviation, the baseline of 
the normal distribution has been interval-scaled in units of the standard devia­
tion, symbolized by c  (the lower-case Greek letter sigma). Simple calculation 
shows that each interval of Galton’s scale is equal to 0.696o, which is equivalent 
to 10.44 IQ points, when the o  of IQ is 15 IQ points. Hence Galton’s scale of 
mental ability, in terms of IQ, ranges from about 16 to 184.

Galton was unsuccessful, however, in actually measuring individual differ­
ences in intelligence. We can easily see with hindsight that his particular battery 
of simple tests was unsuited for assessing the higher mental processes that peo­
ple think of as “ intelligence.”  Where did Galton go wrong? Like Herbert Spen­
cer, he was immensely impressed by Darwin’s theory of natural selection as the 
mechanism of evolution. And hereditary individual variation is the raw material 
on which natural selection works by, in Darwinian terms, “ selection of the fittest 
in the struggle for survival.”  Also, Galton was influenced by Locke’s teaching 
that the m ind’s content is originally gained through the avenue of the five senses, 
which provide all the raw material for the association of impressions to form 
ideas, knowledge, and intelligence. From Darwin’s and Locke’s theories, Galton 
theorized that, in his words, “ the more perceptive the senses are of differences, 
the larger is the field upon which our judgem ent and intelligence can act”  
{Human Faculty, 1883, p. 19). Among many other factors that conferred advan­
tages in the competition for survival, individual variation in keenness of sensory 
discrimination, as well as quickness of reaction to external stimuli, would have 
been positively selected in the evolution of human intelligence.

It seemed to Galton a reasonable hypothesis, therefore, that tests of fine sen­
sory discrimination (not just simple acuity) and of reaction time to visual and 
auditory stimuli would provide objective measures of individual differences in 
the elemental components of mental ability, unaffected by education, occupation, 
or social status. The previously described battery of tests Galton devised for this 
purpose, it turned out, yielded measurements that correlated so poorly with com- 
monsense criteria of intellectual distinction (such as election to the Royal So­
ciety) as to be unconvincing as a measure of intelligence, much less having any 
practical value. Statistical techniques were not then available to prove the the­
oretical significance, if any, of the slight relationship that existed between the 
laboratory measures and independent estimates of ability. Galton had tested 
thousands of subjects, and all of his data were carefully preserved. When re­
cently they were analyzed by modern statistical methods, highly significant (that 
is, nonchance) differences were found between the average scores obtained by 
various groups of people aggregated by age, education, and occupation.151 This



A Little History 15
finding lent considerable theoretical interest to Galton’s tests, although they 
would have no practical validity for individual assessment.

Binet and  the F irs t P ractical Test of Intelligence. At the behest of the Paris 
school system, Alfred Binet in 1905 invented the first valid and practically useful 
test of intelligence. Influenced by Galton and aware of his disappointing results, 
Binet (1857-1911) borrowed a few o f Galton’s more promising tests (for ex­
ample, memory span for digits and the discrimination of weights) but also de­
vised new tests of much greater mental complexity so as to engage the higher 
mental processes— reasoning, judgment, planning, verbal comprehension, and 
acquisition of knowledge. Test scores scaled in units of mental age derived from 
Binet’s battery proved to have practical value in identifying mentally retarded 
children and in assessing children’s readiness for schoolwork. The story of Bi­
net’s practical ingenuity, clinical wisdom, and the lasting influence o f his test 
is deservedly well known to students of mental measurement.171 The reason that 
Binet’s test worked so well, however, remained unexplained by Binet, except 
in intuitive and commonsense terms. A truly theory-based explanation had to 
wait for the British psychologist Charles Spearman (1863-1945), whose mo­
mentous contributions are reviewed in the next chapter.

G alton on Race D ifferences in Ability. The discussion of Galton’s work in 
differential psychology would be incomplete without mentioning one other topic 
that interested him— race differences in mental ability. The title itself of his 
chapter on this subject in Hereditary Genius would be extremely unacceptable 
today: “ The Comparative Worth of Different Races.”  But Galton’s style of 
writing about race was common among nineteenth-century intellectuals, without 
(he slightest implication that they were mean-spirited, unkindly, or at all un­
friendly toward people of another race. A style like Galton’s is seen in state­
ments about race made by even such democratic and humanitarian heroes as 
Jefferson and Lincoln.

Galton had no tests for obtaining direct measurements of cognitive ability. 
Yet he tried to estimate the mean levels of mental capacity possessed by different 
racial and national groups on his interval scale of the normal curve. His esti­
mates— many would say guesses— were based on his observations of people of 
different races encountered on his extensive travels in Europe and Africa, on 
anecdotal reports of other travelers, on the number and quality of the inventions 
and intellectual accomplishments of different racial groups, and on the percent­
age of eminent men in each group, culled from biographical sources. He ven­
tured that the level of ability among the ancient Athenian Greeks averaged “ two 
grades” higher than that of the average Englishmen of his own day. (Two grades 
on Galton’s scale is equivalent to 20.9 IQ points.) Obviously, there is no pos­
sibility of ever determining if Galton’s estimate was anywhere near correct. He 
also estimated that African Negroes averaged “ at least two grades”  (i.e., 1.39a, 
or 20.9 IQ points) below the English average. This estimate appears remarkably 
close to the results for phenotypic ability assessed by culture-reduced IQ tests. 
Studies in sub-Saharan Africa indicate an average difference (on culture-reduced
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nonverbal tests of reasoning) equivalent to 1.43a, or 21.5 IQ points between 
blacks and whites.8 U.S. data from the Armed Forces Qualification Test (AFQT), 
obtained in 1980 on large representative samples of black and white youths, 
show an average difference of 1.36a (equivalent to 20.4 IQ points)— not far 
from Galton’s estimate (1.39a, or 20.9 IQ points).9 But intuition and informed 
guesses, though valuable in generating hypotheses, are never acceptable as ev­
idence in scientific research. Present-day scientists, therefore, properly dismiss 
Galton’s opinions on race. Except as hypotheses, their interest is now purely 
biographical and historical.

NOTES
1. A considerably more detailed history of the differential psychology of mental abil­

ities, extending from ancient times to the present, can be found in Jensen (1987a).
2. For comprehensive articles on the histories of topics discussed in the present chap­

ter— educational psychology, educational and psychological measurement, statistical 
m ethodology— I recommend the book edited by Glover and Ronning (1987).

3. The literature on Galton is extensive. The most accessible biography is by Forrest 
(1974). Fancher (1985a) gives a shorter and highly readable account. A still briefer 
account of G alton’s life and contributions to psychology is given in Jensen (1994a), 
which also lists the principal biographical references to Galton. His own memoir (Galton, 
1908) is good reading, but does not particularly detail his contributions to psychology, 
a subject reviewed most thoroughly by Cyril Burt (1962). G alton’s activities in each of 
the branches o f science to which he made original contributions are detailed in a collec­
tion o f essays, each by one o f fourteen experts in the relevant fields; the book also 
includes a complete bibliography o f G alton’s published works, edited by Keynes (1993). 
Fancher (1983a, 1983b, 1983c, 1984) has provided fascinating and probing essays about 
quite specific but less well-known aspects o f Galton’s life and contributions to psychol­
ogy. Lewis M. Terman (1877-1956), who is responsible for the Stanford-Binet IQ test, 
tried to estim ate G alton’s IQ in childhood from a few of his remarkably precocious 
achievements even long before he went to school. These are detailed in Term an’s (1917) 
article, in which he concluded that G alton’s childhood IQ was “ not far from 200”  (p. 
212). One o f G alton’s biographers, Forrest (1974), however, has noted, “ Terman was 
misled by Francis’ letter to [his sister] Adele which begins, ‘I am four years old.’ The 
date shows that it was only one day short of his fifth birthday. The calculations should 
therefore by emended to give an I.Q. of about 160”  (p. 7). (Note : Terman estimated IQ 
as 100 X estimated Mental Age (M A)/Chronological Age (CA); he estimated G alton’s 
MA as 8 years based on his purported capabilities at CA 5 years, so 100 x  8/5 =  160.)

4. Pearson’s correlation coefficient, r, is explained in virtually every introductory text­
book o f statistics. The basic formula is

r = I(X-X )  (Y-Y) fflo.ff,,

where X means “ the sum o f” ; X, and Y; are paired individual measurements o f variables 
X and Y; X and Y are the means of variables X and Y in the sample; a* and Gy are the 
sample standard deviations o f variables X and Y; and N  is the number of paired  meas­
urements. (If the a x and o y are removed from the above formula, it becomes the formula
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for what is called the covariance of the variables X and Y.) The standard deviation of 
any variable (say, X), using the above symbols, is

a  = J[Y(X-X)VN].
What is known as the variance is simply a 2.

5. This analysis of G alton’s original data was conducted by a group of behavior ge­
neticists (Johnson et al., 1985).

6. Ib id .
7. An excellent historical account o f the development o f Binet’s test and of all the 

major tests of intelligence that followed Binet, up to the present, is found in Thorndike 
& Lohman (1990).

8. Estimate based on the weighted average IQ o f eleven samples of African children 
and adults (total N  =  10,073) taken from Tables 3 and 4 in Lynn (1991a).

9. Based on data from the 1980 National Longitudinal Study of Youth (NLSY), com­
prising 6,502 whites and 3,022 blacks, reported in Herrnstein & Murray (1994). The 
black-white difference of 1.36c in this estimate is larger than the difference of about lo  
typically reported for IQ, mainly because the white sample in this study, unlike many 
other studies, is entirely o f European ancestry and does not include Amerindians, Mex- 
ican-Americans, Asians, and Pacific Islanders.



Chapter 2
The Discovery of g

Spearman invented1 a method, fac tor analysis, that permitted a rig­
orous statistical test of Spencer’s and Galton’s hypothesis that a 
general mental ability enters into every kind of activity requiring 
mental effort. A well-established empirical finding— positive corre­
lations among measures of various mental abilities— is putative ev­
idence of a common factor in all of the measured abilities. The 
method of factor analysis makes it possible to determine the degree 
to which each of the variables is correlated (or loaded) with the 
factor that is common to all the variables in the analysis. Spearman 
gave the label g to this common factor, which is manifested in in­
dividual differences on all mental tests, however diverse.

Spearman’s two-factor theory held that every mental test, however 
diverse in the contents or skills called for, measures only two factors: 
g and s, a factor specific to each test. But later research based on 
larger numbers of tests than were available in Spearman’s early stud­
ies showed that g alone could not account for all of the correlations 
between tests. So Spearman had to acknowledge that there are other 
factors besides g, called group factors, that different groups of tests, 
each with similar task demands (such as being either verbal, spatial, 
numerical, or mechanical), have in common.

By comparing tests with high and low g factor loadings, Spearman 
concluded that g is most strongly reflected in tests that call for the 
“ eduction of relations and correlates,”  for example, reasoning to 
solve novel problems, as contrasted with recalling previously ac­
quired knowledge or using already well-learned skills.

Spearman thought of g metaphorically as “ mental energy”  that 
could be applied to any and every kind of mental task, and likened 
group factors and specificity to specialized “ engines”  for the per-
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formance of certain types of tasks. Individual differences in potential 
performance on any mental task, according to Spearman, result from 
two sources: differences in the amount of mental “ energy”  that can 
be delivered to the specific “ engine”  that mediates performance of 
the task, and differences in the efficiency of energy utilization by 
the “ engine.”  The efficiency of the various “ engines”  differs in­
dependently within the same person.

Although Spearman remained agnostic concerning the biochemi­
cal and physiological basis of this energy, it was his fervent hope 
that scientists would eventually discover a physical basis for g.

As was indicated in the previous chapter, the belief that mental ability is a 
general, unitary trait was introduced into psychology by Spencer and Galton. 
But their work was largely speculative with little, if any, empirical support. The 
idea of general ability had in fact existed in literature since ancient times. Samuel 
Johnson (1709-1784) expressed it tersely when he heard a noted historian pro­
claim that it was by virtue of their very different gifts that Caesar became a 
great commander, Shakespeare a great poet, and Newton a great scientist. Dr. 
Johnson replied, “ No, it is only that one man has more mind than another; he 
may direct it differently, or prefer this study to that. Sir, the man who has vigor 
may walk to the North as well as to the South, to the East as well as to the 
W est.” 121

The far more common academic belief, however, was that the mind is a 
multiplicity of separate and distinct functions, called faculties. This was the 
prevailing view in psychology at the end of the nineteenth century. Faculty 
psychology, as it was called, postulated the existence of a distinct faculty for 
each and every mental activity a psychologist could think of: perception, con­
ception, judgm ent, reason, recollection, memory, imagination, intuition, wisdom, 
discernment, discrimination, aesthetic sensitivity— to name a few. Thinking they 
could identify an individual’s strong and weak faculties, phrenologists examined 
people’s skulls for bumps, depressions, and other irregularities that would in­
dicate the relative development of parts of the brain that supposedly controlled 
these various, distinct mental faculties.

Did each name in the entire lexicon of human faculties really represent a 
different mental process? Or did the faculty psychologists simply take verbs and 
adjectives that describe various mental activities, convert them into nouns, and 
then reify them as distinct faculties? Was there a theoretical limit to the possible 
number of faculties beyond simply the total number of words in the unabridged 
dictionary that refer to mental activity? Such questions (not unlike the debates 
in medieval scholasticism over how many angels could dance on the head of a 
pin) were acknowledged and debated. But no one developed a means to answer 
them in a scientific manner (that is, objectively, empirically, and experimen­
tally).
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Such was the general state of affairs in psychology at the turn of the century. 
Galton had already provided the two necessary tools— mental tests and corre­
lation—  to answer the problems raised by faculty psychology. But Galton never 
used them expressly for that purpose. His rejection of faculty psychology in 
explaining individual differences and his belief in a general mental ability were, 
like Dr. Johnson’s, based mainly on general impressions rather than explicit 
analysis of empirical data.

The actual employment of Galton’s tools to tackle the questions about indi­
vidual differences in mental ability remained for another Britisher, Charles Ed­
ward Spearman (1863-1945). He became Britain’s most distinguished 
psychologist and one of the “ greats”  in the history of psychology. He invented 
an even more powerful quantitative method, fac tor analysis, and used it to dis­
cover a psychological phenomenon, g. For this reason, Spearman is more fre­
quently cited in the present-day literature of empirical psychology than any other 
psychologist of his period.

It is often hard to pin down the exact origin of an important discovery, be­
cause usually most of the prerequisite concepts were already known but were 
not fully and systematically articulated. In Spearman’s case, it is hard to tell 
from the literature exactly which came first, his invention of factor analysis or 
his discovery of g. Part and parcel of one another, they probably occurred si­
multaneously. I am reminded of a revealing passage in science writer Horace 
Judson’s interview with the Nobel laureate Francis Crick (codiscoverer of the 
molecular structure of DNA):

Discovery, examined closely, 1 said to Crick, seemed curiously difficult to pin to 
a moment or to an insight or even to a single person. “ No, I don’t think that’s 
curious,”  Crick said. “ I think that’s the nature of discoveries, many times that 
the reason they’re difficult to make is that you’ve got to take a series of steps, 
three or four steps, which if you don’t make them you w on’t get there, and if you 
go wrong in any one of them you w on’t get there. It isn’t a matter of one jum p—  
that would be easy. Y ou’ve got to make several successive jum ps. And usually 
the pennies drop one after another until eventually it all clicks. Otherwise it would 
be too easy!131

Spearman’s discovery of g is probably another instance of the creative act as 
described by Crick. The discovery and the method needed to establish its validity 
came about by a series of successive steps.

The definition of g will be postponed momentarily, because a proper definition 
is impossible outside of the context in which Spearman formulated it. A purely 
verbal definition of g, such as “ general intelligence,”  does not adequately con­
vey the precision of Spearman’s concept. He was extremely concerned with this, 
and with good reason, as g, like many other scientific constructs, cannot be 
expressed in common parlance. Therefore, it is essential for understanding the 
meaning of g as a scientific concept to have a clear idea of the methodology by 
which Spearman arrived at it. But first, a brief sketch of Spearman’s life.4
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In college, Spearman had a liking for mathematics, but after considering the 
prospects of earning a living as a mathematician, he decided to major in engi­
neering. His greatest interest, however, was philosophy, which he read widely 
and assiduously.

W hile a graduate engineer, he became especially attracted, strangely enough, 
to the philosophies of India, and wanted to go there to study. He enlisted in the 
British arm y’s Royal Corps of Engineers, hoping to be sent to one of its stations 
in India. He assumed that life as a military engineer would allow him substantial 
time to study philosophy.

Instead of being sent to India, however, he was stationed in Burma. His 
engineering activities there won him a medal for distinguished service, and he 
was soon advanced to the rank of major. Meanwhile, his initial interest in phi­
losophy led him to psychology. He was enthralled by the opportunity this new 
field seemed to present for development as a natural science. He had come to 
believe that philosophy should adopt the methods of the natural sciences, and 
he considered the subject matter of psychology, such as it was at the end of the 
nineteenth century, to be the proper vehicle for achieving this aim.

Finally deciding at age thirty-four to make psychology his career, he resigned 
his commission in the army and headed for what was then the leading center 
for research in experimental psychology, Wilhelm W undt’s laboratory in the 
University of Leipzig. In Spearman’s brief autobiography,5 he regretted the years 
he wasted as an army officer before discovering his true vocation in psychology. 
His several years’ sojourn in the army, he later remarked, resulted from the 
youthful illusion that life is long. Seven years passed before he completed his 
doctoral study under Wundt, because in the midst of it, alas, he was recalled to 
military duty during the Boer War.

While still a graduate student, however, he showed his unusual analytic ability 
by writing what is perhaps the single most important paper in the history of 
differential psychology and psychometrics: “  ‘General Intelligence’ Objectively 
Determined and Measured.”  Published in 1904 in the American Journal o f  
Psychology, it introduced Spearman’s famous two-factor theory. This strikingly 
non-Wundtian paper was not Spearman’s Ph.D. dissertation, which dealt with 
optical illusions in spatial perception, a subject strictly in line with W undt’s 
interest at that time.

Finally, with a Ph.D. in hand, Spearman returned to England to take the 
estimable position of Reader in Psychology at the University of London. Only 
four years later, he was promoted to a distinguished chair— Grote Professor of 
Mind and Logic— and for twenty-two years thereafter he headed the Psychology 
Department at the University of London. During his distinguished career, he 
received many honors in England and abroad, including election as a fellow of 
the Royal Society and (in the United States) the National Academy of Sciences. 
At age eighty-two, suffering from poor health and the frailties of old age, Spear­
man ended his life by jum ping out of an upper-story window of the London 
University Hospital.
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CORRECTION FOR ATTENUATION
While studying under Wundt, Spearman also read Galton and later claimed 

that these pioneers of scientific psychology were the two greatest influences in 
his life. He found Galton’s writings especially stimulating. Spearman was most 
intrigued by Galton’s idea that individual differences in simple mental processes, 
such as discrimination, are the basis of individual differences in the more com­
plex function intelligence. He was aware of Galton’s apparent failure to find 
much relationship between performance on simple tasks and the ordinary criteria 
of intelligence. He also knew of the failure to find such correlations in subse­
quent studies inspired by Galton. The idea of general ability was further shaken 
by the observation that the simple Galtonian tasks of discrimination, reaction 
time, and the like showed small correlation even among themselves, to say 
nothing of their near-zero correlations with “ real-life”  indicators of intelligence. 
Yet there were a few studies that did show more impressive correlations. Spear­
man puzzled over this inconsistency. The theoretical issue at stake seemed too 
important to him to dismiss Galton’s hypothesis without further empirical in­
vestigation of his own.

Spearman noted that the Galtonian measures had poor reliability; that is, the 
same subject obtained different scores when the test was repeated. Besides meas­
uring what they were intended to measure and appeared to measure, therefore, 
the Galtonian tests also contained a lot of measurement error. Spearman drew 
the analogy of firing a gun repeatedly while aiming at a mark on a target. The 
bullets scatter randomly around the mark, more of them hitting nearer the mark 
than farther away from it, and the more shots that are fired, the greater is the 
number of bullets that hit the mark. The scatter of bullets around the mark is 
analogous to measurement error. It is a part of every kind of measurement, to 
a greater or lesser degree, depending on the nature of the measuring instrument, 
the thing being measured, and how hard the experimenter works to reduce meas­
urement error.

Neither Galton nor anyone else working on the measurement of mental abil­
ities had taken into account the reliability of their measurements. Measurement 
error necessarily diminishes (the technical term is attenuates) the correlation 
coefficient. The larger the error (that is, the lower the reliability) in either one 
or both of the correlated variables, the lower will be the possible obtained cor­
relation between them, because the measurement errors are by definition random 
and therefore uncorrelated. Even two variables that theoretically are perfectly 
correlated, such as the diameter and the circumference of circles, will not show 
a perfect correlation (i.e., r  =  +1.00) unless both variables are measured with 
perfect accuracy. Yet perfect accuracy of measurement is a pure abstraction 
never attained by any actual measurement. Actual measurements of any kind 
always have some “ margin of error.”

Spearman’s formalization of this idea with respect to test scores is the basic 
postulate of what is now called classic test theory. It states that any and every
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actual (also termed obtained) score (or measurement), call it X, is composed of 
two elements— a true score, t, and a random error of measurement, e. (Neither 
t nor e can be directly observed.) Thus X  =  t + e. Because e can have either 
a positive or a negative sign and because it is random, its value tends toward 
zero as we average more and more of the measurements of X. Theoretically, the 
average o f an infinite number of Xs contains zero error; it will consist purely 
of t. The way, then, to reduce measurement error is to average a number of 
repeated measurements of the thing being measured, and to include in the av­
erage as many repeated measurements as necessary to achieve the desired degree 
of accuracy, or, as it is termed, reliability, of the composite measure. The t 
(which is systematic) is repeatedly averaged in, while the e (which is random) 
is increasingly averaged out.

This postulate has an important corollary concerning the variance (c*2) of a 
number of different values of X. The variance consists of the true score variance 
(ct,2) plus the error variance (oc2), or o x2 =  a ,2 +  a e2. Only a,2 represents the 
reliable component of individual differences in the measurements of X. This 
leads to the definition of the reliability coefficient (rxx) as rxx =  (7,2/(Jx2. Although 
the theoretical o ,2 cannot be determined directly, we can determine rxx simply 
by obtaining two separate measures of the same variable, X, for every subject 
and then calculate the correlation between the two sets of measurements. This 
is rxx, the reliability of the measurements of X.6 As rxx is the proportion of true 
score variance in test scores, 1 -  rxx yields the proportion of error variance.

These considerations led Spearman to invent a method to rid a correlation 
coefficient of the weakening effect of measurement error. It is known as the 
correction fo r  attenuation. If the correlation between the obtained measures of 
the variables X  and Y is rxy, the correlation (rxy) between the error-free true 
scores (termed X' and F) is the raw correlation between X  and Y divided by the 
geometric mean of the reliability coefficients of X  and Y, that is, rx.y. =  rxy/ 
( fxxryy)v\  The correlation rxy thus is said to be corrected fo r  attenuation, or 
disattenuated.

Realizing that the true correlations in earlier studies of Galton’s hypothesis 
of the generality of mental ability had been seriously underestimated because of 
the low reliability of most of the measurements, Spearman applied his correction 
for attenuation to the correlations obtained in the earlier studies. Galton’s meas­
urements of reaction time, for example, had a reliability of only .18! The the­
oretically highest correlation that any variable can have with any other variable 
is the geometric mean of their reliability coefficients (i.e., the square root of the 
product of the two reliabilities). Obviously, it would be impossible to find sub­
stantial correlations between such unreliable measures. For example, Galton’s 
measure of reaction time (RT), with a reliability of only .18 could not possibly 
correlate higher than /A S  =  .42 with any other variable, and if the true corre­
lation between simple RT and g was, say, .15, the obtained correlation (if the 
reliability of RT was .18) would be only .15 X — .06. Measurements can 
be made more reliable, however, by aggregating repeated measurements.
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Table 2.1
Spearm an’s Correlation Matrixa and g  Loadings

Variable C F E Ma P Mu g

Classics .83 .78 .70 .66 .63 . 958
French .83 .67 .67 .65 .57 . 882
English .78 .67 .64 .54 .51 . 803
Math .70 . 67 .64 .45 .51 . 7 50
Pitch .66 .65 .54 .45 .40 .673
Music .63 .57 .51 .51 .40 . 6 4 6

Mean r . 720 .678 .6 28 .594 .5 4 0 .524

“Only the correlations given here appear in Spearm an’s original matrix; the g  loadings and the mean 
rs (both in italics) have been included here only for didactic purposes.

Spearman obtained such aggregated data in a small and seemingly unimpres­
sive experiment based on twenty-two high school boys. These data admittedly 
are not compelling from the standpoint of any substantive conclusions that can 
be drawn from them. It is only the novel procedure that Spearman applied to 
these meager data and the important insights he gained as a result that proved 
to be of such far-reaching methodological and theoretical consequence. It is also 
worth looking at his employment of a prototype of factor analysis, not only for 
its historical interest, but as a way of explaining the basic concepts underlying 
this complex mathematical procedure.

THE FIRST FACTOR ANALYSIS
Spearman obtained students’ ranks based on their teachers’ ratings in five 

school subjects (Classics, French, English, Math, and Music). M ost important, 
as suggested by Galton’s hypothesis, Spearman measured the pupils’ ability in 
pitch discrimination, the crucial variable in his little study. The raw correlations 
between these six variables were reported by Spearman as shown in the corre­
lation matrix in Table 2 .1.7

A matrix is just an array of numbers arranged in columns and rows. A cor­
relation matrix is such an array that shows the correlation of each variable with 
every other variable. In Table 2.1, for example, the correlation between rank in 
Classics and rank in French is .83. The correlation coefficient is a continuous 
variable, ranging from a perfect negative correlation {r =  —1.00) to zero cor­
relation (r =  0) to a perfect positive correlation (r =  +1.00). (When no sign is 
shown, a positive correlation coefficient is understood. Negative signs are always 
shown.) When all correlations in the matrix are positive, it is called a positive 
manifold.*
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Spearman was especially intrigued to find that pitch discrimination, although 

seemingly very different from the scholastic variables, was nevertheless corre­
lated with each of the other variables, and was even more highly correlated with 
rank in classics, French, and English than with rank in music. Galton’s belief 
that fineness o f sensory discrimination is related to intelligence was perhaps 
correct after all!

Now let’s go step-by-step through Spearman’s analysis of the correlations in 
Table 2.1:

First, it should be noted that the six variables (Classics, French, etc.) in Table 
2.1 can be listed in any arbitrary order. (The correlations themselves would, of 
course, remain unchanged.) But Spearman’s insight led him to arrange the var­
iables exactly as shown in Table 2.1. He did this to see if the matrix would 
show what he termed a hierarchical order. He reasoned that if only one common 
factor (i.e., a source of variance) were responsible for all of the correlations 
among a number of measurements, the matrix of correlations would show a 
hierarchical order. That is, the correlation coefficients would decrease in size 
the farther away (in any direction) they are from the upper left corner of the 
matrix. The easiest way to determine if the correlations form a hierarchy is to 
put the variables in the order of their average correlation with each of the other 
variables. (See the row labeled Mean r in Table 2.1). With the variables so 
ordered, one can see that the matrix of correlations here is extremely hierarchi­
cal. The slight deviations from a perfect hierarchy are probably due to random 
error.9

Second, it is a mathematical necessity that if there is only one factor that is 
common to all of the variables and no two (or more) variables have any other 
factor(s) in common, then any two columns of correlations will have a constant 
proportionality. This is a more stringent criterion of a single-factor matrix than 
merely a hierarchical order of the correlations. For example, examine the 
corresponding entries in columns C and F: ,78/.67 =  1.16, .70/.67 =  1.04, 
.66/.65 =  1.02, ,63/.57 =  1.11. Or the corresponding entries in columns E and 
P: .78/.66 =  1.18, ,67/.65 =  1.03, ,64/.45 =  1.42, .51/.40 = 1.27. Although all 
of the proportions are slightly greater than 1.00 and they obviously vary, we 
cannot be certain that the correlations in this matrix can be adequately explained 
in terms of only one factor.

Third, Spearman proposed a closely related means to test whether a matrix 
has only one factor (or, in the terminology of matrix algebra, it has unit rank; 
i.e., rank =  1). This is the most rigorous criterion of a single factor matrix and 
has the advantage that it can be subjected to a test of statistical significance. 
This tells whether the obtained correlations depart from theoretical expectation 
more than chance, or random error, would allow. Spearman called it the method 
of vanishing tetrad differences. A tetrad consists of any set of four correlations 
(arranged just as they are located in a hierarchically ordered matrix) between 
which two equal-length crossing diagonals can be drawn. For example, here are
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just four of the tetrads to be found in Table 2.1. (See if you can find them in 
the matrix):

(a) (b) (c) (d)
.78 .67 .67 .64 .83 .66 .79 .63
.70 .67 .57 .51 .57 .40 .45 .40

The number of possible distinct tetrads in a matrix rapidly increases as the 
number of variables increases.10 The total number of distinct tetrads that can be 
obtained from Table 2.1, with only six variables, is forty-five. Spearman’s tetrad 
equation is illustrated by putting each of the four tetrads above into the following 
form:

a) (.78 X .67) - (.70 X .67) = .054
b) (.67 X .51) - (.57 X .64) = -.024
c) (.83 X .40) - (.57 X .66) = -.044
d) (.70 X .40) - (.45 X .63) = -.003

Each of the above equations is a tetrad difference. In a matrix that contains 
only one factor, all of the tetrad differences in the matrix should approach zero, 
hence Spearman’s “ vanishing tetrad differences”  proof that only one factor 
exists in the correlation matrix. The tetrad differences shown above all depart 
slightly from zero; they average —.017. But these departures from zero are so 
small they could be just chance variation. Spearman would obtain all of the 
possible tetrad differences in the matrix and plot their distribution. If there was 
only one factor in the matrix, the average of all the tetrad differences would be 
very close to zero. One of Spearman’s doctoral students, Karl J. Holzinger, 
helped him figure out the formula for the probable error of a tetrad difference. 
This statistic makes it possible to determine if departures from zero are greater 
than would be expected by chance for a correlation matrix based on any given 
sample size. If the tetrad differences are no greater than would be expected by 
chance, it proves mathematically that the correlations reflect only one factor. 
Another way of saying this is that all of the variables share only one common 
source of variance. The fact that the correlations between variables differ from 
one another implies that the variables have this common factor to varying de­
grees. In technical jargon, the variables have different loadings on the common 
factor. (The term fac tor saturation , which has gone out of fashion, has exactly 
the same meaning as fac tor loading.)

Because the matrix in Table 2.1 meets the vanishing tetrad proof (within the 
limits of probable error for the small sample of only twenty-two subjects), we 
can justifiably say that it can be explained in terms of only one common factor.

Spearman then faced two big questions: What is this common factor? And 
how loaded with this factor is each of the six variables shown in Table 2.1? 
The first question is a real stopper, and any attempt to give an answer that goes
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much beyond mere verbalization must be postponed. The second question is 
much easier to answer, and Spearman invented a method for doing so. It can 
be best illustrated if we begin with the simplest possible example, the correlation 
between only two variables. The variance (o 2) of any set of measurements of 
any variable, when the measurements are expressed in standardized form ,11 is 
always unity (or 1). We can represent the variance of a variable graphically as 
the area of a rectangle, and the correlation between two variables as the over­
lapping (or intersection) of the areas of two squares. The proportion o f the area 
in each square that overlaps the other square represents the correlation between 
the variables and is equal to the correlation coefficient.12 Consider the following 
diagram, which depicts a correlation of .25 (that is, rXY =  .25). The shaded area 
(C) represents the variance that variables X and Y have in common.

X

■i & • • 
p  c 
%

Y

It is a kind of simplest possible common factor. The fac tor loading of each 
variable on the common factor is the correlation between one variable, say X, 
and the factor it has in common with Y (i.e., the shaded area C). This correlation 
is equal to the square root of the shaded area (Ji.~ ) .  In this example it is /2 5  
=  .50. When there is only one common factor, multiplying one test’s factor 
loading by another test’s factor loading yields the observed correlation between 
the two tests.

Now, say we want to determine the correlation that each of three correlated 
variables, X, Y, and Z, has with the one factor they all have in common, which 
we can call C. Technically, we want to determine each variable’s loading on 
the common factor. The factor loading of variable X, for example, is rxc, or the 
correlation of X with C (the factor that is common to variables X, Y, and Z). 
Spearman’s formula for calculating the factor loadings of each variable:

rxc "" [ (rXY' rX7̂ )/rYZ] \  rYC — [(VXY1 rY/)/rx/] rzc — l(rxz’rYZ)/rXY] '■
For example, say our three variables have the following correlations: rXY = 

.63, rX7 =  .45, and rY7 = .35. Inserting these correlations into the formula gives 
rxc =  .9, rYC =  .7, and r7C =  .5. These are called the factor loadings of variables 
X, Y, and Z. To reproduce the original correlations between any two variables, 
simply multiply their common factor loadings; for example, rXY =  rXG-rYC = 
.9 X .7 =  .63; rX7 =  .9 X .5 =  .45; and rYZ =  .7 X .5 =  .35. The fact that 
all of the correlations can be perfectly reproduced from the variables’ loadings
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on this one factor is taken as proof that the all of the variables have only this 
one factor in common and that we have correctly determined each variable’s 
factor loading (that is, the correlation of each variable with the common factor).

The formula does not work on every set of correlations, however. For ex­
ample, apply it to the following correlations: rxy =  .90, rx /  = .80, and rYZ =.50. 
The loadings of each variable on the common factor, according to the formula, 
are: rxc =  1.20, rYC = .75, and rzc =  .67. But rxc =  1.20 is impossible, because 
no correlation coefficients can be larger than 1.00. This implies that there is 
more than one common factor in this set of three variables. Since X and Y are 
very highly correlated, they have another factor in common in addition to the 
factor that they share with Z.

All three variables must have one factor in common, or they would not all 
be positively correlated with each other. But X and Y are also loaded on a 
second factor that is not common to Z. A factor shared by three or more but 
not all variables in a matrix is called a group factor. It was not until some years 
after Spearman invented factor analysis that he acknowledged the existence of 
group factors. Earlier he had argued, using our example above, that X and Y 
overlap so much that they represent the same variable. Therefore, only one of 
them, or a combined measure of both, should be entered into a correlation matrix 
subjected to factor analysis. This would preserve the hierarchical structure of 
the matrix, which then would yield only one common factor.

It is evident that Spearman’s method would work properly only if the variables 
are all sufficiently different from each other to rule out the emergence of group 
factors. His method for determining the variables’ factor loadings, in fact, is ca­
pable of extracting only a single common factor from a correlation matrix; if the 
matrix contains more than one common factor, the method cannot correctly deter­
mine the loadings of the additional factors.13 But Spearman’s most remarkable 
empirical discovery was that quite different kinds of tests, so long as they all 
measured some kind of mental ability, all shared at least one common factor.

Spearman generalized the above formula for extracting the variables’ loadings 
on the one common factor so that it could be applied to a correlation matrix 
having any number of variables.14 With a large number of variables, however, 
the formula becomes quite complex and the sheer labor of calculating the factor 
loadings is enormous. As Spearman did all his calculations either by hand or 
with a mechanical calculating machine, it is little wonder that he occasionally 
made slight, but essentially trivial, errors in some of his calculations.15

When the correlation matrix is made up entirely of variables that represent a 
variety of what would be characterized as “ mental abilities,”  Spearman referred 
to the one factor that all of the variables have in common as the general factor, 
which he designated by the symbol g (always printed as a lower-case italic, as 
shown here).16

Returning to Table 2.1, the rightmost column shows the g loadings of the six 
variables in this matrix. Note that they are in the same rank order of magnitude 
as the average correlation of each variable with all the others (Mean r in bottom
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Table 2.2
Correlations Reconstituted from the g  Loadings

IIIIIIIIIIIIIIHIIIIIIII

C F E Ma P Mu g
Classics inoo .77 .72 .65 .62 . 958
French .85 .71 .66 .59 .57 . 882
English .77 .71 o .54 .52 . 803
Math .72 .66 .60 .51 .49 . 7 50
Pitch .65 .59 .54 .51 .43 . 6 73
Music .62 .57 .52 .48 .43 . 64 6
Mean r . 719 .676 .6 28 .594 .544 .5 2 6

row). This tells us that the average of a variables’ correlations with the other 
variables is a rough indicator of the relative size (but not the absolute size) of 
the g loading for that variable. (In this example, the correlation between the 
Mean r values and the g values is .999.) Spearman was particularly concerned 
to find that the g loading of pitch discrimination was as high as .673, and would 
be even higher if corrected for attenuation. This suggested to him that the g 
factor reflected something more basic than scholastic attainments, and that Gal­
ton was essentially on the right track in his belief that simple tasks involving 
discrimination or quickness of mental reaction reflect a general aspect of mental 
ability that enters into scholastic performance or other mentally demanding ac­
tivities.

A test of how well the single g factor accounts for all of the correlations in 
Table 2.1 is to reconstitute the correlations by multiplying the g loading of each 
variable with that of every other variable. Take Classics and French, for ex­
ample: the reconstituted correlation is .958 X .882 =  .85. The obtained corre­
lation is .83. AH of the reconstituted correlations obtained in this manner are 
shown in Table 2.2. They closely resemble the obtained correlations in Table 
2.1. The g loadings are identical, of course, because they are the values used to 
generate the correlations in Table 2.2. We can check this by subtracting the 
reconstituted correlations (Table 2.2) from the obtained correlations (Table 2.1). 
This yields what is termed the residual matrix, that is, whatever is left after all 
of the variance attributable to the g factor has been removed. The residual matrix 
is shown in Table 2.3. We see that no significant correlations remain. The av­
erage of the residual correlations is a mere —.001. The minuscule scraps of 
correlations that remain in the residual matrix reflect nothing but random error 
variance. No additional factor(s) can possibly be extracted.

If, however, the residual matrix had contained a few substantial correlations, 
we would know that the original matrix contains one or more common factors 
in addition to g. Termed group factors, they are loaded only in some subset of
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Table 2.3
Residual Correlation Matrix after g  Is Removed

Variable C F E Ma P Mu

Classics 1 O »—* .01 -.02 .01 .01
French -.01 -.04 .01 .06 .00
English .01 -.04 .04 .00 -.01
Math -.02 .01 .04 -.05 .03
Pitch .01 .06 .00 -.05 -.03
Music .01 .00 -.01 .03 -.03

Mean r .001 .002 . 0 0 0 . 0 0 0 - . 0 0 4 - . 0 0 2

variables. For example, if Spearman had included three tests of pitch discrimi­
nation (say, using different musical instruments, or pitches in different ranges 
of the scale), then surely pitch discrimination would emerge as a group factor. 
Each test of pitch discrimination would be loaded on g, as before, but would 
also be loaded on a group factor, let’s call it “ pitch discrimination.”  In his early 
factor analytic studies, however, Spearman never allowed this to happen. He 
took pains to ensure that no two (or more) variables in the matrix were so alike 
as to violate the rule of vanishing tetrad differences and thereby risk the emer­
gence o f more than one common factor in the matrix.

SPEARMAN’S TWO-FACTOR THEORY
The g factor of the correlation matrix in Table 2.1 accounts for 62.9 percent 

of the total variance in the six variables. This is calculated simply by adding up 
the squared values of each variable’s g  loading, obtaining their average, and 
multiplying by 100.17 But if g, in this case, accounts for 62.9 percent of the 
total variance, what accounts for the remaining 37.1 percent? Because g is the 
only common factor in this matrix, the remaining 37.1 percent of the total var­
iance must be attributed to sources that are unique to each of the variables, and 
indeed the technical term for this unique source of variance in each variable is 
the variable’s uniqueness, symbolized as u. Its variance is u2. The unique var­
iance is composed of two parts: error variance (e2, due to random errors of 
measurement) and variance due to a true-score component that is specific to 
each variable in the matrix. The latter is technically termed the variable’s spec­
ificity, symbolized as s. Its variance is s2. The .v is not a common factor, but a 
specific factor, and there are as many specific factors as there are variables. 
Since the standardized variable’s total variance is one, and the variable’s error 
variance, e2, is equal to one minus the variable’s reliability, or 1 -  rxx, the
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variable’s specific variance, s2, is equal to 1 -  g2 -  e2. The square root of this 
value, then, yields the variable’s specificity, or s.

Spearman’s famous two-factor theory states that individual differences in the 
true-scores (i.e., error-free scores) on any measurement of any mental ability are 
attributable to only two factors: a general factor, g, that is common to all mental 
ability measurements, and some factor, s, that is specific to each and every 
measurement.18 Also, g and 5 are uncorrelated (rgs =  0), and the various s ’s are 
uncorrelated with each other.

Spearman’s two-factor formulation has an important corollary: Because every 
mental test, no matter how distinctive, contains some g and each mental test 
contains a different s, and because g and .? (and also e) are uncorrelated with 
each other, then a composite score based on a number of distinct tests will have 
relatively more g and less s than any of the individual scores that went into the 
composite. The more we increase the number of distinct tests in the composite, 
the more the g components cumulate in the composite score and the more the 
uncorrelated s components cancel each other (their average tending toward zero). 
Theoretically, then, the composite score from an infinite number of diverse men­
tal tests would be a perfect measure of g.

THE DEMISE OF THE TWO-FACTOR THEORY
After the publication of Spearman’s important 1904 paper and the invention 

of Binet’s test in 1905, other psychologists began constructing and trying out a 
variety of mental tests. More adequate psychometric instruments for testing the 
two-factor theory appeared than were initially available to Spearman. The leader 
in this effort was the British psychologist Sir Cyril Burt (1883-1971). In 1931 
Burt succeeded Spearman as head of the Psychology Department at the Uni­
versity of London.

As early as 1909, Burt’s mental test data led him to doubt that the two-factor 
theory was adequate to explain fully the correlations among tests. It appeared 
there were common factors besides g. Between the extremes of complete gen­
erality and complete specificity there were factors (later termed group factors) 
that some, but not all, of the tests shared in common. Spearman maintained that 
his “ vanishing tetrad differences”  criterion of a single common factor, or g, 
was broken only by making the mistake of putting two or more tests into the 
matrix that were really more or less equivalent measures of one and the same 
ability. But Burt argued that there were sufficient differences among the subsets 
o f tests that form group factors (in addition to g) to warrant their being regarded 
as more than just equivalent forms of the same test.19 For example, in a corre­
lation matrix of the following tests— adding mixed fractions, multiplying deci­
mal numbers, long division, vocabulary, verbal analogies, and English 
grammar— Burt noted that even though all of the tests were substantially 
correlated with each other and therefore all were g-loaded to varying degrees, 
the correlations among the three arithmetic tests were larger than their correla­
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tions with any of the verbal tests; and the correlations among the three verbal 
tests were larger than their correlations with the arithmetic tests. Therefore, it 
appeared that each of the two clusters of tests— arithmetic and verbal—repre­
sents its own factor in addition to the g factor common to all six tests.

By 1911, Burt had collected data on so many different tests and showed that 
this kind of correlational clustering of certain groups o f tests was the rule rather 
than the exception that Spearman’s two-factor theory had to be abandoned. 
Other psychologists agreed with Burt’s position that it was more reasonable to 
accept the existence of group factors , along with g and s. Spearman himself 
finally admitted the existence of group factors, but he did so reluctantly, because 
their presence not only destroyed the pleasing simplicity of his two-factor theory, 
but also greatly complicated the methodology of factor analysis. He regarded 
the admission of multiple factors as opening a Pandora’s box, and in his great 
work The Abilities o f  Man (1927), he wrote a technically correct but surprisingly 
grudging chapter titled “ Special Abilities and Group Factors” :

We have now arrived at the “ group factors”  which have played such a baffling 
part in controversial writings. They make their appearance here, there, everywhere, 
nowhere; the very Puck of psychology. On all sides contentiously advocated, hard­
ly one of them has received so much as a description, far less any serious inves­
tigation. And yet they are of immense importance, not only theoretically, but also 
p ractically .. . .  For a test only measures any ability other than g by having cor­
relation with it other than that due to g. Such super-added correlation will, of 
course, be caused by any overlap o f the specific factors; or in other words, by any 
“ group factor.”  (pp. 222-223)

One could argue, of course, that Spearman’s phrase “ overlap of specific fac­
tors”  is a contradiction in terms, because specificity is defined as that part of a 
test’s variance that is not shared by any other test included in the factor analysis. 
But history finally tells the tale, which is that Spearman’s simple two-factor 
theory was short-lived and was soon supplanted by a multiple factor  theory of 
abilities. However, the theory of g as the common factor reflected by all mental 
tests remained fully intact.

SPEARMAN’S THEOREM OF THE “ INDIFFERENCE OF THE 
INDICATOR”

This “ theorem” has both theoretical and practical importance and remains 
very much alive in modern psychometrics.20 Spearman complained that Binet’s 
test was composed of a hodgepodge of various tasks, selected without any real 
theoretical rationale and justified simply by the fact that the test “ worked.”  
That is, the composite score based on all these varied tasks correlated quite well 
with children’s future level of scholastic achievement and with teachers’ sub­
jective judgments of children’s brightness or dullness, even though the diverse 
tasks were not specifically scholastic. Binet expressly avoided including items 
of the kind children were likely to have learned in school. To this day, he and
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many of his followers explain that the test works because the test items represent 
a fair sample of the particular skills and the bits of knowledge most children 
normally have had the opportunity to acquire by a given age. The composite 
score on the test thus reflects a simple average of the subject’s performances on 
all of these diverse items that call on many separate cognitive skills and bits of 
knowledge. This averaging of the scores on many disparate items could be called 
a measure of “ intelligence in general.”  This interpretation of a composite score 
based on many diverse items, it was argued, is preferable to interpreting the 
score as a measure of “ general intelligence,”  with its implication that the test 
measures something broader and more general than just the arbitrary hodge­
podge sample o f particular skills and items of knowledge that compose the test. 
Spearman strongly disagreed with this idea of “ intelligence in general.” He 
dubbed it the “ anarchic”  theory of mental abilities. In his words:

As for the prevalent procedure of throwing a miscellaneous collection of tests 
indiscriminately into a single pool this— whether or not justifiable by the theory 
which gave birth to it— certainly cannot be justified simply by claiming that the 
results give a “ general level,”  an “ average,”  or even a “ sam ple.”  No genuine 
averaging, or sampling, o f anybody’s abilities is made, can be made, or even has 
really been attempted. When Binet borrowed the idea of such promiscuous pool­
ing, he carried it into execution with a brilliancy that perhaps no other living man 
could have matched. But on the theoretical side, he tried to get away too cheaply.
And this is the main cause of all the present trouble. (1927, pp. 70-71)

Spearman argued that a collection of items as found in Binet’s test “ works” 
only because g enters into any and every mental task. Therefore, according to 
Spearman’s theory, each one of the items in Binet’s hodgepodge measures both 
g and s. And thus the composite score contains the accumulated g and the 
averaged-out s ’s. In Spearman’s words:

This means that, for the purpose of indicating the amount o f g possessed by a 
person, any test will do just as well as any other, provided only that its correlation 
with g is equally high. With this proviso, the most ridiculous “ stunts”  will meas­
ure the self-same g as will the highest exploits of logic or flights of imagination.
. . . And here, it should be noticed, we come at last upon the secret of why all the 
current tests o f “ general intelligence”  show high correlations with one another, 
as also with g itself. The reason lies, not in the theories inspiring these tests (which 
theories have been most confused), nor in any uniformity of construction (for this 
has often been wildly heterogeneous), but wholly and solely in the above shown 
“ indifference o f the indicator.”  Indeed, were it worth while, tests could be con­
structed which had the most grotesque appearance, and yet after all would correlate 
quite well with all the others. (1927, pp. 197-198)

Spearman was quite right in this. If the many heterogeneous tasks that compose 
a test like Binet’s were not all correlated with each other, the variance (or 
individual differences) of the total scores would be reduced to only 5 to 10 
percent of what it actually is.21 On the Stanford-Binet IQ test, for example,
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persons picked at random from the population differ from one another by eight­
een IQ points, on average. If all of the many diverse items composing the whole 
test were not correlated with each other, the average difference between persons 
would be only about five IQ points. In other words, by far most of the difference 
in IQ between persons is not traceable to the specific skills or knowledge called 
for by the various items, but is due to the fact that all the items are correlated 
with each other.

Each item in a test contributes to the true-score only to the extent that the 
item is correlated with other items in the test. The item intercorrelations are the 
essential basis of common factors. Remove the correlations and you remove all 
of the test’s true-score variance and all of the common factors. It is axiomatic 
in measurement theory that the true-score of any mental ability test composed 
of heterogeneous items consists only of common factors (typically g and certain 
group factors in the mental abilities domain). Item specificity is lumped together 
with random measurement error as the test’s unreliability. Unreliability is the 
complement of the test’s internal consistency reliability. Internal consistency, in 
turn, is directly related to the average correlation among the test items.22 In the 
best modern tests, the true-score variance is about 90 to 95 percent of the total 
variance. The remaining 5 to 10 percent is error (random error plus item spec­
ificity).

SPEARMAN’S NOEGENETIC LAWS
Although Spearman had proved the statistical existence of g, he admitted that 

he did not know what g is. What, one can ask, is g beyond the mathematical 
operations of factor analysis that reveal its presence in a collection of mental 
tests? Spearman described this problem as follows:

But notice must be taken that this general factor g, like all measurements any­
where, is primarily not any concrete thing but only a value or magnitude. Further, 
that which this magnitude measures has not been defined by declaring what it is 
like, but only by pointing out where it can be found. It consists in just that con­
stituent—whatever it may be—which is common to all the abilities interconnected 
by the tetrad equation. This way of indicating what g means is just as definite as 
when one indicates a card by staking on the back of it without looking at its face.
. . . Such a defining of g by site rather than by nature is just what is meant orig­
inally when its determination was said to be only “ objective.” Eventually, we 
may or may not find reason to conclude that g measures something that can ap­
propriately by called “ intelligence.” Such a conclusion, however, would still never 
be the definition of g, but only a “ statement about” it. (1927, pp. 75-76)
Spearman tried to describe the essential characteristics of the tests in which 

g is most highly loaded by comparing strongly g-loaded tests with weakly g- 
loaded tests based on factor analyses of some 100 or so distinct tests given to 
school children.23 Here are some of his examples of tests found to have high or 
low g loadings (in parentheses):
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High g  Loading
Matrix relations (.94) 
Generalizations (.89)
Series completion (.87)
Verbal analogies (.83)
Likeness relations (.77) 
Problem arithmetic (.77) 
Paragraph comprehension (.73) 
Perceptual analogies (.70)

Low g  Loading
M aze speed (.04)
Crossing out numbers (.12) 
Counting groups o f dots (.14) 
Simple addition (.23)
Tapping speed (.24)
Dotting speed (.27) 
Paired-associates memory (.27) 
Recognition memory (.31)

It would be more informative, of course, if we knew more than just the names 
o f these tests and could examine their various contents and task demands, as 
Spearman did in comparing the ways in which they were either similar or dif­
ferent. From these comparisons, he discerned that the relative magnitude of a 
test’s g loadings was a function of the degree to which the test manifests two 
of his noegenetic “ laws,”  in combination with having the quality of “ abstract­
ness.”

In Spearman’s terminology, noegenesis means the production of new knowl­
edge, or mental content, from sensory or cognitive experience. Spearman pro­
nounced three “ laws”  of noegenesis, which he regarded as self-evident and 
fundamental to cognition.

The first noegenetic law  is the apprehension  of experience. It states: “ Any 
lived experience tends to evoke immediately a knowing of its characters and 
experiencer.”  The term “ immediately”  has no temporal connotation in the con­
text of noegenesis; it means only that the knowledge is direct and not mediated 
by inference. The “ apprehension of experience,” in other words, is the aware­
ness of oneself directly perceiving the attributes of whatever holds the present 
focus of attention.

The second noegenetic law is the eduction of relations. It states: “ The men­
tally presenting of any two or more characters (simple or complex) tends to 
evoke immediately a knowing of relation between them.”  The “ two or more 
characters”  between which some relationship can be educed Spearman called 
fundaments. A test involving the “ eduction of relations”  is not deemed appro­
priate for a given person unless the person is fully capable of perceiving the 
fundaments between which the relation is to be educed and is already familiar 
with them; also, whatever response is appropriate for indicating the relation must 
already exist in the person’s repertoire. Example: Branch-Trunk —> Tree.

The third noegenetic law is the eduction of correlates. It states: “ The pre­
senting of any character together with any relation tends to evoke immediately 
a knowing of the correlative characters.”  Example: High-Opposite —> Low.

Spearman concluded that the tests that best reflect g are those that most in­
volve the “ eduction of relations and correlates.”  These are the tests that require 
inductive and deductive reasoning, grasping relationships, inferring rules, gen­
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eralizing, seeing the similarity in things that differ (e.g., reward-punishment) or 
the difference between things that are similar (love-affection), problem solving, 
decontextualizing a problem (that is, distinguishing between its general, or es­
sential, features and its specific, or nonessential, features). These all manifest 
the second and third “ laws”  of noegenesis— the eduction of relations and of 
correlates. They are contrasted with tests that call mainly upon speed of exe­
cution of simple tasks, performance of repetitious acts, simple cued recall of 
prior learned responses, execution of a practiced sequence or chain of responses, 
and direct imitation of another person’s specific action without conscious trans­
formation.

It would be a serious mistake, however, to suppose that g is a dichotomous 
variable that some tests reflect and other tests do not. Inspection of a great many 
factor analyses of the widest variety of mental tests imaginable reveals without 
exception that tests’ g loadings are a perfectly continuous variable, ranging from 
slightly gre'ater than zero to slightly less than unity. The g loadings are always 
positive, provided all of the tests are scored so that higher scores (i.e., larger 
numerical values) represent better performance (e.g., the number of items gotten 
correct rather than number of errors; speed of response rather than the time 
taken for response; the reciprocal of number of trials rather than the number of 
trials to learn something to a given criterion of mastery). Every kind of mental 
test and every mentally demanding activity, as required in school and in most 
occupations, is to some degree loaded with g. If one wants to assess a person’s 
level of g, it is more efficient, of course, to select highly g-loaded tests, provided 
they are otherwise appropriate for the person in terms of having familiar fun­
daments. Obviously, a highly g-loaded test given in the Tamil language would 
be wholly inappropriate for a typical American, although it may provide a valid 
assessment of g for a native of Madras, India. A highly g-loaded nonverbal test, 
one based on figural relations for example, could be equally appropriate for both 
the American and the Madrasi, assuming, of course, that its fundaments are 
familiar to both.

To incorporate his noegenetic laws in a mental test as ideally as seemed 
possible, Spearman invented a type of test that was entirely nonverbal, that was 
composed of fundaments (various geometric shapes) that are universally familiar 
to virtually all persons beyond three years of age in every culture, and in which 
every item calls for the eduction of relations and correlates. It also had the 
quality of “ abstractness”  in the sense that the fundaments (straight and curved 
lines, triangles, circles, squares, and the like) do not represent any real or tan­
gible objects, like animals, plants, furniture, or vehicles. He called this type of 
spatial relations test “ matrix relations,”  because each item consisted of eight 
panels of fundaments and a blank panel, all arranged in the form of a 3 X 3 
matrix, from the examination of which one could figure out the rule that would 
determine the particular characteristics of the figure that should fit into the blank 
space in order to complete the logical pattern of the whole matrix. The one 
correct figure could be chosen from a set of six (or eight) alternatives presented
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Figure 2.1 A matrix relations item similar to those in Raven’s Progressive Matrices 
test.

below the matrix. (The incorrect alternatives in a multiple-choice test are called
distractors.)

Spearman’s test was further developed by one of his students, John Raven, 
and the eminent geneticist Lionel Penrose. The test is now known as Raven’s 
Progressive Matrices— “ progressive”  because, as a person proceeds through the 
test, the items systematically increase in difficulty, based on the number of 
fundaments that simultaneously enter into the relations and correlates that must 
be educed to attain the correct solution. The test comes in three forms according 
to the level of complexity and difficulty: the Colored Progressive Matrices (for 
children); the Standard Progressive Matrices (for adolescents and adults); and 
the Advanced Progressive Matrices, for adults who score well above the average 
on the Standard form. Figure 2.1 shows a typical item of moderate difficulty.
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When the Progressive Matrices test is factor analyzed along with a variety of 
other tests, it is typically among the two or three tests having the highest g 
loadings, usually around .80. Probably its most distinctive feature is its very low 
loadings on any factor other than g. Raven’s Progressive Matrices is often used 
as a “ marker”  test for Spearman’s g. That is, it is entered into a factor analysis 
with other tests of unknown factor composition, and if the Matrices has a high 
loading on the general factor of the matrix of unknown tests, its g loading serves 
as a standard by which the g loadings of the other tests in the battery can be 
evaluated. I have yet to see a factor analysis of any diverse collection of tests 
that includes Raven’s Matrices in which the Raven’s largest loading was found 
on any factor other than g.

SPEARMAN’S QUANTITATIVE PRINCIPLES OF COGNITION
In addition to the qualitative principles of noegenesis, Spearman introduced 

five quantitative principles that determine individual differences in any perform­
ance that involves noegenesis.

M ental Energy. The first and best known of these quantitative principles is 
mental energy, the hypothetical basis of g, which, according to Spearman, “ en­
ters into the measurements of ability of all kinds, and which is throughout con­
stant for any individual, although varying greatly for different individuals” 
(1927, p. 411). Spearman’s notion of mental energy as a characteristic in which 
people differ seems to be purely metaphorical. He suggested no mechanism that 
would link it to energy as defined in physics and measured in ergs. He also used 
the terms “ power,”  “ force,”  and “ neural energy,”  as the hypothetical basis 
of g, but without specifying the physiological or metabolic mechanisms that 
presumably produce this “ energy.”  He forever remained theoretically agnostic 
and noncommittal about the physical basis of this hypothesized energy, although 
he suggested such possibilities as the electrochemical potential in neurons, the 
richness of the branching of capillaries that supply blood to brain cells, and the 
energy released by catabolism of the brain’s nutrients.

In Spearman’s day, far too little was known about brain chemistry and phys­
iology to afford a basis for much more than metaphorical explanations, and he 
was even willing, though reluctant, to settle for postulating a purely psychic 
form of energy, analogous to physical energy in its capability of being trans­
ferred from one system to another, in this case from any particular mental op­
eration (or “ engine” ) to another, like an electrical generator that powers a 
number of engines that perform different functions. He likened g to the power 
generator and .v to the different engines, each of which is powered by g but also 
has its own level of efficiency independent of g. Spearman fully recognized the 
metaphorical nature of this speculation. But he hoped that eventually a true 
physical source of energy would be discovered to substantiate his metaphor, in 
his words, “ whereby physiology will achieve the greatest of all its triumphs.” 
In The Abilities o f  Man, he wrote: ‘ ‘And even should the worst arrive and the
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required physiological explanation remain to the end undiscoverable, the mental 
facts will none the less remain facts still. If they are such as to be best explained 
by the concept of an underlying energy, then this concept will have to undergo 
that which after all is only what has long been demanded by many of the best 
psychologists— it will have to be regarded as purely mental. Both by history 
and otherwise, the concept of energy belongs at least as much to the science of 
mind as to that of matter”  (1927, p. 408).

The measurement o f g in individuals has been the most problematic aspect 
o f Spearman’s contribution and was nearly the sole subject of the first critical 
review of Spearman’s most important book, The Abilities o f  Man.24 The problem 
is the indeterminacy of factor scores. They cannot be determined exactly but 
can only be estimated from the data. In practice, this is usually accomplished 
by using the most highly g-loaded tests, although even scores on highly g-loaded 
tests are always contaminated to some degree by one or more other factors, 
including specificity, in addition to their g. However, these extraneous non-g 
factors can be reduced considerably by obtaining a “ weighted average”  of the 
individual’s standardized scores on a number of highly g-loaded tests, in which 
the individual’s standard scores (z) on the various tests are each weighted (i.e., 
multiplied) by their g-loadings and the resulting products (g X z) are summed 
(Zgz). This sum is called a g fac tor score.25 (It is usually transformed to a 
standard score, to make it easily interpretable in relation to a particular group 
or a representative sample of some population.)

Spearman’s four other quantitative principles have faded with time or have 
been supplanted by other terminology and conceptual formulations, so they are 
mentioned only briefly here, and defined in Spearman’s own words.26

Retentivity. ‘ ‘The occurrence of any cognitive event produces a tendency for 
it to occur afterwards.”  This is the basis of conditioning, learning, and memory 
in its several empirically distinguishable forms.

Fatigue. “ The occurrence of any cognitive event produces a tendency op­
posed to its occurring afterwards.”  This is akin to Pavlov’s hypothetical con­
struct of “ inhibition”  and is even more closely akin to Clark Hull’s postulate 
of “ reactive inhibition.”

Conative control. “ The intensity of cognition can be controlled by conation.”  
By “ conation”  Spearman means drive, motivation, will.

Primordial potencies. “ Every manifestation of the preceding four quantitative 
principles is superposed upon, as its ultimate bases, certain primordial but var­
iable individual potencies.”  This is a recognition of innate individual differences 
in predisposition to mental development and the evolutionary origins of mental 
organization.
NOTES

1. There is some dispute over priority in the invention of factor analysis, a subject 
covered comprehensively by Blinkhom (1995). Spearman unquestionably invented a sim­
ple form o f factor analysis. It is limited by being applicable only to a correlation matrix
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of unit rank, that is, a matrix that has only one common factor. And he invented a method 
(tetrad differences) for determining whether a matrix is o f unit rank and therefore suitable 
for the application of his method o f factor analysis, which in the case o f unit rank consists 
o f obtaining the variables’ loadings on the common factor, or g. And there is no question 
that Spearman was the first to apply factor analysis to mental test scores or psychological 
data of any kind. On all these counts, priority certainly belongs to Spearman. (See Lovie 
& Lovie, 1993.) The dispute arises, however, because, prior to Spearman (1904), Karl 
Pearson (1901) published an abstruse and purely mathematical paper that contains es­
sentially the invention o f what is now known as principal components analysis. It was 
further developed and made accessible to psychologists in a classic paper by the statis­
tician H. Hotelling (1933). Principal components analysis permits the decomposition of 
a correlation matrix into as many perfectly uncorrelated axes, or components, as the 
number of variables, and it has been used extensively not only in psychology, but in 
many other fields, including economics, medicine, physics, political science, sociology, 
biology, paleontology, and archaeology. Because present-day methods of factor analysis 
are like principal components analysis in allowing the extraction of a number of uncor­
related factors, and because the whole procedure of modern factor analysis more closely 
resembles principal com ponents analysis than Spearman’s simple form o f factor analysis, 
Pearson has some claim to the invention of factor analysis. Spearman’s method may be 
regarded as a limited case implicit in the class of multivariate methods derived from 
Pearson’s work. Also, a few years after Spearman’s 1904 paper that introduced his 
method of factor analysis, Sir Cyril Burt invented a method of multiple factor analysis 
called simple summation. It is similar to Pearson’s principal components, but is simpler 
to compute. Burt can be credited with being the first to apply a proper method o f multiple 
factor analysis to psychological data. As his method allowed the extraction o f more than 
a single factor from a matrix, it was clearly an advance over Spearman’s method. Some 
years later, Louis L. Thurstone (1931) reinvented Burt’s method, giving it the name 
centroid  method; it is mathematically identical to Burt’s method, although Thurstone 
(1947) introduced some new features in the way it is used in psychological research (e.g., 
rotation of factors, the simple structure principle, and oblique factors). The centroid 
method, which was widely used in the days of mechanical and electrical calculating 
machines, disappeared with the advent of high-speed electronic computers, which made 
it feasible to use the computationally more complex and more exact methods of modern 
factor analysis (see Harman, 1976).

Commemorating the fiftieth anniversary of Spearm an’s death, the British Journal o f  
M athematical and Statistical Psychology (1995, 48, 211-253) published excellent in- 
depth articles on Spearman’s role in the origin of factor analysis (D. 3. Bartholomew), 
Spearm an’s contributions to test theory (P. Levy), the formulation o f rank correlation 
(A. D. Lovie), and the resolution of the Spearman-W ilson debate over factor score in­
determinacy (P. Lovie) (see p. 39 and Note 24).

2. Quoted in Burt (1972, p. 412).
3. Judson (1979, pp. 179-180).
4. Unfortunately, there is no book-length biography of Spearman. Fancher (1985a, 

pp. 84-98) gives a highly readable biographical sketch, but beware of the technical error 
in the last paragraph on page 88: a test’s reliability is not the correlation between true 
scores and obtained scores, but is the square of this correlation. Jensen (1994b) gives a 
concise biography emphasizing Spearm an’s contributions to psychology and statistics, 
and also gives references to nearly all of the available biographical sources. A good
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account o f Spearm an’s two most important works is J. B. Carroll’s (1991a) retrospective 
review of The Nature o f  "  Intelligence” and the Principles o f  Cognition and The Abilities 
o f  Man: Their Nature and Measurement. Sir Godfrey Thomson’s (1947) obituary of 
Spearman is an excellent summary o f Spearman’s contributions to factor analysis and 
the theory of intelligence. It also contains the best of the several different photographs 
of Spearman that I have seen.

5. Spearman, 1930. More information about Spearm an's life is contained in his au­
tobiography than in probably any other single source, although it has comparatively little 
systematic explication o f his work.

6. Reliability can also be expressed as the squared correlation between true scores 
and obtained scores, i.e., rtx2. The symbol rxx, it should be noted, does not mean the 
correlation o f test scores with themselves (which would equal 1), but the correlation 
between scores obtained from two separate administrations of the same test or from two 
different but equivalent forms of the test, such as two vocabulary tests each composed 
of words drawn from the same pool and both having the same level of difficulty. Reli­
ability may also be determined by the so-called “ split-half”  method, in which the odd- 
and even-numbered items in a test are scored separately and a correlation (rOE) is obtained 
between the odd and even scores. Because each of the correlated parts is only half as 
long as the whole test, the reliability coefficient (rr,F) of the scores based on the full- 
length test (i.e., odd +  even items) is calculated by the Spearman-Brown formula: rFF 
~  2ror;/( 1 4- ron). This is just a special case of the generalized Spearman-Brown prophecy 

form ula, which states the relationship between a test’s length and its reliability. If we 
have determined the reliability (rLL) of a test of a given length (i.e., number o f items or 
number o f trials), the reliability (r, L.) of a test n times as long (provided it is composed 
of similar items) will be

'U- = nruJ  [1 + (n -  l) r ,J .
7. The measures of five of these variables consisted o f the boys’ rank order in ability 

in each subject as judged by their teachers. Standardized achievement tests did not then 
exist. Spearman invented a method now known as Spearman’s rank-order correlation 
(also called rank-difference correlation), symbolized rs. It is now universally used for 
correlating ranked variables and is described in most statistics textbooks. Rank correlation 
is a nonparametric statistic, in contrast to the Pearson r (which is parametric), because 
the sampling error o f any obtained rs based on n ranks involves no assumptions about 
the nature of the population distribution of the correlated variables. The probability of a 
particular rf based on n ranks is simply the proportion alb, where a is the number o f all 
the possible permutations of n ranks that yield absolute values of rs equal to or greater 
than the designated rs, and b is the total number of possible permutations of n ranks. 
Pearson’s r  and Spearm an’s rs calculated on the same ranked variables are numerically 
identical. However, the standard error of Pearson’s r applied to actual measurements 
(rather than ranks) is slightly smaller than the standard error o f Spearman’s rs applied to 
the ranks of the measurements. If there is evidence that the population distribution of 
one or both of the correlated measurements departs markedly from normal, the calculated 
standard error o f the Pearson r becomes highly questionable. The standard error o f Spear­
m an’s rs for ranks is unaffected by the population distribution of the measurements 
underlying the ranked variables.

8. This usage o f the term positive manifold  is a commonly accepted corruption of 
the more specialized original meaning of the term intended by its originator, Louis L.
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Thurstone (1947, pp. 341-343). His specialized meaning refers to the condition in which 
every variable in the matrix has positive loadings on every factor. Because rotation of 
the factor axes extracted from a matrix of all positive correlations can yield a factor 
matrix o f positive manifold, in Thurstone’s sense, a correlation matrix of all positive 
correlations has also come to be loosely called a positive manifold, although that usage 
departs from its original Thurstonian meaning. (Thurstone’s ideas on factor analysis are 
discussed in Chapter 4.)

9. M athematical proofs of this and the following propositions are given in the Ap­
pendix o f Spearm an’s The Abilities o f  M an  (1927).

10. The possible number of distinct tetrads in a complete correlation matrix of n 
variables is 3n!/4!(n — 4)!. (Note that 0! =  1.)

11. A standardized score (or a standardized measurement of any kind), technically 
called a z score, simply expresses the score in terms o f its deviation (in standard deviation 
units) from the mean of the sample or group of scores of which it is a member. That is, 
z =  (X -  X )/o, where X is the raw score, X is the group mean, and a  is the standard 
deviation o f the raw scores in the group. Consequently, in any distribution of z scores 
the mean =  0, the standard deviation =  1, and the variance =  1.

12. The meanings of correlations and the basic ideas of factor analysis are explained 
much more fully in Jensen, 1980a, Chapter 6.

13. There has been considerable misunderstanding on this point, and earlier factor 
analyses were often performed (not by Spearman but by others) on matrices with more 
than one factor. The factor common to all of the variables was extracted first, using 
Spearm an’s method, and then the same method was applied to the matrix of residual 
correlations. Thurstone (1947, pp. 279-281) has proved mathematically that this gives 
an incorrect result. Spearman himself insisted on demonstrating that all of the tetrad 
differences in the matrix must “ vanish,”  thereby proving it has only one common factor, 
before determining each variable’s loading on the common factor. To achieve this, he 
either eliminated or averaged overlapping variables that violated the “ vanishing tetrads” 
criterion. Thurstone (1947, Chapter XII) gives a superb discussion o f this limitation of 
Spearm an’s method. As with most prototypes, the limitations of Spearm an’s original 
method have made it now obsolete.

14. The generalized formula for the factor loadings is given in Spearman, 1927, Ap­
pendix, p. xvi, formula 20. This formula has scarcely been used for more than half a 
century, and is now only of historic and didactic interest. M athematically more sophis­
ticated methods for extracting multiple factors coupled with the use of high-speed com ­
puters have made modem factor analysis into something much more powerful than what 
Spearman had to work with.

15. At least some o f Spearm an’s calculation errors have been detailed by Fancher 
(1985b). They are actually quite unimportant with respect to Spearman’s overall method, 
theory, or general conclusions. It was possible to check his calculations because in his 
1904 article he presented the raw data of his study.

16. The symbol g should never be used to stand for the largest common factor in a 
matrix that does not represent mental abilities. It is not used as the symbol for the general 
factor in strictly physical variables, personality variables, and so forth. To make this 
explicit, writers often refer to “ Spearman’s g "  or “ psychometric g ."  I prefer to reserve 
the qualified term “ Spearman’s g "  for the g in Spearman’s two-factor theory, that is, 
the matrix in which there is one, and only one, common factor. The broader term “ psy­
chometric g "  refers to the general factor in a matrix of mental ability tests of any kind,
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determined by any appropriate method o f factor analysis, regardless o f the number of 
other factors (i.e., group factors) in the matrix. The use of g without a modifier usually 
refers to the com mon factor that accounts for the largest proportion of the total variance, 
as compared with any other factors in the matrix; but it also may refer to the highest 
order factor (g typically emerges at the second or third order) in a hierarchical factor  
analysis, regardless of whether or not it accounts for the largest proportion of variance. 
However, in the literature a hierarchical g  is usually designated as such. (Hierarchical 
factor analysis is described in Chapter 3.)

17. A variable’s factor loading is simply the correlation, rXs, between the variable (X) 
and the factor (g ). Also, the proportion of variance in one variable that can be accounted 
for by its correlation with another variable is the square of the correlation. Therefore, 
the sum o f the squared factor loadings is the actual amount of variance accounted for 
by the factor. As each variable has a variance o f one, the total variance in the matrix is 
equal to the num ber of variables. Thus the sum o f the squared factor loadings divided 
by the number o f variables is the proportion of the variance in all of the variables that 
is accounted for by their common factor, in this case g. This proportion, multiplied by 
100, is custom arily called the “ percent o f total variance explained”  by the factor. In the 
exam ple o f Table 2.1, this is 3.77/6 =  .629 X 100 =  62.9 percent.

18. A leading expert in factor analysis, the late H. F. Kaiser, has urged that I not call 
j  a factor, because, technically speaking, the term fa ctor  should refer to a source of 
variance that is common to at least three or more variables. Hence, 5 should simply be 
called specificity, not “ specific factor.”  I will observe this rule in all the chapters fol­
lowing this one, in which it seems more appropriate to use Spearm an’s own terminology.

19. The key references here are to Burt (1909, 1911). Burt’s (1949a) impressively 
erudite but quite technical treatment of the whole history o f Spearman’s two-factor theory 
traces its origins, its demise, and its replacement by what Burt refers to as the theory 
and methods o f the “ Galton-Pearson school,”  which recognized multiple factors as well 
as general ability, and o f which Burt undoubtedly regarded himself as the chief exponent. 
Although Burt was exceptionally brilliant and amazingly erudite, he was not the creative 
genius that Spearman was, and his contributions were never as original or as fertile, 
scientifically, as Spearm an’s. But Burt’s (1949b, 1955) views on the structure of mental 
abilities accorded more closely with recent formulations than did Spearman’s, which 
should not be too surprising, since Burt’s active career extended twenty-five years closer 
to the present day than did Spearm an’s.

20. 1 have written an article on the implications of Spearman’s theorem o f “ indiffer­
ence o f the indicator”  for some o f the current issues in mental testing (Jensen, 1992a).

21. This all follows from a fundamental formulation in mathematical statistics, which 
states that the variance (cr2) o f the sum (X) of a number of different variables (i, j , . . . 
etc.) is equal to the sum o f the variables’ variances [2.Ccy,2 +  0 2 +  . . . etc.)] plus twice 
the sum of the covariances between all of the items [2Z (rii Oja,)]. The translation of this 
statement into mathematical symbols is: c 2 =  X(cti2 +  2X rl|a jo i). In psychometrics, 
where the variables are items that com pose a test or various subtests within a test, the 
true-score variance consists only o f the second term in the above equation, which is 
purely item covariances; the item variances (the first term in the above equation) con­
stitute the error variance. The variance of the total scores on the test is the sum of these 
two terms, and the test’s internal consistency reliability (assuming a large number of 
items) is defined as the fraction (2X «r1o j)/o2. An important point to notice about the 
above equation is that as the number of variables (e.g., test items) increases linearly, the
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number o f all their covariances increases exponentially. For n variables, the number of 
covariances is n(n — 1 )/2. Therefore, the ratio of twice the sum of the item covariances 
to the sum o f the item variances rapidly increases as the num ber o f items in the test 
increases. Even though the item covariances are usually very small, their summation 
greatly exceeds the sum o f the item covariances in a test containing thirty or more items. 
In most current standard tests of mental ability this ratio of 2Zriia ia j to Zc^2 is typically 
between 10 to 1 and 20 to 1.

22. A rearrangement of the terms in the well-known Spearman-Brown formula shows 
the relation between the average item intercorrelation (r(l) and the internal consistency 
reliability coefficient rK of a test composed of n number of items:

r,i = rj[n  + (1 -  n)r„]
23. The final fruits of this effort are described in a posthumous book (Spearman & 

Jones, 1950), which, in 191 pages, succinctly summarizes Spearman’s final position on 
factor analysis and mental abilities, including g, the then few established group factors, 
noegenesis, and certain quantitative aspects of cognition.

24. The Harvard mathematical statistician Edwin B. W ilson (1928) devoted nearly his 
whole lengthy review o f Spearm an’s book in Science to a highly mathematical critique 
of just the brief mathematical appendix, focusing almost entirely on the problem of g- 
factor scores. He does not, however, dispute Spearman’s important discovery of g as an 
empirical fact. He wrote, “ Science advances not so much by the completeness or ele­
gance o f its mathematics as by the significance of its facts”  (p. 244).

25. In a common factor analysis (principal factor analysis, also called principal axes 
analysis), factor scores, including g-factor scores, may be slightly correlated with one 
another, even when the factors themselves are perfectly orthogonal (i.e., uncorrelated 
with one another). The reason is that in a common factor analysis the obtained factor 
scores are only estimates of the true factor scores, the exact values o f which cannot be 
determined. If it is important to assure perfectly uncorrelated factor scores, they may be 
obtained from a principal components analysis. (See Jensen & Weng [1994] for a simple 
explication of the difference between common factor analysis and principal components 
analysis, including references to the more technical literature on this subject.)

26. From Spearman (1923). This work is the first comprehensive statement of his 
theory, not just o f abilities, but of the general psychology of mental activity. Thus it 
may be considered a major pioneering contribution to the field now known as cognitive 
psychology.



Chapter 3
The Trouble with “Intelligence”

The word “ intelligence”  as an intraspecies concept has proved to 
be either undefinable or arbitrarily defined without a scientifically 
acceptable degree of consensus. The suggested remedy for this un­
satisfactory condition is to dispense with the term “ intelligence” 
altogether when referring to intraspecies individual differences in the 
scientific context and focus on specific mental abilities, which can 
be objectively defined and measured. The number of mental abilities, 
so defined, is unlimited, but the major sources of variance (i.e., in­
dividual differences) among myriad abilities are relatively few, be­
cause abilities are not independent but have sources of variance in 
common.

The empirical fact that all mental abilities are positively correlated 
calls for an analytic taxonomy of mental abilities based on some 
form o f correlation analysis. Factor analysis has proven to be the 
most suitable tool for this purpose. By means of factor analysis it is 
possible to describe the total variance of various abilities in terms 
of a smaller number of independent dimensions (i.e., factors), or 
components of variance, that differ in their degree of generality. 
“ Generality”  refers to the number of abilities that are correlated 
with a particular factor. The common factors in the abilities domain 
can be represented hierarchically in terms of their generality, with a 
large number of the least general factors (called first-order or pri­
mary factors) at the base of the hierarchy and the single, most gen­
eral, factor at the apex.

Ability measurements can be represented geometrically and math­
ematically as vectors in space, with a common origin and with the 
angles between them related to their intercorrelations. Factors are 
the “ reference axes”  in this space and the number of orthogonal
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axes, or independent dimensions, needed to represent the ability 
measurements defines the number of factors. The dimensions found 
in the factor analysis of the correlations among a large variety of 
mental ability measurements can be arranged hierarchically accord­
ing to their generality. This hierarchical structure typically has three 
tiers, or strata: a large number of narrow (i.e., least general) first- 
order factors, a relatively small number (six to eight) of broad (i.e., 
more general) second-order factors, and, at the apex, a single third- 
order factor, conventionally symbolized as g. The g factor is the 
most general of all and is common to all mental abilities.

No other term in psychology has proved harder to define than “ intelligence.” 
Not that psychologists haven’t tried. Though they have been attempting to define 
“ intelligence”  for at least a century, even the experts in this field still cannot 
agree on a definition. In fact, there are nearly as many different definitions of 
“ intelligence”  as there are experts.

The solution to this problem is to make a clear distinction between intelligence 
as an interspecies phenomenon, on the one hand, and individual differences in 
mental abilities as an intraspecies phenomenon, on the other. The term intelli­
gence, then, would apply only to the whole class of processes or operating 
principles of the nervous system that make possible the behavioral functions 
that mediate an organism’s adaptation to its environment, such as stimulus ap­
prehension, perception, attention, discrimination, stimulus generalization, learn­
ing, learning-set acquisition, remembering, thinking (e.g., seeing relationships), 
and problem solving. These functions are subsumed in the term intelligence. In 
this sense, some of these aspects of intelligence are a property of virtually every 
organism in the animal kingdom. Intelligence, by this interspecies definition, 
therefore, is a broadly generic term. Hence, while it is meaningful, in this sense, 
to speak of interspecies differences in intelligence, it is confusing to speak of 
infraspecies differences, at least for all biologically normal members of a spe­
cies, that is, those without exogenously or endogenously caused defects of the 
central nervous system. All biologically normal members of a given species 
possess the same intelligence, that is, the same neural structures and processes 
that make whatever constitutes intelligent behavior possible for members of that 
species. From an evolutionary standpoint, it is most improbable that, by this 
definition, there are intraspecies differences, whether individual differences or 
group differences, in intelligence. This definition is absolutely moot regarding 
normal intraspecies variation. The definitional troubles begin when we talk about 
infraspecies differences among human beings, particularly individual differences 
and racial and ethnic group differences. Here we must come to grips with achiev­
ing scientific precision in our terminology. This can be accomplished most ef­
fectively by confining the term “ intelligence”  to its broadly generic interspecies 
definition and discarding its use entirely in discussing individual differences 
among Homo sapiens. I shall follow this rule throughout this book.
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Some psychologists regard “ intelligence”  as the sum total of all mental abil­

ities. This is a wholly open-ended concept, because obviously no one will ever 
be able to enumerate all mental abilities. Others define “ intelligence”  as the 
entire repertoire of a person’s knowledge and skills available at any one time 
that are deemed “ intellectual”  by a consensus of psychologists— the very con­
sensus that is so lacking! Still others identify “ intelligence”  as Spearman’s g, 
but others then complain that this leaves out all the variance attributable to the 
many kinds of abilities other than g.

Contextualists and cultural relativists recognize the widest variety of knowl­
edge and skills, but claim that what “ intelligence”  means in any particular 
culture is merely a limited selection from the entire human cognitive domain. 
In each culture it comprises those abilities considered important by that culture. 
In their view, “ intelligence”  is purely a cultural artifact. Some psychologists 
define “ intelligence”  so broadly as to include personality traits, motives, values, 
interests, attitudes (and even physical attributes) that may be correlated with 
whatever “ real life”  achievements are valued in a particular culture.

From a scientific standpoint, such failure to obtain a precise definition is 
hardly desirable. How can scientists make a consistent and concerted effort to 
research a phenomenon if they can’t even agree on what that phenomenon is in 
the first place?

In hopes of finding a consensus definition of “ intelligence,”  the editors of 
the Journal o f  Educational Psychology, in 1921, convened a symposium of 
fourteen American psychologists with distinguished reputations in this field.n) 
They included such luminaries as Lewis M. Terman, Edward L. Thorndike, and 
Louis L. Thurstone. The symposium produced fourteen different definitions of 
“ intelligence,”  each one scarcely resembling any of the others. Most of the 
definitions were mere verbalisms without empirical referents— “ the power of 
good responses from the point of view of truth or fact”  (Thorndike), “ the power 
to think abstractly”  (Terman), “ that which can be judged by the incompleteness 
of the alternatives in the trial and error life of the individual”  (Thurstone). One 
of the symposiasts stated that “ so-called general intelligence tests are not general 
intelligence tests at all but tests of the special intelligence upon which the school 
puts a premium.”  There was a striking diversity even about which observable 
phenomena are the product of “ intelligence”  and which behavioral or mental 
attributes the term should encompass. The many definitions consisted only of 
supposed examples of “ intelligence,”  not true definitions. The one point of 
implicit agreement was that “ intelligence”  was generally identified with 
“ higher mental processes,”  not with elemental processes such as sensation and 
perception.

On reading this symposium, Spearman (who was not a participant) responded 
with evident exasperation: “ Chaos itself can go no farther! The disagreement 
between different testers— indeed, even the doctrine and the practice of the 
selfsame tester— has reached its apogee. If they still tolerate each other’s pro­
ceedings, this is only rendered possible by the ostrich-like policy of not looking



48 The a  Factor

facts in the face. In truth, ‘intelligence’ has become a mere vocal sound, a word 
with so many meanings that finally it has none”  (1927, p. 14). Spearman 
thereafter abandoned the use of the “ mere vocal sound”  intelligence, or else 
put it in quotation marks, as if to remind his readers that this “ vocal sound” 
had no scientifically acceptable meaning in the context of human individual 
differences.

Sixty-five years later, in 1986, two leaders in the intelligence field, Robert 
Sternberg and Douglas Detterman, published another symposium, entitled 
“ W hat Is Intelligence?” 121 This time, twenty-five well-recognized psychologists 
noted for their research on mental abilities and psychometrics were asked to 
state their definitions of “ intelligence,”  how they thought it can best be meas­
ured, and their ideas for future research on “ intelligence.”  The results were 
interesting but also dismaying. After sixty-five years, there was still no solid 
agreement among experts on how “ intelligence”  should be defined.

The editors then examined the degree of consensus between the 1921 state­
ments and those of 1986 and tried to determine whether there was greater or 
lesser consensus among the experts within each period. They concluded that 
“ substantial disagreement on a single definition still abounds”  (p. 164). But they 
also note that there has been a shift of emphasis away from the strictly psycho­
metric aspects of intelligence and its importance in education, emphasizing 
rather the concept of intelligence as information processing and as a scientific 
construct of interest in its own right. My impression is that the points of agree­
ment among the contributors in 1986 concern the less critical attributes of the 
problem than do the points of disagreement. The overall picture remains almost 
as chaotic as it was in 1921, and Spearman would have reacted in much the 
same way to the 1986 symposium as he did to the earlier one. And he would 
be quite right again.

My study of these two symposia and of many other equally serious attempts 
to define “ intelligence”  in purely verbal terms has convinced me that psychol­
ogists are incapable of reaching a consensus on its definition. It has proved to 
be a hopeless quest. Therefore, the term “ intelligence”  should be discarded 
altogether in scientific psychology, just as it discarded “ animal magnetism”  as 
the science of chemistry discarded “ phlogiston.”  “ Intelligence”  will continue, 
of course, in popular parlance and in literary usage, where it may serve a purpose 
only because it can mean anything the user intends, and where a precise and 
operational definition is not important.

Largely because of its popular and literary usage, the word “ intelligence” 
has come to mean too many different things to many people (including psy­
chologists). It has also become so fraught with value judgments, emotions, and 
prejudices as to render it useless in scientific discussion.131 I have no quarrel 
with the typical dictionary definition of “ intelligence,”  except that it does not 
adequately describe what I am actually writing about in this book. Indeed the 
attempt to provide a purely lexical definition is a hindrance to understanding 
the phenomena examined here.
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I am certainly not proposing to offer still another definition of “ intelligence,” 

or another term to take its place, or suggesting that any existing definition can 
be made more acceptable if we modify it with adjectives, such as “ academic 
intelligence”  and “ practical intelligence,”  or by making it plural, such as the 
currently popular “ multiple intelligences.”  These “ solutions”  can only worsen 
the problem. As an intraspecies concept it is best simply to get rid of the term 
“ intelligence”  altogether in psychology. In this we should follow Spearman and 
henceforth drop the ill-fated word from our scientific vocabulary, or use it only 
in quotes, to remind ourselves that it is not only scientifically unsatisfactory but 
wholly unnecessary.

Formal definitions, however, are essential in science. But they themselves do 
not address the nature of a phenomenon or claim the status of empirical fact. 
Nor do they imply any particular theory or require logical or experimental proof. 
Formal definitions are theoretically neutral conventions that scientists agree upon 
in order to get on with their job. It makes no sense to disagree over such 
conventional definitions. It is important only that a definition be sufficiently clear 
and explicit to serve its pragmatic purpose.

To put the study of mental ability on a firm scientific footing, we must begin 
by using theoretically neutral, objective, operational definitions. From this po­
sition “ intelligence”  (or any synonym or conceptual substitute for it) never 
needs to enter the discussion. Just blot out whatever this word with all its am­
biguities and emotional baggage may mean to you (or your dictionary). (Nor 
shall I try to provide another word or concept as a verbal substitute.)

Science begins by first recognizing certain objective realities and asking ques­
tions about them. In the domain of human abilities, what are these realities? To 
answer this, we must first become familiar with the technique known as factor 
analysis. The purpose o f factor analysis is to explain the intercorrelations among 
variables in terms of a more limited number of hypothetical or latent variables 
termed factors. Factor analysis thus makes it possible to sort out the main 
sources of variance (i.e., factors) that are common to a variety of mental tests. 
But first, so that it will not seem arcane, it is important for readers to understand 
the basic concepts that underlie this analytic method.

ESSENTIAL DEFINITIONS AND CONCEPTS
The reader should not skip over the following definitions, even if the words 

themselves look familiar. They are used here in a special and precise way, and 
it would be cumbersome to have to define these terms repeatedly throughout 
the book to ensure that readers understand just how I am using them. By first 
agreeing on this specialized vocabulary and methodology we can proceed to a 
scientific analysis of mental ability.

O bjective. In the present context, “ objective”  simply means agreement 
among observers of an external event, or between measurements or recordings 
of events registered by some device, and agreement among persons who read
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these records. The degree of agreement needed for any given purpose is another 
consideration. Degree of agreement can be quantified by the correlation between 
different observers or between repeated measurements by the same observer. 
When a correlation coefficient is used this way, it is termed a reliability coef­
ficient, symbolized r%x. The difference between the reliability coefficient and 
unity (i.e., 1 — rxx) represents the proportion of the total variance of the meas­
urements that is attributed to measurement error.

It is a common misconception that psychological measurements of human 
abilities are generally more prone to error or inaccuracy than are physical meas­
urements. In most psychological research, and especially in psychometrics, this 
kind of measurement error is practically negligible. If  need be, and with proper 
care, the error variance can usually be made vanishingly small. In my laboratory, 
for example, we have been able to measure such variables as memory span, 
fiicker-fusion frequency (a sensory threshold), and reaction time (RT) with re­
liability coefficients greater than .99 (that is, less than 1 percent of the variance 
in RT is due to errors of measurement). The reliability coefficients for multi­
item tests of more complex mental processes, such as measured by typical IQ 
tests, are generally about .90 to .95. This is higher than the reliability of people’s 
height and weight measured in a doctor’s office! The reliability coefficients of 
blood pressure measurements, blood cholesterol level, and diagnosis based on 
chest X-rays are typically around .50.

Item  Perform ance (IP). This term, henceforth abbreviated IP, refers to any 
distinct voluntary behavioral act. It can be any such overt action provided it is 
also observable or recordable in some way. Saying (or writing) “ four”  (or any 
other response) to the question “ what is two plus two?” , if the response can 
be agreed upon by observers, is an IP. Doing a triple axel, writing one’s name, 
hitting middle C on the piano, performing the Tchaikovsky violin concerto, 
solving (or failing) an attempted math problem, jumping over a two-foot hurdle, 
cutting an apple in half, hitting a baseball into left field, and parking parallel—  
these are all IPs. An IP may be a discretely classifiable act (e.g., either hitting 
or missing a target) or some action that can be graded on a continuum (e.g., 
speed of response to a signal, time taken to complete a task, distance run in a 
given time). The universe of possible IPs is obviously unlimited. The definition 
of IP also includes, of course, a voluntary response to an item in any kind of 
test or to any laboratory procedure that measures, for example, reaction time, 
sensory threshold, speed of rote learning, or memory span.

Excluded from the category o f IPs are unconscious, involuntary, or accidental 
acts, such as tripping on a stair, eye blinks, facial tics, unconditioned and con­
ditioned reflexes, reactions of the autonomic nervous system, somnambulistic 
actions, drug reactions per se, fainting, and the like. Organismic events that are 
not strictly behavioral acts are also excluded, such as changes in brain waves, 
glandular secretions, pulse rate, blood pressure, skin conductance, and pupillary 
dilation, although these phenomena may be correlated with certain IPs. Most 
importantly, it should be noted that an IP is not an inference, or an abstraction,
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or an interpretation. It is a single objective raw datum— some overt act, directly 
observable by other persons or immediately recordable by an apparatus.

Ability. Going from an IP to an ability is going from a direct observation to 
an abstraction or inference, although of the lowest order. The universe of abil­
ities is open-ended but bounded by certain qualifications.

An ability is an IP that meets the following three criteria:
(1) it has some specified degree of temporal stability (consistency or repeat­

ability); (2) it can be reliably classified, measured, ranked, rated, graded, or 
scored in terms of meeting some objective standard o f  proficiency, and (3) it 
has some specified degree of generality.

Stability. For an IP to qualify as an ability, it must be evident that the IP 
can occur more dependably than chance probability, or pure luck, would allow 
under constant external circumstances. Holding a winning lottery ticket, for ex­
ample, is not an ability. Because there is often some random variability in a 
person’s IP from one point in time to another, some average IP has to be 
determined. Temporal stability implies that the IP can be elicited repeatedly at 
better than chance frequency under the same external conditions within a spec­
ified time interval, the length o f which could range anywhere from seconds to 
months or (rarely) years. The consistency or repeatability of a single individual’s 
IP can be quantified by the mean and standard deviation of the individual’s IPs 
measured in some specified number of trials within a specified time interval. 
The consistency o f individual differences in the IP among a group of persons 
can be quantified by the correlation of the IP measures across a given number 
of trials. (In psychometrics this is termed the test-retest reliability.)

Proficiency. An essential element in the definition of ability is that the IP 
must be an act that can be objectively classified, ranked, graded, or scored in 
terms of an objective standard o f  proficiency. This standard implies no judgment 
about the personal, moral, social, or economic value of the IP. For example, a 
particular person at a given point in time either can (score =  1) or cannot (score 
=  0) lift a 200-pound barbell and hold it one foot above the floor for ten 
seconds. A reaction time (RT) of 400 milliseconds is a quicker response than a 
RT of 450 milliseconds. The answer “ four”  to the question “ 2 +  2 =  ?”  is 
correct; the answer “ five”  is incorrect. Repeating a series of nine random digits 
after hearing them spoken once is to recall more digits than recalling only seven 
random digits under the same conditions. If an IP cannot be rated reliably or 
scored in terms of some such objective standard, it cannot be called an ability. 
Ratings or rankings with a specified degree of agreement among several judges 
(as quantified by the intraclass correlation or the coefficient of concordance) can 
also qualify as an objective standard and may serve to rate IPs that do not lend 
themselves to direct measurement, such as performance in figure skating, playing 
a musical instrument, singing, art work, influencing people, and the like.

G enerality . Some degree of generality is also a necessary condition for an 
IP to be considered an ability. The critical question is, how much generality? 
The answer is that the essential features of the IP must be preserved while its
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nonessential features vary. For example, a person can repeat a string of seven 
digits (say, 7164835) after hearing them spoken once, at the rate of one digit 
per second. This is an IP, to be sure. And we may decide that its essential 
feature is the number of digits. But this person’s IP cannot be called an ability 
at this point, because the person’s recalling as many as seven digits could have 
been peculiar to just this particular string of digits; for example, it might have 
been his own well-memorized telephone number. If given ten more trials at 
recalling different strings of seven digits under the same conditions, the person 
possibly might not be able to repeat any of them correctly. He could not then 
be said to have the ability to repeat seven digits under these conditions. For any 
given IP to be regarded as an ability, an objective criterion of generality must 
first be defined. For example, we may decide that a digit span memory for, say, 
seven digits has to be demonstrated in any three out of four consecutive trials, 
all given under the same conditions, varying only the seven digits (randomly 
selected from 1 to 9) on each trial. Such a procedure can be applied to most 
other kinds of IPs. (This is called equivalent form s reliability in psychometrics.)

The generality of an IP, say, repeating (or failing to repeat) seven digits, can 
be inferred by its being significantly correlated (in a group of persons) with 
some other IP. This is because the correlation would not differ significantly 
from zero if a particular IP were just a random occurrence for every person in 
the group. Randomness, or pure chance, dilutes correlation to near zero. Sig­
nificant correlation between IPs indicates that the correlated IPs qualify as abil­
ities, at least for some of the people in the group for which the correlation was 
determined. To establish whether an IP is an ability with respect to any particular 
person, however, it is necessary to demonstrate its consistency and generality 
over a specified number of trials for that person, as explained above.

M ental Ability. The distinction between physical abilities and mental abilities 
is more difficult, and there may be a “ zone of ambiguity”  between these classes. 
There are two criteria for distinguishing a mental ability:

1. An ability (as defined above) is a mental ability if, with respect to infor­
mation transmission per se, the receptor and effector mechanisms are nonspe­
cific. In other words, an individual’s performance is not essentially dependent 
on any particular sensory or motor system. Persons with a severe sensory hand­
icap can still receive information in ways that circumvent their nonfunctional 
channel; and similarly, persons with a severe motor handicap can communicate 
information by some alternate route.

2. An ability is a mental ability if, within a group of people who have no 
major sensory or motor handicap (as independently determined), individual dif­
ferences in the ability are insignificantly correlated with measures of sensory 
acuity, physical strength, endurance, agility, or dexterity (as independently as­
sessed). If there is a significant correlation, one other correlational criterion must 
be met, based on factor analysis. The ability in question is not a mental ability 
if its largest factor loading (in a factor analysis of a wide variety of abilities) is 
found on a group factor defined as “ physical.”  (That is, a group factor whose
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largest loadings are found on measures of sensory acuity, physical strength, 
agility, endurance, and similar types of performance.) This last criterion as­
sumes, of course, that a wide enough variety of ability measures are included 
in the factor analysis that both physical and mental abilities are represented, 
even if at the outset we are not certain of each one’s classification as physical 
or mental.

Based on my study of the known physical correlates of mental abilities, I am 
confident that the above criteria for distinguishing between mental and physical 
abilities leave few of them in the “ zone of ambiguity.”  This is not to say, 
however, that we should expect to find no correlations at all between certain 
unambiguously classified mental and physical abilities. But any such correlations 
will seldom represent an “ intrinsic”  or “ functional”  (i.e., directly causal) re­
lationship between the two kinds of ability. (Full explication of these terms is 
postponed to Chapter 6.) Finding an “ intrinsic”  correlation between a physical 
and a mental trait, however, may provide important clues about the causal un­
derpinnings of individual differences in the correlated traits.

As the rest of this book deals primarily with mental ability, I will henceforth 
use just the word “ ability”  to mean mental ability, as defined above, unless 
otherwise qualified.

Test an d  Item . A test is any collection of items (tasks, problems, questions, 
etc.) that elicit abilities when persons are asked to respond to the items in a 
particular way. The items may be anything the test maker chooses, so long as 
each one elicits an ability.

It is important not to confuse the three distinct meanings associated with the 
term “ item.”  First, there is the physical item  itself— a spoken or printed ques­
tion, or problem, or task to be performed (but not including the person’s per­
formance). Second, there is the item response— the record or score of a person’s 
adequacy of performance on the item. Third, there are the item statistics— the 
mean and variance of the scores on an item taken by a group of persons. (Other 
item statistics used in test construction are not so germane here.) In most con­
texts, the word “ item ” implies the item score or an item statistic, not the phys­
ical item itself. The expression “ item variance,”  for example, means the 
variance of the scores on the item for a group of persons who attempted the 
item. Saying that two items are correlated means that the item scores are cor­
related in a group of persons who attempted both items.

If an item response is scored in a binary fashion, such as right/wrong or pass/ 
fa il (quantitized as 1/0), the item mean is the percentage (P) of persons who 
“ passed”  the item. The item’s P value is an index of how easy it is for the 
group of persons who attempted it. Conversely, 100 — P is an index of item 
difficulty. The item variance of a single binary-scored item is p  X q where p  is 
the proportion of persons who pass the item and q is the proportion who fail 
the item (assuming p  + q = 1).

Item  In terco rre la tion . It so happens— not because the test constructor makes 
it happen, but because it is an observed fact of nature— that all mental abilities
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are positively correlated with each other. Stated more exactly, if two or more 
items each reliably elicits an ability, the item scores obtained in a large and 
representative sample of the general population will be positively correlated to 
some degree. These item intercorrelations may vary considerably in magnitude. 
For example, most people who can repeat a string of 7 digits on at least 3 out 
of 4 trials can also repeat a string of 6 digits on at least 3 out of 4 trials; but 
most people who, under the same conditions, cannot repeat 6 digits also cannot 
repeat 7 digits. This fact creates a correlation between these two items— a 6- 
digit item and a 7-digit item. The correlation between any two items, each scored 
either pass (1) or fail (0) can be calculated from a 2 X 2 contingency table (see 
below) showing the number of persons who passed or failed each item.

Item A
Fail (0) Pass (1)

Pass (1)
14 35

Item B
Fail (0) 41 10

X2 = 27.11, p < .001 <J> = .521

The value of the statistic known as chi squared (x2), can be calculated from the 
frequencies in the four cells of this contingency table. If it is large enough, it 
indicates a statistically significant correlation. That is, the probability (p) that a 
value of x2 this large would occur by pure chance is less than one in a thousand 
(thus p <  .001). (If the four cells had nearly equal frequencies, the correlation 
would not be significant.) The correlation between Item A and Item B in the 
example above (technically termed a phi coefficient, 0, when calculated on a 2 
X 2 contingency table) is +.521. (This is atypically large for item correlations.4)

A test (composed of three or more items) can also be measured for its degree 
of homogeneity. One index of homogeneity is the average correlation among all 
of the items. Imagine that we pick 100 items at random from a very large pool 
of items that elicit a wide variety of abilities. The 100 items are administered 
to a thousand people, and from these data we calculate all the interitem corre­
lations. (There will be a total of 100 (100 -  l)/2  =  4,950 correlation coeffi­
cients.) Say the average of the interitem correlations is only .10. W e can create 
a number of shorter, but more homogeneous, tests from this collection of 100 
items by making up small groups of items in which every item is correlated, 
say, at least .20 with every other item in the same group. (Leftover items that 
are correlated less than .20 with any other items are assigned to the group of 
items with which they have the highest average correlation.) So then we will
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have a number of small but relatively homogeneous subtests. The average of 
the item correlations within each of the homogeneous subtests will be larger 
than the average correlation between items drawn from different subtests.

Items within a given homogeneous subtest are generally of a similar type. 
That is, they resemble each other considerably more in their type of information 
content than they resemble the types of items in other subtests. Each of the 
homogeneous groups of items usually turns out to be largely composed of, say, 
either numerical items, verbal items, memory span items, figural items, or me­
chanical items. Thus the process of grouping items by their degree of intercor­
relation tends to bring together items with similar features and content. Yet even 
items that are grouped in this manner (or any other manner) are still positively 
correlated, though perhaps only slightly, with the items in any other subtests.

A T est’s Raw  Score. The raw score on a test is the sum of all the item 
scores, which are the numerical values used to grade an individual’s response 
to each of the items. Typically, a response on each item of a test is scored as 
either 1 or 0 (for pass or fail, according to some specified objective standard), 
and the sum of the item scores constitutes the person’s raw score on the test as 
a whole.

The total variance of the raw scores on a test is really an abstraction, at least 
a step or two removed from the observable item performances that constitute 
an ability. W hile the variance of a single item is p  X q (see above), the variance 
o f  total scores on a test (which by definition is composed of three or more 
items) is the sum o f the item variances plus twice the sum o f the item covari­
ances,5

Item covariance per se is not an observable act or a sample of behavior. It 
is, however, a natural phenomenon. The largest part (typically 90 to 95 percent) 
of the total variance in mental test scores consists of the sum of all the item 
covariances. If the covariance between items is not itself directly observable or 
measurable behavior, then what is it? There is only one answer: It is a fac tor , 
as technically defined below.

F acto r. The word “ factor”  has a number of dictionary definitions, but the 
term as used here has a very restricted, specialized meaning. A fac tor  is a 
hypothetical variable that “ underlies”  an observed or measured variable. Thus 
a factor is also referred to as a latent variable. It is best thought of initially in 
terms of the mathematical operations by which we identify and measure it.

Although a factor is identifiable and quantifiable, it is not directly observable. 
It is not a tangible “ thing”  or an observable event. So we have to be especially 
careful in talking about factors, lest someone think we believe that we are talking 
about “ things”  rather than hypothetical and mathematical constructs. But one 
can say the very same thing about the many constructs used in the physical 
sciences (gravitation, magnetism, heat, valence, and potential energy, to name 
a few). They are all constructs. This does not imply, however, that scientists 
cannot inquire about the relationship of a clearly defined construct to other 
phenomena or try to fathom its causal nature. Nor is a construct “ unreal”  or
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“ chimerical”  or less important than some directly observable action or tangible 
object. Certainly the force of gravity (a hypothetical construct) has more wide­
spread importance than the particular chair I am sitting in at the moment, and 
is every bit as real. A lot of pointless arguments can be avoided by consistently 
maintaining a clear distinction between the purely mathematical definition, iden­
tification, or measurement of factors, on the one hand, and theories about their 
causal nature, on the other. (In this chapter, I am not saying anything at all 
about the causal nature of factors.)

Factors arise only from the reliable or nonchance correlation between abilities. 
Now, if it were the case that tests were constructed of only those items that 
happened to be correlated with one another (and items that did not were dis­
carded), factors would indeed be mere psychometric artifacts. That is, factors 
would be no more than a product of the arbitrary way that ability items are 
devised or selected for inclusion in psychometric tests. If so, it should be pos­
sible in theory to devise mental ability tests in which the items did not correlate 
more than could be expected by pure chance. Such a test could not be analyzed 
into factors. Its total variance would consist only of the sum of the separate item 
variances plus a little random error variance due to the small chance correlations 
among items.

In reality, this has never happened, so long as our open-ended definition of 
a mental ability is used to select the test items. It is important to note that there 
is nothing circular or in any way tautological in this observation, because our 
definition of a mental ability is completely independent of the condition of a 
correlation between abilities. By this definition, abilities could just as well be 
uncorrelated or negatively correlated as being positively correlated.

The striking empirical fact, however, is that, as far as has yet been determined, 
mental abilities are all positively intercorrelated beyond chance to some degree. 
I have yet to find a bona fide exception. For a century psychologists have made 
countless attempts to discover even a small number of mental test items that are 
truly uncorrelated. All have failed. This does not mean that zero or negative 
correlations never occur. In various studies of item intercorrelations, based on 
subject samples of varying size, the relatively small number of interitem cor­
relations found to be zero or negative is inversely related to the range of ability 
in the sample and to the size of the sample. Further, the mean of the negative 
correlations is always very much smaller than the mean of the positive corre­
lations. This indicates that nonpositive correlations between items are merely 
flukes due to sampling error. The finding of ubiquitous positive correlations 
between mental abilities is not a psychometric artifact, but an empirical fact, a 
natural phenomenon.

Because o f this phenomenon of ubiquitous positive correlations among all 
items in the practically unlimited universe of mental abilities, we can proceed 
to determine the various factors  (or latent variables) that “ account for”  these 
intercorrelations. I put “ account for”  in quotation marks to indicate that it is 
just a manner of speaking in this field; it does not imply an explanation of why
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abilities are correlated, which is another issue. Some factor analysts say that the 
factors “ explain”  the correlations between abilities, that is, certain abilities may 
have certain factors in common. But this is merely a semantic quibble as long 
as one recognizes that a factor per se is itself a phenomenon that needs to be 
explained. The methods of factor analysis permit us to identify and quantify a 
factor, but they cannot tell us what is responsible for the emergence of the factor. 
As Spearman said, we can identify factors only by site (i.e., the tests in which 
they are loaded) and not by nature (i.e., the physiological conditions that cause 
their emergence). This is because factors are only mathematical transformations 
of a matrix of correlation coefficients.6 The methodology for performing these 
transformations is called fac tor analysis.

THE GIST OF FACTOR ANALYSIS
Factor analysis involves a whole class of complex mathematical techniques. 

Textbooks on factor analysis usually assume some knowledge of statistical con­
cepts and matrix algebra. Sidestepping the mathematics, I will here provide some 
idea of what factor analysis is and does without explaining its mathematical 
basis or exactly how it is performed in practice. For that, readers should refer 
to one of the several modern textbooks on factor analysis.7 While a technical 
knowledge of factor analysis is not required to understand the rest of this book, 
a few points are quite important. This book is largely about g, and because g 
is a fac tor  in the technical sense, it would remain virtually undefinable and 
conceptually meaningless without some conceptual understanding of factor anal­
ysis.8

The purpose of a factor analysis of a set of n variables is to transform the 
correlation matrix of all of the variables’ intercorrelations (called the R matrix) 
into a. fac tor matrix of p  factors. In factor analysis, p < n. That is, the number 
of factors is less than the number of variables. There are two main ways that a 
set of variables can be factor-analyzed: from the bottom up, or from the top 
down. By “ top”  is meant the highest degree of factorial commonality or gen­
erality; “ bottom” is the lowest degree of generality or the most specificity. A 
factor’s “ generality”  refers to the number of variables that it encompasses, as 
shown by their having significant loadings on the factor.

Let me first illustrate the logic of a factor analysis from the bottom up. (This 
isn’t the actual mathematical procedure used in doing a factor analysis, but it 
gives a fairly clear idea of what it does.) Typically, factor analysis begins with 
scores on relatively homogeneous tests. It ordinarily assumes standardized var­
iables, which is accomplished as part of the formula for computing the Pearson 
correlation coefficients with which the factor analytic procedure begins. Here it 
will be more instructive to start a step lower in the hierarchy of abstraction than 
the tests. We will start with the single items that compose the tests.

Figure 3.1 will make the explanation easier to follow. Note that the levels of
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Figure 3 .1 . Hypothetical example of a hierarchical factor analysis (with components of 
variance represented as squares) of 243 test items (Level 1, at bottom of hierarchy). 
Level 2 =  tests; Level 3 =  first-order factors; Level 4 =  second-order factors; Level 5 
=  third-order factor, or the general factor, g. The lines connecting the squares represent 
correlations greater than some specified magnitude.

the hierarchy are labeled 1 (lowest) through 5 (highest), as shown in the left 
margin of Figure 3.1.

Level 1: At the very “ bottom”  of the whole process are the ability items. So 
we begin with a large number (say, 243) of diverse items, each one measuring 
an ability. Any one of these ability items is exceedingly narrow  in generality. 
That is, it has only very low correlations with all other ability items except those 
that are very much like itself. For example, the ability to repeat a string of six 
digits after hearing them spoken correlates much more with the ability to repeat 
them after reading them than with, say, the ability to do simple arithmetic. We 
administer the items to a large sample of, say, 1,000 adults randomly selected 
from the general population. From our inspection of the total matrix of 29,403 
(i.e., [n2 — n\/2, where n is the number of items) correlations among all of these 
item scores, we group together sets of items that are the most highly correlated 
with each other.

Level 2: Each such group of items constitutes a homogeneous test. There are, 
say, twenty-seven such tests, each containing about three items. (This small 
number of items is only a concession to the space limitation of Figure 3.1; in 
practice each homogeneous test would typically be composed of ten to twenty 
items). The commonality among the items in each test makes it broader (more 
general) than any of its narrower constituent items. (Inspection of the contents 
in each homogeneous group of items may permit us to give descriptive names 
to the various constituted tests, such as spelling, mechanical arithmetic, vocab­
ulary, perceptual speed, visual form perception, figure analogies, digit memory
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span, word memory span, block counting, and the like.) We obtain the persons’ 
total raw scores on each of the tests and use these scores to calculate the cor­
relations among the twenty-seven tests. This yields a test correlation matrix that 
contains 351 correlation coefficients.

L evel 3: From inspection of this matrix of test correlations, we group the 
tests that are the most highly correlated with each other together. Say we get 
nine such relatively homogeneous groups, each containing three tests. (Most 
researchers agree that each factor should be defined by a minimum of three 
experimentally independent variables or tests.) These groups of tests are first- 
order factors  (also called primary factors, or primaries). The sum of a person’s 
score on each of the tests in a group is here called a fac tor score. (This statement, 
intended here for the simplest possible explanation, is not accurate, as factor 
scores are actually weighted sums with certain statistical properties based on 
regression analysis. The various rather technical methods for obtaining factor 
scores are explained in the textbooks on factor analysis.) Factor scores are 
broader, or more general, than the score on any of the constituent tests, for each 
factor score here encompasses three tests. Just as the different tests are more 
highly correlated with each other, on average, than are the items that compose 
the tests, so the different factors  may be (but are not necessarily) more highly 
correlated with each other, on average, than are the different tests that compose 
the factors.

Level 4: The same process is applied to the first-order factors. Those primary 
factors most highly correlated with each other are grouped together to form the 
second-order factors. There are three of these in Figure 3.1. The second-order 
factors are more general than the first-order factors.

L evel 5: The correlations among the second-order factors form a single third- 
order factor, g , which is the most general (highest level) factor of all.

The hierarchy of generality, from the least general to the most general is: (1) 
items, (2) tests, (3) first-order factors, (4) second-order factors, and (5) g, the 
single most general factor. When the number of tests is not large and the abilities 
they sample are not highly diverse, g usually emerges as a second-order factor. 
It is exceedingly rare, however, to find more than a single third-order factor 
(namely, g). In hundreds of factor analyses of ability tests, g always emerges as 
either a second-order or a third-order factor.9

But now we must backtrack, to make this simplified explanation more tech­
nically correct. Factors are not items, or tests, or scores. It will be more correct 
if we think of them as “ pieces”  of the total true-score variance of all of the 
items at the base of the hierarchy. You will recall that the total variance of a 
number of measurements (in this case item scores on a large number of items) 
can be sliced up into a number of parts. Factor analysis is one way of slicing 
up the total variance, each slice representing a factor.

So referring back to Figure 3.1, we can think of all of the black rectangles 
in the hierarchy as different sized pieces of the total variance that exists in the 
pool o f items at the base of the hierarchy (Level 1). At each level of the hier­
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archy, the variance is cut into a different number of slices. The variance in each 
of the tests (Level 2) consists of the sum of the variances of its constituent items 
plus twice all of the item covariances.

The first-order factors (Level 3) are created from the correlations among tests; 
that part of each test’s total variance that is uncorrelated with any other test is 
left out of the first-order factors. This uncorrelated part of a test’s total variance, 
which does not go into one (or more) of the first-order factors, is the test’s 
uniqueness. It is composed of the sum of the test’s item variances (called the 
item’s error variance) and the part of the test’s true-score variance that is not 
common to any other test (called the test’s specificity). The first-order factors, 
therefore, are slices of variance that three or more tests all have in common.

The second-order factors (Level 4) are created by the correlations between 
first-order factors. W hat is left behind in each first-order factor is that part of 
its variance that it does not have in common with any other first-order factor. 
Since whatever variance the first-order factors had in common has been removed 
to form the second-order factors, the resulting first-order factors are uncorrelated 
with one another. And since each first-order factor has now lost whatever var­
iance it had in common with any other factor, it is also uncorrelated with every 
second-order factor as well. Such uncorrelated factors are said to be orthogonal.

Finally, the third-order factor, g (Level 5), is created from the correlations 
among the second-order factors, whose residual variance consists of whatever 
variance they do not have in common with each other. They are uncorrelated 
with each other and with g. So the whole factor hierarchy (i.e., Levels 3, 4, 5 
in Figure 3.1) has been orthogonalized. At this point it is possible, by a math­
ematical algorithm (the Schmid-Leiman orthogonalization transformation10) to 
determine the correlation between each test and each of the orthogonal factors 
in the hierarchy. The correlations of a test with each of the orthogonal factors 
are called fac tor loadings. A table that shows each test’s loading on each factor 
is called a fac to r matrix.

Another aspect of this simplified explanation of factor analysis should now be 
made clear. I said that by inspecting the matrix of correlations among all of the 
tests we can group together those tests that are the most highly correlated with 
each other. Actually we don’t have to do this by inspection. With a very large 
number of correlations it would be an exceedingly difficult task. In practice, the 
mathematical procedures of factor analysis objectively determine which tests 
should be grouped together to form a factor and also provide objective criteria to 
determine the number of common factors among the variables in the analysis.

The number of factors extracted represents the number of dimensions in the 
fac tor space needed to accommodate the factor structure of the data. Although 
we spatially visualize only three dimensions in our everyday world, it is math­
ematically possible to deal with an n-dimensional space, where n is the number 
of dimensions needed to accommodate n straight lines (factors), each one at 
right angles to each of the others. For example, take four match sticks. Lay one
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of them down on the table; it occupies one dimension. Lay down another stick 
at right angles to it; this pattern occupies two dimensions. The third stick must 
be placed perpendicular to the table top jutting up in the air in order to be at 
right angles to the other two. Now three dimensions are occupied. Where can 
we put the fourth match stick and yet preserve right angles between all of the 
sticks? To do so, we need to go beyond our everyday three-dimensional space 
to a four-dimensional space. And so on. The sticks are here analogous to or­
thogonal (i.e., uncorrelated) factors.

If the correlated variables all have unit variance (as is the case in a factor 
analysis), we can represent each correlation spatially as an angle, where the 
correlation coefficient is equal to the cosine of the angle theta (0) (that is, r = 
cos 0). For example, the cosine of a right angle (cos 90°) =  rQ = 0; cos 0° =  
+  1 =  r +,; and cos 180° =  —1 =  r_,. This transformational equivalence of 
correlations and angles allows another use of the idea of dimensionality. All 
angles can be displayed in two dimensions, but it is possible that three or more 
angles, when considered simultaneously, may not be accommodated in two di­
mensions. That is, three or more angles may not be shown accurately on a plane 
surface. (See Figure 3.2.) Consider the three angles (and their corresponding 
correlations shown above each angle) formed by the unit length vectors A , B, 
and C. We see (directly below) that the three angles can all be put together in 
the same plane; all of the vectors and their angles add up exactly to the largest 
angle (AC = 75°), so they can be represented simultaneously in one plane (a 
two-dimensional space). In contrast, consider the lower set of angles formed by 
the vectors X , Y, and Z. There is no way that we can put these three angles 
together in one plane (i.e., 60° +  30° + 70°); they can be represented only in 
a three-dimensional space, as illustrated in the lower figure."

A simple real-life example may intuitively illustrate how dimensionality un­
derlies factor analysis. Suppose that three people, named Tom, Dick, and Harry, 
are tested every day for a month on their abilities to do these things: lift a 
barbell (B), do a shotput (S), and throw a javelin (J). B is measured as the 
maximum weight that can be lifted; S and J are measured by the distances that 
the shot and the javelin, respectively, are thrown. For all three tests we find on 
more than 90 percent of the trials that Tom did better than Dick, who did better 
than Harry (i.e., on B, S, J: Tom >  Dick >  Harry). All the performances on 
B, S, and J can, therefore, be ranked (or graphed) on just one dimension. In 
other words, one factor adequately accounts for the data. (That is, little or none 
of the original information is lost by performing the transformation from three 
dimensions to one.) We might label this factor as “ general strength,”  as it 
determines the individual differences in performance on every test. Tom scores 
higher on this “ general strength”  factor than Dick and Harry, and Dick scores 
higher than Harry.

But suppose we had found that on more than 90 percent of the trials the 
following occurred:
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ry z = .866 = COS 30 

'Y

Figure 3.2. Angles showing the relationship between the angular separation (0) between 
two line segments (e.g., A and B) with the same origin (O) and the coefficient of cor­
relation (r) between them: r  =  cos 0. The top three angles (or correlations) can be 
represented together in two-dimensional space. The three lower angles (correlations) can 
be represented together only in three-dimensional space.

On B and S: Tom >  Dick >  Harry 
On J: Harry >  Tom >  Dick

B and S are much alike, ranking people in one dimension (that is, graphing 
them on a single line), but J  doesn’t rank people the same way. J  evidently 
involves some specific skill that is not required for B and S. To represent these 
data accurately, then, we must have two dimensions: one on which we can rank
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the subjects on B and S, the other on which we can rank them on J. If we had 
found the following:

On B: Tom >  Dick >  Harry
On S: Dick >  Tom >  Harry
On J: Harry >  Tom >  Dick,

we would need three dimensions on which to rank-order the subjects. Each task, 
then, would evidently measure some distinct ability not shared by the other two 
tests. We would therefore have to posit three separate factors to account for the 
three tests. O f course this is only a didactic example. In reality, a greater number 
and variety of tests, and a great many more subjects, would be required for a 
proper factor analysis. The analysis would define the dimensionality of the factor 
space needed to represent the correlations among the n tests. Each dimension is 
a factor axis. A test’s loadings on each of the factors maps its location in the 
n-dimensional factor space. The factors are thus somewhat analogous to the lines 
of latitude and longitude on a globe of the world that permit us to specify the 
exact location of any city.

Each test can be represented in factor space as a vector, that is, a straight line 
segment having magnitude and direction, where the length of the line represents 
its magnitude and its direction is represented by the line’s orientation in space. 
The six arrows shown in Figure 3.3 are the vectors of six positively correlated 
tests labeled A, B, C, X, Y, Z. As the test scores all have unit variance (hence 
are depicted in Figure 3.3 as vectors all having the same length), the correlation 
between any pair of tests is equal to the cosine of the angle between them. The 
cosine relation between angles and correlations thus allows us to represent the 
matrix of correlations among all of the tests geometrically as an array of vectors. 
Since all of the vectors in our example can be represented on a plane, we can 
represent the common factor variance of these six tests in terms of their projec­
tions on two uncorrelated axes (i.e., a 90° angle between them, hence called 
orthogonal).'2

These axes are orthogonal fac tors , labeled I and II in Figure 3.3. One method 
by which they are precisely determined mathematically is termed principal fa c ­
tor analysis, in which case the derived factors are called principal factors 
Each factor axis passes through the origin of all the test vectors at their zero 
point (0). The position of the first principal factor, labeled Factor I, is determined 
mathematically such that it lies closer to all of the test vectors (A, B, C, etc.) 
than does any other straight line. Hence it maximizes the sum of the squared 
loadings of all the variables on the factor. Because the first principal factor is 
the largest factor (that is, it accounts for more of the total variance than does 
any other single factor), this is a “ top-down”  method of factor analysis. The 
second principal factor, Factor II, is located so as to pass through the origin (0) 
and be at right angles to Factor I.

For orthogonal factors, the projection of a test vector on a factor is the test’s
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I

Figure 3.3. Six test vectors (arrows) and the two orthogonal axes, Factors I and II, 
needed to account for their common variance.

loading on that factor. In Figure 3.3, the dashed lines show the projections of 
Tests X and Z on Factor I and Factor II. One can see that Test X has a very 
large (about + .99, or 99% of the way from the origin to the top of the axis) 
projection (or loading) on Factor I and a quite small (about .15) projection on 
Factor II. Test Z has a loading of about + .80 on Factor I and of about + .60 
on Factor II. Note that each of the six tests has its largest projection on Factor 
I and all of these projections are positive. Therefore, Factor I is interpreted as 
the general fac tor  in this set of tests. It qualifies as the general factor, not 
because it is the first principal factor, but because it is more highly correlated 
with each and every one of the tests than is any other factor and the correlations 
(loadings) are all positive.

Because the projections of Tests A, B, C on Factor II are negative, while 
Tests X, Y, Z have positive projections, Factor II is called a bipolar factor. If 
we added to this set of six tests three or more other tests whose intercorrelations 
with the first six could not be represented in the same plane, we would need 
yet another factor axis projecting out into the third dimension. Factor III would 
then pass through the origin (0) at right angles to Factors I and II. The test 
vectors for this set of three new tests would slant away from the surface of the 
page into this three-dimensional space and they would have projections on Fac­
tor III and possibly also on Factors I and II. If still another three (or more) tests 
were added to the set and their intercorrelations could not be accommodated in 
a three-dimensional space, another factor axis at right angles to the first three 
(Factor IV) would be needed. In order to be at right angles to the first three 
factors, it would have to exist in the fourth dimension. Vectors that project into 
a space of more than three dimensions are said to exist in hyperspace.
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R otation of O rthogonal Factors and  the Principle of “ Sim ple S tru c tu re .”

There is nothing intrinsically sacrosanct about the original position of the factor 
axes given by the computational procedure in factor analysis. One is completely 
free to rotate the original factors around their origin in any way that might 
produce a theoretically clearer or more meaningful picture of the factor structure 
of the tests. For example, since the tests themselves are all positively correlated 
with one another, it might seem sensible that they should all have positive factor 
loadings on each of the two factors that describe their location in the factor 
space. It might also seem sensible if the two factors had more equal weight, in 
terms of the proportions of the total variance that each one accounts for, than 
is seen in the original position of the factor axes. This can often be achieved 
by rotating the axes to another position, while still keeping them orthogonal 
(that is, at right angles).

Louis Leon Thurstone (1887-1955), the chief developer of multiple factor 
analysis, proposed an important principle for factor rotation, which he termed 
simple structure. The aim of simple structure is to rotate the factors to a position 
that maximizes the number of very large factor loadings and the number of very 
small loadings, with as few intermediate-sized loadings as possible, while main­
taining the orthogonality of all the factors. The main consequence of employing 
this criterion, hopefully, is that each test has a large loading on only one factor 
and near-zero loadings on every other factor. This makes it fairly easy to give 
a psychological interpretation and a clear-cut label to each factor simply by 
examining the kinds of information or mental processes called for by the tests 
that have large loadings on the factor. For example, if all of the verbal tests, in 
contrast to spatial and numerical tests, have large loadings on one factor and 
small or zero loadings on all other- factors, we would identify this factor as 
“ verbal ability.”

No matter how one rotates the factor axes, the test vectors always remain 
invariant (that is, in the exact same positions) in relation to one another. The 
test vectors shown in Figure 3.3, for example, are reproduced exactly in Figure 
3.4, but the factors have been rotated to a position that approximates simple 
structure as closely as possible for this set of tests. Notice the results of this 
rotation: (1) All of the test vectors are located in the positive quadrant of the 
factor space (both Factor I' and Factor II' are positive) and therefore all of the 
tests now have positive projections (i.e., factor loadings) on each factor. (2) Half 
o f the tests (A, B, C) are brought much closer to Factor I' (I' is the rotated 
Factor I), while the other tests (X, Y, Z) are brought closer to Factor II'. Tests 
A, B, C therefore have large loadings on I' and relatively small loadings on II', 
and just the opposite is true for tests X, Y, Z. Test A, whose vector nearly 
coincides with the axis labeled Factor I', is therefore an almost perfect marker 
for Factor I'. Similarly, Test Z is an almost perfect marker for Factor II'. If tests 
A, B, and C consisted, respectively, of vocabulary, synonyms-antonyms, and 
verbal analogies, we might label Factor I’ as verbal ability. And if tests X, Y, 
and Z consisted, respectively, of number series completion, arithmetic reasoning,
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Figure 3.4. The same test vectors as in Figure 3.3, but here the factor axes (Factors 
I' and II") have been rotated so that all of the test vectors have positive projections 
on both factors and approximate the simple structure criterion (defined in the text). 
The factor axes remain orthogonal (i.e., at a 90° angle, hence uncorrelated, since r = 
cos 90° = 0).

and mechanical arithmetic, we might label Factor IF as numerical or quantitative 
ability.

But what has happened to the general factor, which was so prominent in 
Figure 3.3? It best represented the fact that the tests are all positively correlated 
and therefore all had some factor in common— a general factor, or g. The gen­
eral factor that was so prominent ir the analysis depicted in Figure 3.3 seems 
to have disappeared from Figure 3.4 as a result of rotating the factor axes. 
Actually, it has simply been dispersed (or redistributed) among the rotated fac­
tors. Notice that even though the rotation to simple structure has maximized 
each test’s loadings on one factor and minimized its loading on the other factor, 
some of the tests (B, C and X, Y) still have some significant, though unequal, 
loadings on each factor. So if you ask where the g went, the answer is that it 
has been divided up and lies “ hidden”  among all of the tests’ smaller loadings 
on all of the orthogonally rotated factors. Its variance has not disappeared, it 
has simply been obscured by being dispersed throughout the whole factor ma­
trix. The price paid for the clarity afforded by simple structure in identifying 
and labeling the factors psychologically is the loss of the clear evidence of the 
tests’ loadings on the general factor. In the past, some factor analysts mistakenly 
argued that this supposed “ disappearance”  of the general factor after rotation 
proved its nonexistence.

In many analyses, some tests (like Test X in Figure 3.4) load almost equally 
on two (or more) factors. This violates the criterion of simple structure. Appli­
cation of the simple structure principle in the early history o f factor analysis led 
to futile debates over whether there is or is not a general factor in the analyzed
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tests. British psychologists, following Burt, did not rotate and claimed there was 
a general factor. American psychologists, following Thurstone, rotated and 
claimed there was no general factor. It was probably the most fatuous and futile 
argument in the history of psychometrics. It was finally settled by Thurstone 
himself, to the delight o f Spearman, the unwavering champion of g. The essen­
tial fact is that, in the mental abilities domain, where unavoidably all tests are 
positively correlated, it is virtually impossible to rotate orthogonal factors to 
achieve an optimal approximation to simple structure. An empirical fact of na­
ture, demonstrated repeatedly— positive correlations among all mental tests— 
contradicts Thurstone’s principle of simple structure. But this contradiction ex­
ists only if one insists that all of the factor axes must be orthogonal. Yet there 
is no compelling reason to maintain orthogonality if it prevents the aim of 
achieving simple structure.

O blique Factors. Thurstone, therefore, invented the use of oblique factors, 
that is, factor axes that have angular separations of less than 90°. The factor 
axes are positioned at oblique angles to one another in such a way as to minimize 
their distances from various clusters of test vectors. Using the same set of test 
vectors as in Figures 3.3 and 3.4, Figure 3.5 shows the “ best fit”  of the two 
oblique factor axes to the test vectors. Each factor axis goes right through each 
cluster of tests. Now we see that tests A, B, and C all have large projections on 
Factor I" (our original Factor I, now in oblique rotation) and relatively small 
projections on Factor II". (The projection indicates the correlation of the test 
with the factor.) Allowing the factors to be oblique makes it possible for rotation 
to more closely approximate the criterion of simple structure and therefore pro­
vides a “ cleaner”  picture of the factor structure of the tests, because the tests, 
on average, will lie closer to the oblique factors than to the orthogonally rotated 
factors (in Figure 3.4).

W hat now has happened to the general factor in the oblique situation? It still 
exists but is now accounted for by the correlation between the oblique factors. 
The angle between I" and II" is 55°, so the correlation between these factors is 
r,..,,.. =  cos 55° =  + .57. The correlation between the first-order oblique factors 
constitutes a second-order (higher-order) factor, which in this case is the general 
factor, or g. With only two first-order factors in this simple didactic example, 
however, the loadings of the first-order factors on the second-order factor are 
indeterminate, although we know that their product is equal to +.57. We would 
actually need to know the correlations between at least three first-order factors 
to be able to calculate their loadings on a second-order factor. It is considered 
improper to present second-order factors without also reporting the correlation(s) 
between them, otherwise not all of the common factor variance in the original 
correlation matrix is represented by the oblique factor structure.

The extraction of a higher, second-order factor from the correlations among 
the oblique first-order factors constitutes a hierarchical factor analysis. (With a 
large and diverse battery of tests, a third-order factor may also emerge from the 
correlations among three or more second-order factors. But it is an empirical
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Figure 3.5. The same test vectors as in Figures 3.3 and 3.4, but here the factor axes 
(Factors I" and II") are no longer orthogonal, but oblique, at an angular separation of 
55°, hence r -  + .57. The oblique factors more closely approximate simple structure 
than the rotated orthogonal factors in Figure 3.4.

fact that fourth-order factors virtually never emerge in the mental abilities do­
main.) It is important to note that the extraction of higher-order factors from 
the oblique first-order factors does not affect the proportion of the total test 
variance accounted for by all of the factors or each test’s communality,12 which 
are identical for both the rotated and the unrotated factors, whether they are 
orthogonal or oblique, hierarchical or nonhierarchical.

NOTES
1. Published as “ Intelligence and its measurement: A sym posium .”  Journal o f  E d­

ucational Psychology, 1921, 12, 123-147, 195-216, 271-275.
2. Sternberg & Detterman, 1986.
3. I have written more extensively elsewhere on the intractable problem of the def­

inition of “ intelligence”  and the abandonment of this term in scientific discourse (Jensen, 
1987b; 1993a; 1994c).

4. Because the size o f the phi coefficient (<|>) as a measure of correlation between 
two items is affected by the item variances when they are unequal for the two items, a 
correction (known as <f>/4>max) for unequal variances is often applied to obtain the expected 
correlation if  both items had equal variances. [Note: The item variance ( a 2) is directly 
related to the proportion (p) o f persons passing the item: a 2 = p ( l  — p).] A tetrachoric 
correlation (r.) is also used for item intercorrelations, particularly if the sample size is 
very large and the correlations are to be factor analyzed, in which case the r, has im ­
portant technical advantages over the phi coefficient. These points are fully explicated 
in many statistical and psychometric textbooks.

5. The covariance between two items, a and b, is Covab =  <t>aba,,(T|,. (In the contin­
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gency table shown in the text, the covariance between items A and B is .521 X .497 X 
.500 =  .129.)

6. Factor analysis can also be applied to a covariance matrix, although factor analysis 
of a correlation matrix is the much more usual procedure. A correlation coefficient is 
simply a standardized covariance, that is, a correlation coefficient (unlike a covariance) 
is completely independent of the particular variables’ scale of measurement and of their 
means and variances. It is thus a pure index of relationship. The covariance of variables 
X and Y, where X and Y are the raw measurements, is Covxy =  X (X —X) (Y —Y)/N. 
The correlation  o f X and Y is rxy =  X (X -X ) ( Y - Y ) /N c ^ a y. (Note: X and Y  are the 
means o f variables X and Y; Gx and cjy are their respective standard deviations.)

7. The three great classics of factor analysis are by Burt (1941), Thomson (1951), 
and Thurstone (1947). The best-known modern textbooks are by Cattell (1978), Comrey 
& Lee (1992), Gorsuch (1983), Harman (1976), and Mulaik (1972).

8. There are two main purposes of factor analysis— exploratory factor analysis (EPA) 
and confirmatory factor analysis (CFA), which differ in methodology. But this distinction 
is not important for understanding the gist of factor analysis. CFA is in fact a quite recent 
development in the history o f factor analysis, and probably most factor analyses seen in 
the present literature are still EFA. EFA is used to analyze a set of variables when there 
are no definite hypotheses about the factor structure of the set of variables, although we 
may have some speculations or intuitions about this based on prior experience or theo­
retical considerations. One begins without any definite idea about the number of factors 
or the degree to which each of the variables is loaded on each factor. W hatever factor 
structure is latent in the set of variables will emerge from the analysis. In CFA, on the 
other hand, one begins with a definite hypothesis (or a number of competing hypotheses) 
about the factor structure (i.e., the number of factors and the magnitudes of their loadings 
in each variable) and the method o f CFA statistically tests the “ goodness of fit”  of the 
data to the hypothesized factor structure, or model, as it is also called. Thus CFA permits 
rigorous statistical evaluation of competing models or theories concerning the “ covari­
ance structure”  of the domain of variables under study. CFA usually comes into the 
picture at a later stage o f research, after EFA has been used to map out the territory, so 
to speak, and when competing theories about details of the map are in contention. CFA 
and its cousin, path analysis, are specialized methodologies in a broad class o f statistical 
methods for the analysis o f covariance structures. An excellent introduction to these 
topics (including EFA) is provided by Loehlin (1992).

9. Carroll (1993a), in an encyclopedic study of the results of the factor analysis of 
cognitive abilities, has performed factor analyses on some 460 different sets of mental 
ability tests, encompassing almost every kind o f cognitive ability that has been psycho- 
metrically assessed, and has found that g is always either a second-order or third-order 
factor in a hierarchical factor analysis. Below g, only some seven or eight broad second- 
order factors have been reliably established. The total number of first-order factors in 
the whole abilities domain is undoubtedly very large. But in principle the number of 
theoretically possible first-order factors is indeterminate, and each successive new first- 
order factor becomes harder to discover reliably. To date some fifty to sixty are claimed 
to have been identified.

10. Schmid & Leiman (1957). Wherry (1959) presented a computationally different 
but mathematically equivalent method for arriving at the same factor matrix as is yielded 
by the Schmid-Leiman procedure. For more discussion of the comparison of these meth­
ods with other types o f factor analysis, see Jensen & Weng (1994).
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11. It is possible to obtain “ impossible”  correlations among a set of three (or more) 

variables, if each of the correlations was not obtained in one and the same subject sample. 
The “ im possible”  correlations are a result of the sampling error of the correlations. For 
example, the correlations (necessarily obtained in different samples) between variables 
X, Y, and Z  of rxy =  .90, rxz =  .80, and ryz =  .20, are “ impossible”  estimates of the 
true correlations in the population. If X is highly related to Y and to Z, then it is 
impossible for Y to have such a low degree of relationship to Z. A test of whether any 
three correlation coefficients are “ im possible”  estimates o f the true correlations in the 
population is that the following equation (known as the consistency relation among 
correlation coefficients) is violated (from W alker & Lev, 1953, p. 344):

I -  '■% -  + 2 > v „ r yz >  0

12. For didactic simplicity, this example assumes that none of the tests’ variances 
contains any unique variance (i.e., specific variance + error variance), and therefore each 
test’s communality (i.e., the proportion o f a test’s total variance that is common to other 
tests in the analysis) is unity, or 1. This is represented in Figure 3.3 by all the test vectors 
having unit length. When the tests’ variances contain uniqueness (in addition to common 
factor variance) and the tests’ communalities are therefore less than 1 (usually by various 
amounts), then the correlation between two tests (say, X and Y) in the factor space has 
the following relation to the angular separation of the tests’ vectors: rxy =  h j i y cos 0, 
where h is the square root of the test’s communality (h2). The symbol h2 for communality 
comes from the word hypotenuse. Referring back to Figure 3.3, note the projection of 
vector Z on Factor II; it forms a right triangle, of which the vector Z is the hypotenuse. 
Similarly, the projection o f Z  on I forms a right triangle, of which Z is the hypotenuse. 
By the Pythagorean theorem, the square o f the hypotenuse is equal to the sum o f the 
squares of the two sides. The two sides o f each triangle in this case are the loadings of 
test Z  on Factors I and II. These loadings are .8 and .6, so h2 =  ,82 +  ,62 =  .64 + .36 
=  1.00. Therefore, a test’s communality (h2) is the sum of its squared loadings on each 
orthogonal common factor. In a factor analysis, a test’s communality is an important 
item of information, as it tells us the proportion of the test’s total variance that is ac­
counted for by the factors. The proportion of variance unaccounted for by the common 
factors is the test’s unique variance (i.e., u2 =  1 — h2). A given test’s communality 
cannot be known until the factor analysis is completed, but it can usually be closely 
estimated by the squared multiple correlation (SMC) between the test and all the other 
tests in the matrix. The computational procedure in factor analysis usually begins with 
these computable SMC estimates o f the communalities in the main diagnonal o f the 
correlation matrix. An iterative procedure then converges the estimated h2 values toward 
the tests’ true communalities. Largely because of this tedious iteration, the computations 
of a single factor analysis, which in the days of electrical calculators could take a skilled 
technician a full forty-hour week, can now be performed by high-speed electronic com ­
puters in just a second or so after the data have been entered into the computer.

13. Principal fa ctor analysis (PFA) should be clearly distinguished from principal 
components analysis (PCA). In the present example (Figure 3.3) all o f the test vectors 
are of unit length and therefore each has a communality equal to I. In this case, all of 
the variance in the tests is accounted for by the factors, so there is no specificity or error 
variance in any of the tests. Therefore, this didactic example is both a PFA and a PCA. 
The distinction between PCA and PFA arises when the tests’ variances include unique­
ness as well as common factor variance, making the tests’ communalities less than unity.
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The distinction between PFA and PCA is that PFA analyzes only the common factor 
variance o f  the tests, whereas PCA analyzes the tests’ total variance into orthogonal axes, 
or components. (These may also be rotated in the same ways as principal factors.) 
Therefore, tests’ (squared) factor loadings in a PFA do not contain the tests specificity 
or error variance. In a PCA, each of the tests’ squared component loadings contains some 
small part o f the variance attributed to the tests’ specificity and measurement error in 
addition to their common factor variance. In principal components (PCs), the specificity 
and error are rather evenly spread throughout all of the components, and because PCA 
analyzes all o f the variance in the tests, the number of components that can be extracted 
is the same as the number o f tests. In PFA, however, the number of factors will be less, 
usually much less, than the number of tests, because only the common factor variance 
enters into the analysis. Assuming that the PFA has been done properly and all o f the 
common factors have been extracted, the sum of the tests’ communalities indicates the 
proportion o f the total variance accounted for by common factors. The mathematical 
procedures of PFA can be thought o f as first separating the total variance into common 
factor variance and unique variance and then performing a PCA on just the tests' common 
factor variance.

For theoretical purposes, such as generating hypotheses about the factor structure of 
a set o f tests (as in “ exploratory factor analysis” ), there is no question that PFA is 
preferable to PCA. But if one’s only purpose is to transform a set o f n correlated variables 
into a set o f n perfectly uncorrelated variables (i.e., principal component scores) which 
retain the total variance of the original variables, then PCA is the proper method. PCA 
is used in this manner in quantum mechanics and in other fields, where working with 
uncorrelated variables is mathematically simpler than working with correlated variables.

Because each successive PC extracted accounts for a smaller proportion of the total 
variance, it is often possible to account for a large proportion of the total variance by 
extracting many fewer PCs than the total number o f tests without much loss of infor­
mation. Therefore, if one’s purpose does not demand the degree o f precision that would 
be afforded by the total variance in many tests, a relatively small set of PCs that will 
account for some usefully large proportion of the variance can be used to obtain com­
ponent scores. For example, if scores on a battery of a dozen tests (entered into a multiple 
regression equation) are a good predictor of some criterion, a PCA may reveal that only 
three components account for nearly all of the variance in the dozen tests and that the 
simple sum o f the (uncorrelated) PC scores (derived from the three PCs) predicts the 
criterion with nearly the same degree of accuracy as if one had used the full dozen test 
scores in a multiple regression equation to predict the criterion. PCA is often used to 
gain this kind of efficiency.

A PCA is often used preliminary to a PFA to determine the number of PFs that should 
be extracted from a correlation matrix. This can be determined from the PCA in several 
ways, which are discussed in textbooks of factor analysis. Probably the most commonly 
used criterion is the Kaiser-Guttman rule: the number of factors should be equal to the 
number o f PCs with eigenvalues larger than 1. (When important theoretical issues are at 
stake, it is usually advisable to get a consensus between the eigenvalues >  1 rule and 
other criteria, such as R. B. CattelFs scree test and the Humphreys-Montanelli procedure, 
which are described in most modern textbooks o f factor analysis. The “ number o f  fac­
tors”  issue, however, is now most definitively settled by confirmatory factor analysis, 
implemented by the L1SREL computer programs [for references to this see Loehlin, 
1992].) Eigenvalues (also termed latent roots), which are an inherent property of a cor­
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relation matrix, are determined exactly by a PCA. PC s’ eigenvalues decrease rapidly in 
size, from the first PC to the nth PC (where n is the number of tests =  the number of 
PCs). The logic o f the Kaiser-Guttman rule is essentially this: Since each test’s stan­
dardized variance =  1, the total variance of the n tests in a correlation matrix is equal 
to n, and the sum of the eigenvalues of all of the PCs extracted from a correlation matrix 
=  n. If the correlation matrix is random (i.e., the correlations are derived from random 
numbers), there are of course no true common factors. If such a random correlation matrix 
were subjected to a PCA, all o f the resulting eigenvalues would be very close to 1; the 
first few PCs would have eigenvalues just slightly greater than 1, due to small, purely 
chance correlations; the remaining eigenvalues would be slightly less than 1. Therefore, 
in factor analyzing a real, or nonrandom, correlation matrix, the eigenvalues of some of 
the PCs will be considerably greater than 1, and the cutoff for the number of authentic 
factors should be equal to the number of PCs with eigenvalues greater than 1.



Chapter 4
Models and Characteristics Of g

The general factor, g, can be extracted from the correlation matrix 
of a battery of mental ability tests by a number of different methods 
of factor analysis and according to different models of the factor 
structure of abilities. Provided the number of tests in the analyzed 
battery is sufficiently large to yield reliable factors and the tests are 
sufficiently diverse in item types and information content to reflect 
more than a single narrow ability, a g factor always emerges. The 
only exception occurs when orthogonal rotation of the principal axes 
is employed. That method expressly precludes the appearance of a 
g factor. With orthogonal rotation, the g variance remains in the 
factor matrix, but is dispersed among all of the group (or primary) 
factors. This method of factor analysis (for which the most common 
factor rotation method is known as varimax) is not appropriate to 
any domain of variables, such as mental abilities, in which substan­
tial positive correlations among all the variables reveal a large gen­
eral factor.

Among the various methods of factor analysis that do not math­
ematically preclude the appearance of g when it is actually latent in 
the correlation matrix, a hierarchical model is generally the most 
satisfactory, both theoretically and statistically. In a hierarchical 
analysis, a number of correlated group factors (first-order factors) 
are extracted first. The g factor then emerges as a second-order factor 
(or as a third-order factor in some very large and diverse batteries) 
from the correlations among the first-order factors (or among the 
second-order factors when g is at the third order).

The g  factor is found to be remarkably invariant across all the 
various methods of factor analysis except those that mathematically 
preclude the appearance of a general factor.
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The g factor is found to be relatively invariant across different 

batteries of diverse tests of mental ability. This fact justifies the 
postulation of a true g (analogous to true score in classical meas­
urement theory), of which the g obtained in any empirical study is 
an estimate.

The g  factor is also found to be ubiquitous and relatively invariant 
across various racial and cultural groups.

The form of the population distribution of g is not known, because 
g cannot yet be measured on a ratio scale, but there are good the­
oretical reasons to assume that the distribution o f g approximates 
the normal, or bell-shaped, curve.

The g factor is ubiquitous in all mental ability tests, and tests’ g 
loadings are a continuous variable, ranging from values that are 
slightly greater than zero on some tests to values that are near the 
reliability coefficient of some tests.

Although certain types of tests consistently show higher g load­
ings than other tests, it is conceptually incorrect to regard charac­
teristics (e.g., relation eduction and abstract reasoning) of such tests 
as the “ essence”  or “ defining characteristic”  of g.

These features of tests may indicate the site of g, but not its 
nature. Unlike the group factors, the g factor cannot be described in 
terms o f the item characteristics and information content of tests. 
Nor is g a measure of test difficulty; a test’s g loading and its dif­
ficulty are conceptually separate.

It is wrong to regard g as a cognitive process, or as an operating 
principle of the mind, or as a design feature of the brain’s neural 
circuitry. At the level of psychometrics, ideally, g may be thought 
of as a distillate of the common source of individual differences in 
all mental tests, completely stripped of their distinctive features of 
information content, skill, strategy, and the like. In this sense, g can 
be roughly likened to a computer’s central processing unit. The 
knowledge and skills tapped by mental test performance merely pro­
vide a vehicle for the measurement of g. Therefore, we cannot begin 
to fathom the causal underpinning of g merely by examining the 
most highly g-loaded psychometric tests. At the level of causality, 
g is perhaps best regarded as a source of variance in performance 
associated with individual differences in the speed or efficiency of 
the neural processes that affect the kinds of behavior called mental 
abilities (as defined in Chapter 3).

The previous chapters have demonstrated the essential basis of the g revealed 
by factor analysis— the correlations between mental tests of every kind are all 
positive. But factor analysis also reveals other factors, although they are less
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general than g. The most general are the second-order group factors. The first- 
order, or primary, factors are of still lesser generality.

The terminology “ models” of g refers to the different ways that the rela­
tionship between g and the other factors can be represented. Each representation 
is derived from the factor analysis of the matrix of correlations among a variety 
of tests. Critics o f g argue that, because there are different methods for factor 
analyzing a correlation matrix, these differing methods, even when applied to 
one and the same matrix, necessarily yield quite different factors, including 
different g factors, or even no g at all.

If this criticism were true, and especially if there were no theoretically com­
pelling basis for preferring one of the various methods of factor analysis over 
the others, then the importance of g as a scientific construct would surely be 
questionable, at least insofar as g is determined by any type of factor analysis. 
Indeed, if the data supported this criticism, I would not have written this book. 
The counterargument against the criticism, however, is technically quite com­
plex and has two parts— the mathematical principles underlying factor analysis 
(or the related technique of principal components analysis [see Chapter 3, Note 
13]) and the empirical evidence from a wide variety of studies of human per­
formance.

With the help of experts on the mathematical foundations of factor analysis, 
I examined this issue in detail and reported the results in a lengthy technical 
editorial in the journal Intelligence.' The conclusions can be explained fairly 
simply, however, with the aid of some diagrams.

The S pearm an  M odel. This is the simplest possible factor structure (Figure 
4.1). The nine variables (VI through V9) in the factor analysis are tests and u 
is the variable’s correlation with whatever the variable measures uniquely, that 
is, whatever the variable measures that is not measured by any of the other 
variables in the factor analysis. (This quantity, «, termed the variable’s unique­
ness consists of specificity +  random error.) We see that g is in all nine Vs and 
is the only factor that they have in common. It is possible to find sets of a 
relatively small number of mental tests that, when factor-analyzed, conform to 
this simple model of a single common factor. This is not generally the case, 
however. Spearman’s method of factor analysis (which is now obsolete) can 
extract a proper g from such a set of tests, and so can other, more modern 
methods. The disadvantage of Spearman’s method is that if his tetrad criterion 
shows that more than one common factor exists in the tests, his method of factor 
analysis will not work.2 If used, it gives an incorrect g. The degree of incor­
rectness depends on the nature of the matrix to which it is applied.

The T hurstone Model. This is a multifactor model (see Figure 4.2).
As shown here it has three group factors, without any general factor common 

to all of the variables. The method used to estimate the factors in Thurstone’s 
model is typically principal factor analysis with orthogonal rotation of the factor 
axes to simple structure. The most widely used method of rotation is Kaiser’s 
varimax criterion, which tries to achieve simple structure by orthogonal rotation
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Figure 4 .1 . Spearman Model. The simplest possible factor model: A single general 
factor, originally proposed by Spearman as a two-factor model, the two factors being the 
general factor (g) common to all of the variables (V) and the “ factors”  specific to each 
variable, termed specificity (s). Each variable’s uniqueness («) comprises 5 and measure­
ment error. (From Jensen & Weng, 1994. Used with permission o f Ablex.)

of the factor axes to a position that maximizes the variance of the squared factor 
loadings on each factor. This has the effect of giving each test a large loading 
on only one of the first-order factors and small loadings on all of the other first- 
order factors. The following idealized hypothetical factor matrix illustrates a 
perfect simple structure of orthogonal (uncorrelated) factors, in which all of the 
variance on a given test is explained by a single factor.

Tests Factors
1 11 III

a 1 0  0
b 1 0  0
c 1 0  0
d  0  1 0
e 0 1 0
f  0  1 0
g  0  0  1
h 0  0  1
i 0  0  1

This orthogonal simple structure model, it turns out, has proved inappropriate 
in the abilities domain, and in fact Thurstone (1931) himself early on used 
oblique rotation of the factor axes to achieve the best possible approximation to 
simple structure. (Oblique factors are correlated with each other.) He only sub­
sequently advanced orthogonal rotation to avoid some of the complications as­
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u1 u2 u3 u4 u5 u6 u7 u8 u9

Figure 4 .2 . Thurstone Model. A multiple-factor model with three independent group 
factors (F I, F2. F3), without a g factor common to all of the variables— a model origi­
nally proposed by Thurstone. (From Jensen & Weng, 1994. Used with permission of
Ablex.)

sociated with oblique rotation. But it was apparent that, in the abilities domain, 
a good fit of the data to a simple structure model could not be achieved with 
orthogonal rotation, because a general factor permeates all of the primary abil­
ities. Orthogonal rotation would achieve simple structure only if Thurstone’s 
original theory were true. (That is the theory that mental ability consists of a 
number of distinct, uncorrelated abilities represented by the primary factors, and 
that there is no general factor in the abilities domain.) But that theory has long 
since been proven false. Thurstone assiduously attempted to devise tests that 
would provide factor-pure measures of what he called the primary mental abil­
ities revealed by his method of multiple factor analysis/ But it proved impos­
sible to devise a test that was a pure measure of any primary factor. In samples 
of the general population, Thurstone’s tests of the “ primary mental abilities” 
always showed quite large correlations with each other. This was because they 
all measured g in addition to whatever “ primary ability”  they were intended to 
measure as purely as possible. The primary abilities were not pure at all. Al­
though it was possible to devise tests that would measure any one of the primary 
mental abilities and no other primary ability, the test always measured g as well. 
And usually the test’s g variance was larger than the variance of the particular 
primary ability factor it was specially devised to measure. In other words, g 
accounted for more than the primary ability. Thurstone therefore returned to his 
earlier position and proposed oblique rotation of the primary factor axes to 
achieve the best possible approximation to simple structure. The correlations 
between the primary factors could then be factor analyzed to yield g as a higher-
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Figure 4 .3 . Bifactor Model. Each variable (V) is loaded on one of the three group 
factors (F) and is also loaded on g, but the variables’ g loadings are not constrained by 
their loadings on the group factors (as in the case of the hierarchical model); variables’ 
correlations with F and with g are independent of one another. (From Jensen & Weng, 
1994. Used with permission of Ablex.)

order factor. This method is known as a hierarchical factor analysis. But before 
we discuss it, there is one other model that should be considered.

The B ifactor M odel. This model was proposed by Karl Holzinger, a student of 
Spearman’s, who later became a professor in the University of Chicago, where 
Thurstone was also a professor. Holzinger’s method of bifactor analysis, in effect, 
combines the Spearman model with the Thurstone model. It yields both Spear­
man’s g  factor and Thurstone’s group factors, but without deriving g from the cor­
relations among the obliquely rotated primary factors. The procedure consists 
essentially of first extracting g from the correlation matrix in such a way as to 
leave all-positive correlations in the residual matrix (i.e., the correlation matrix af­
ter the g factor has been removed). With g removed from the correlation matrix, a 
Thurstone-type of factor analysis (or a principal factor analysis) can then obtain 
quite clean-cut orthogonal primary factors that closely conform to simple struc­
ture. The bifactor model, shown in Figure 4.3, therefore reveals both g and the 
group (or primary) factors, which are all orthogonal to each other.4

The O rthogonalized H ierarchical M odel. As this has become the generally 
preferred model, it should be explicated in somewhat more detail than the others.5 
An actual correlation matrix will be subjected to a hierarchical analysis to illus­
trate how it works. The hierarchical model is shown in Figure 4.4 in terms of nine 
variables (VI through V9), three first-order factors (F I, F2, F3), and the second- 
order factor, g. The correlation matrix that has been subjected to the hierarchical 
analysis is shown in Table 4.1. The end result of the computational procedure 
(Schmid-Leiman, 1975) is the factor  matrix shown in Table 4.2.

The correlation matrix (Table 4.1) simply shows the correlation coefficients
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Figure 4 .4 . Hierarchical Model. The first-order factors (F) are correlated, giving rise to 
a second-order factor, g. Variables (V) are correlated with g only via their correlation with 
the three first-order factors. (From Jensen & Weng, 1994. Used with permission of Ablex.)

of every variable with every other variable. The factor matrix (Table 4.2) shows 
the loadings of each of the nine variables on g and on each of the three first- 
order factors. Here we see a perfect simple structure of the first-order factors. 
Variables V I, V2, and V3, for example, measure only g +  F I, with zero load­
ings on F2 and F3; variables V4, V5, and V6 measure only g +  F2; and so on. 
The communality (h2) is the proportion of the variable’s total variance that is 
attributable to the common factors; it is the sum of the variable’s squared factor 
loadings on g and the first-order factor(s) [e.g., (.72)2 +  (,3487)2 =  .64], The 
uniqueness (u2) is the variance not accounted for by common factors. It consists 
of specific variance and error variance. The sum of h2 and u7 for each variable 
is the variable’s total standardized variance and therefore must equal 1. The 
bottom o f Table 4.2 shows the variance of each factor (i.e., the sum of the 
squared factor loadings) and (in the final row) the percentage of the total vari­
ance on all of the variables that is attributable to each factor.

Typically, g accounts for a larger proportion (i.e., a higher percentage) of the 
total variance than any other factor and often accounts for more of the variance 
than all of the other factors combined. The sum of the communalities (3.36, or 
37.33% of the total variance) is relatively small and indicates that these variables 
possess a high degree of uniqueness, which accounts for 62.67% of the total
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Table 4.1
Correlation Matrix" for Hierarchical Factor Analysis

VARIABLES

VI V2 V3 V4 V5 V6 V7 V8 V9

VI 5600 4800 4032 3456 2880 3024 2520 2016
V2 5600 4200 3528 3024 2520 2646 2205 1764
V3 4800 4200 3024 2592 2160 2268 1890 1512
V4 4032 3528 3024 4200 3500 2352 1960 1568
V5 3456 3024 2592 4200 3000 2016 1680 1344
V6 2880 2520 2160 3500 3000 1680 1400 1120
V7 3024 2646 2268 2352 2016 1680 3000 2400
V8 2520 2205 1890 1960 1680 1400 3000 2000
V9 2016 1764 1512 1568 1344 1120 2400 2000

"Decimals omitted.

variance in these variables. (Since we do not know the reliability coefficients of 
these nine variables, we cannot determine how much of the uniqueness for each 
variable consists of specificity and how much consists of error.)

From the information given in Table 4.2, it is possible to calculate the direct 
(nonresidualized) correlation coefficients shown alongside each of the arrows in 
Figure 4.4. For example, g is correlated .9 with F I, and FI is correlated .8 with 
V I. The correlation between VI and g , therefore, is the product of the two 
correlations that connect g with V I, that is, .8 X .9 =  .72, which is the g 
loading of V I. VI and V2 are connected only by F I , so their correlation is .8 
X  .7 =  .56. But VI and V4 are connected by F I, g, and F2, so the correlation 
between VI and V4 is [.8 X  .9] X  [,8 X  .7] =  .4032. (The correlations between 
the first-order factors are calculated the same way; for example, FI and F2 are 
correlated .9 X  .8 =  .72.)

We could proceed in this way to reconstitute all of the correlations in Table 
4.1 from the factor structure shown in Table 4.2 and Figure 4.4.6 It can be done 
with perfect exactitude here, because this correlation matrix was specially made 
up for this demonstration. In reality, the reconstituted matrix always shows slight 
random deviations from the exact values of the original correlation matrix. If 
the factor analysis was done properly, the residual matrix (i.e., the matrix of
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Table 4 .2
Factor Matrix for Orthogonalized Hierarchical Model

Variable

Factor Loadings 
2nd Order First Order Communality Uniqueness

£ FI F2 F3 hJ

VI .72 .3487 0 0 .64 .36
V2 .63 .3051 0 0 .49 .51
V3 .54 .2615 0 0 .36 .64
V4 .56 0 .42 0 .49 .51
V5 .48 0 .36 0 .36 .64
V6 .40 0 .30 0 .25 .75
V7 .42 0 0 .4284 .36 .64
V8 .35 0 0 .3570 .25 .75
V9 .28 0 0 .2856 .16 .84

Var. 2.2882 .283 .396 .3925 3.36 5.64
% Var. 25.42 3.15 4.40 4.36 37.33 62.67

original correlations minus the matrix of reconstituted correlations) would con­
sist of only the test specificity and random error.

HOW INVARIANT IS g  ACROSS DIFFERENT METHODS OF 
FACTOR ANALYSIS?

This is one of the crucially important questions in our present inquiry. Ob­
viously the simplest way to answer it is to simulate a variety of correlation 
matrices that are similar to those found for actual mental test data but for which 
we already know the true factor structure exactly, and then see how accurately 
different factor analytic models and methods can estimate7 the “ true”  factors 
known to exist in these artificial matrices.

This is just what I did, in collaboration with Dr. Li-Jen Weng, at that time a 
postdoctoral research scholar at the University of California, Berkeley, and a 
specialist in factor analysis and mathematical statistics. Besides applying six
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different methods of factor analysis to four simulated matrices for which the 
factors were exactly known, we also applied nine different methods of factor 
analysis to a real correlation matrix based on twenty-four tests administered to 
145 students in grades 7 and 8. Of course, we used no type of factor analysis 
that is expressly designed to preclude the appearance of a general factor (such 
as orthogonal rotation of the primary factors). We were concerned here exclu­
sively with the amount of variation in the g factor when it is extracted by the 
various methods most commonly described in modern textbooks of factor anal­
ysis.

Since we knew exactly the true g loadings of the variables in the artificial 
correlation matrix (because we had initially generated the correlation matrix 
from the “ true” factor loadings), it was simply a matter of comparing these 
true loadings with each of the various sets of g loadings extracted from the 
artificial matrix by the six different methods of factor analysis. A set of factor 
loadings (such as the ones shown previously in the columns of Table 4.2) is 
called a column vector. We compared the column vector of true g loadings with 
the column vector of the g loadings obtained by each method of factor analysis. 
The degree of similarity of the two vectors was measured by the coefficient o f  
congruence8 (rc) between the two vectors. The amount of discrepancy between 
the loadings was measured by the average absolute difference between the true 
and obtained g loadings (calculated as the root mean square difference).9

The result of this analysis was that every one of the methods of factor analysis 
estimated the true g so closely that there was hardly any basis for choosing 
between them. The congruence coefficients between the true g factor and the g 
factor obtained by the various methods ranged from +.997 to +.999, with an 
average of +.998. This is especially remarkable because some of the artificial 
matrices were specifically designed to “ trick”  particular methods into yielding 
estimates that would deviate markedly from the true values, for example by 
simulating tests of highly mixed factor composition (e.g., each test having sub­
stantial loadings on all of the primary factors). The root mean square difference 
between the true g and the estimated g averaged .047 (ranging from .031 to 
.059) for the various methods, which is negligible compared to the average size 
of the factor loadings (about .50). In brief, when estimating the true g, the 
various factor analytic methods were all remarkably and similarly robust and 
arrived at estimates that deviated very little from the true values.

For the real data obtained on twenty-four tests administered to students, of 
course, we do not know the true g, but we can compare the estimates of it 
obtained from ten different methods of factor analyses. Given the results of the 
previous analyses of artificial correlation matrices, finding a high degree of 
agreement among the ten column vectors of g loadings based on a real corre­
lation matrix would permit the reasonable inference that the hypothetical true g 
for the matrix was closely approximated by all of the various factor analytic 
methods. Again, we found remarkably high agreement. The forty-five congru­
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ence coefficients between the ten g vectors ranged from +.991 to 1.000, aver­
aging + .995.

Another study1101, conducted at Brooks Air Force Base with 9,173 recruits, 
investigated the invariance of g obtained from the ten tests of the Armed Serv­
ices Vocational Aptitude Battery (ASVAB). The ASVAB was factor analyzed 
by 14 different methods, and g factor scores for every subject were calculated 
from the results of each of the 14 methods. The average correlation between 
the 14 sets of g factor scores was .984, indicating that the different methods of 
factor analysis resulted in very little variation among the obtained g factors.

The gist o f these various analyses is that whatever variation exists among the 
myriad estimates of g that have been reported since the beginning of factor 
analysis, exceedingly little of it can be attributed to differences in the methods 
of factor analysis employed. However, there are several other possible sources 
of deviance of an obtained g.

STATISTICAL SAMPLING ERROR
The size of g, that is, the proportion of the total variance that g accounts for 

in any given battery of tests, depends to some extent on the statistical charac­
teristics of the group tested (as compared with a large random sample of the 
general population). Most factor analytic studies of tests reported in the literature 
are not based on representative samples of the general population. Rather, sub­
ject samples are usually drawn from some segment of the population (often 
college students or military trainees) that does not display either the mean level 
of mental ability or the range of mental ability that exists in the total population. 
Because g is by far the most important ability factor in determining the aggre­
gation of people into such statistically distinguishable groups, the study groups 
will be more homogeneous in g than in any other ability factors. Hence when 
the g factor is extracted, it is actually smaller than it would be if extracted from 
data for the general population. Relative to other factors, g is typically under­
estimated in most studies. This is especially so in samples drawn from the 
students at the most selective colleges and universities, where admission is based 
on such highly g-loaded criteria as superior grades in high school and high 
scores on scholastic aptitude tests.

Many factor analytic studies have been based on recruits in the military, which 
is a truncated sample of the population, with the lower 10 percent (i.e., IQs 
below 80) excluded by congressional mandate. Also, the various branches of 
the armed services differ in their selection criteria based in part on mental test 
scores (rejecting the lowest-scoring 10 to 30 percent), with consequently differ­
ent range restrictions of g.

The samples most representative of the population are the large samples used 
to standardize most modern IQ tests and the studies of elementary schoolchildren 
randomly sampled from urban, suburban, and rural schools. Because the dropout
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rate increases with grade level and is inversely related to IQ, high school stu­
dents are a somewhat more ^-restricted sample of the general population.

A theoretically interesting phenomenon is that g accounts for less of the var­
iance in a battery of tests for the upper half of the population distribution of IQ 
than for the lower half, even though the upper and lower halves do not differ 
in the range of test scores or in their variance.11' 1 The basis of g is that the 
correlations among a variety of tests are all positive. Since the correlations are 
smaller, on average, in the upper half than in the lower half of the IQ distri­
bution, it implies that abilities are more highly differentiated in the upper half 
of the ability distribution. That is, relatively more of the total variance consists 
of group factors and the tests’ specificity, and relatively less consists of g for 
the upper half of the IQ distribution than for the lower half. (For a detailed 
discussion o f this phenomenon, see Appendix A.)

Specificity (s) is the least consistent characteristic of tests across different 
factor analyses, because the amount of specific variance in a test is a function 
of the number and the variety of the other tests in the factor analysis. Holding 
constant the number of tests, the specificity of each test increases as the variety 
of the tests in the battery increases. As variety decreases, or the more that the 
tests in a battery are made to resemble one another, the variance that would 
otherwise constitute specificity becomes common factor variance and forms 
group factors. If the variety of tests in a battery is held constant, specificity 
decreases as the number of tests in the battery is increased. As similar tests are 
added, they contribute more to the common factor variance (g +  group factors), 
leaving less residual variance (which includes specificity).

As more and more different tests are included in a battery, each newly added 
test has a greater chance of sharing the common factor variance, thereby losing 
some of its specificity. For example, if a battery of tests includes the ubiquitous 
g and three group factors but includes only one test of short-term memory (e.g., 
digit span), that test’s variance components will consist only of g plus s plus 
error. If at least two more tests of short-term memory (say, word span and 
repetition of sentences) are then added to this battery, the three short-term mem­
ory tests will form a group factor. Most of what was the digit span test’s specific 
variance, when it stood alone in the battery, is now aggregated into a group 
factor (composed of digit span, word span, and repetition of sentences), leaving 
little residual specificity in each of these related tests.

Theoretically, the only condition that limits the transformation of specific 
variance into common factor variance when new tests are added or existing tests 
are made more alike is the reliability of the individual test scores. When the 
correlation between any two or more tests is as high as their reliability coeffi­
cients will allow (the square root of the product of the tests’ reliability coeffi­
cients is the mathematical upper bound), they no longer qualify as separate tests 
and cannot legitimately be used in the same factor analysis to create another 
group factor. A group factor created in this manner is considered spurious. But 
there are also some nonspurious group factors that are so small and inconsis­
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tently replicable across different test batteries or different population samples 
that they are trivial, theoretically and practically.

PSYCHOMETRIC SAMPLING ERROR
How invariant is the g extracted from different collections of tests when the 

method of factor analysis and the subject sample remain constant? There is no 
method of factor analysis that can yield exactly the same g when different tests 
are included in the battery. As John B. Carroll (1993a, p. 596) aptly put it, the 
g factor is “ colored”  or “ flavored”  by its ingredients, which are the tests or 
primary factors whose variance is dominated by g. The g is always influenced, 
more or less, by both the nature and the variety of the tests from which it is 
extracted. If the g extracted from different batteries of tests was not substantially 
consistent, however, g would have little theoretical or practical importance as a 
scientific construct. But the fact is that g remains quite invariant across many 
different collections of tests.

It should be recognized, of course, that in factor analysis, as in every form 
of measurement in science, either direct or indirect (e.g., through logical infer­
ence), there are certain procedural rules that must be followed if valid measures 
are to be obtained. The accuracy of quantitative analysis in chemistry, for ex­
ample, depends on using reagents of standardized purity. Similarly, in factor 
analysis, the extraction of g depends on certain requirements for proper psycho­
metric sampling.

The number o f  tests is the first consideration. The extraction of g as a second- 
order factor in a hierarchical analysis requires a minimum of nine tests from 
which at least three primary factors can be obtained.

That three or more primary factors are called for implies the second require­
ment: a variety o f  tests (with respect to their information content, skills, and 
task demands on a variety of mental operations) is needed to form at least three 
or more distinct primary factors. In other words, the particular collection of tests 
used to estimate g should come as close as possible, with some limited number 
of tests, to being a representative sample of all types of mental tests, and the 
various kinds of tests should be represented as equally as possible. If a collection 
of tests appears to be quite limited in variety, or is markedly unbalanced in the 
varieties it contains, the extracted g is probably contaminated by non-g variance 
and is therefore a poor representation of true g.

If we factor-analyzed a battery consisting, say, of ten kinds of numerical tests, 
two tests of verbal reasoning, and one test of spatial reasoning, for example, we 
would obtain a quite distorted g. The general factor (or nominal g) of this battery 
would actually consist of g plus some sizable admixture of a numerical ability 
factor. Therefore, this nominal g  would differ considerably from another nom­
inal g obtained from a battery consisting of, say, ten verbal tests, two spatial 
reasoning tests, and one numerical test. The nominal g of this second battery 
would really consist of g plus a large admixture of verbal ability.
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The problem of contamination is especially significant when one extracts g 
as the first factor (PF1) in a principal factor analysis. The largest PF1 loadings 
that emerge are all on tests of the same type, so a marked imbalance in the 
types of tests entering into the analysis will tend to distort the PF1 as a repre­
sentation of g. If there are enough tests to permit a proper hierarchical analysis, 
however, an imbalance in the variety of tests is overcome to a large extent by 
the aggregation of the overrepresented tests into a single group factor. This 
factor then carries a weight that is more equivalent to the other group factors 
(which are based on fewer tests), and it is from the correlations among the group 
factors that the higher-order g is derived. This is one of the main advantages of 
a hierarchical analysis.

E m pirical Estim ates of the Consistency of g  across D ifferent Test B a tte r­
ies. How consistent is the g loading of a given mental test when it is factor 
analyzed among several different sets of tests when both the method of analysis 
and the subject sample are held constant? This important question has received 
surprisingly little empirical investigation. In his encyclopedic survey of factor 
analytic studies, Carroll (1993a, pp. 591-597) examined 153 hierarchical g load­
ings in 142 data sets and surmised that “ if it were possible to obtain factor 
scores for each of these factors in some appropriate population, these factor 
scores might be highly correlated, especially after correction for attenuation. But 
it is unlikely that they would be perfectly correlated, because the g factor for a 
given data set is dependent on what lower-order factors or variables are loaded 
on it”  (p. 596).

Carroll made no attempt to estimate the size of the average correlation be­
tween the g loadings of a given variable when obtained in different test batteries, 
and I can think of no way of doing so from the available data. Many of the 
data sets that he reviewed were not intended to meet the psychometric sampling 
criteria (i.e., variety and balance) needed to obtain a good g. My estimate of 
the standard deviation of the g factor loadings of a given variable obtained in 
these data sets is about .08. This value is only about one-sixth the average size 
of the loadings themselves, which indicates a considerable degree of consistency 
of a variable’s g loadings across different data sets. In other words, approxi­
mately two-thirds of a variable’s g loadings in these various data sets falls within 
±  .08 of the overall average g loading for that variable.

A much more ideal determination of the consistency of g across different data 
sets was obtained by the psychometrician Robert L. Thorndike (1987), in a study 
expressly designed for this purpose. Thorndike began with 65 highly diverse 
tests used by the U.S. Air Force. From 48 of these tests, he formed six non­
overlapping batteries, each composed of eight randomly selected tests. The 17 
remaining “ probe” tests were inserted, one at a time, into each of these six 
batteries. Thus each of the six batteries was factor-analyzed 17 times, each time 
with a different one of the 17 probe tests. (Principal factor analysis was used; 
g was represented by the first principal factor.) The six g loadings obtained for 
each of the 17 probe tests were then compared against one another. The g
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loadings for any given test proved to be highly similar across all six batteries, 
although the average g loadings of the different tests varied considerably. The 
average correlation between g loadings across the six batteries was .85. If each 
battery had contained more tests from the same general test pool, it is a statistical 
certainty that the average cross-battery correlations between g loadings would 
have been even higher.

Thorndike’s finding, which is consistent with Carroll’s surmise, constitutes 
strong evidence that a very similar g emerges from most collections of diverse 
cognitive tests. This analysis also indicates that the invariance of g across test 
batteries does not depend on their having “ identical elem ents” (in the sense of 
elements of test content) in common. Even highly dissimilar tests (e.g., vocab­
ulary and block designs) have comparably high loadings on one and the same 
g factor.

The C oncept of a “ T ru e ”  g. Just as we can think statistically in terms of 
sampling error of a statistic when we randomly select a limited group of subjects 
from a population, or of measurement error when we obtain a limited number 
of measurements of a particular variable, so too we can think in terms of psy­
chometric sampling error in factor analysis. In making up any collection of 
cognitive tests, we do not have a perfectly representative sample of the entire 
universe of all possible cognitive tests. So any one limited sample of tests will 
not yield exactly the same g as another limited sample. The sample values of g 
are affected by subject sampling error, measurement error, and psychometric 
sampling error. But the fact that g is very substantially correlated across different 
test batteries implies that the differing obtained values of g  can all be interpreted 
as estimates of a true (but unknown) g (in the same sense that, in classical test 
theory, an obtained score is viewed as an estimate of a true score).12

C ross-C ultu ral and C ross-R acial Consistency of g. Here we are not refer­
ring to differences between groups in the average level of g factor scores, but 
rather to the similarity of the g factor obtained when different groups are given 
the same battery of tests. Most of the relevant studies have been reviewed and 
referenced elsewhere.1 n | The general finding, even when quite disparate cultures 
are included (e.g., North America, Europe, and various Asian and African sub­
populations), is that there is a remarkable degree of consistency in the factor 
structure across different racial and cultural groups. All-positive correlations 
among ability tests, a large g factor, and most of the well-established primary 
mental abilities all show up in virtually every cross-cultural factor analysis. The 
g factor is certainly the most ubiquitous and invariant feature of all these anal­
yses.

The precise degree of cross-cultural similarity of g in highly dissimilar cul­
tures, measured by correlations or congruence coefficients, depends considerably 
on the particular combination of tests factor analyzed. We know, for example, 
that the Japanese translation of the W echsler scales given to large samples of 
the population in Japan shows a g whose congruence coefficient with the g 
obtained in the American standardization sample is so high ( + .99) as to indicate
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virtual identity.1141 The congruence coefficient between two large Japanese sam­
ples (in Hiroshima and Nagasaki) was also +.99. Many studies, based on various 
batteries of tests, have shown a similarly high degree of congruence, or even 
virtual identity, between the g factors obtained in large samples of the black 
and white populations in the United States. The white and black standardization 
samples for the W echsler Intelligence Scales for Children (WISC), for example, 
show a g congruence of + .995.1151 (The Verbal, Performance, and Memory 
factors, independently of g, were almost as congruent as g.) The percentages of 
the total WISC variance accounted for by g in the black and white standardi­
zation samples were 31.7 and 29.7, respectively; a trivial difference.

THE FORM OF THE POPULATION DISTRIBUTION OF g
The form of the population distribution of g as a measure of individual dif­

ferences is not known, and at present there is no way of determining it. The 
form of a distribution can be known directly only if the raw measurements of 
the variable constitute a true ratio scale, and the measurement of individual 
differences in g is based on a weighted composite of mental test scores, which 
are not a ratio scale. There are plausible reasons, however, for assuming that 
individual differences in g have an approximately normal, or Gaussian (“ bell­
shaped” ), distribution, at least within the range of ± 2 o  from the mean. That 
range is equivalent to IQs from 70 to 130 on the typical IQ scale (i.e., (J. =  100, 
G =  15). Individual differences in general mental ability are usually measured 
by some test or combination of tests that are highly g loaded, and such tests are 
purposely constructed to have an approximately normal or bell-shaped distri­
bution in the standardization population. Although the normal distribution of 
test scores is usually accomplished by means of certain psychometric artifices, 
it has a quite defensible rationale.16

The g factor as a theoretical construct will probably never be measured in 
individuals as simply and directly as we can measure a person’s height with a 
ruler. However, a rigorously testable and empirically substantiated theory of g 
would itself dictate the form of its population distribution, and our empirical 
measures of g can then be scaled so as to yield such a distribution. The necessary 
kinds of experimental research and theory development have been taking shape 
rapidly in recent years (see Chapters 6 and 8). One major development is the 
use of mental chronometry in psychometric theory and research, that is, using 
real time as the fundamental scale for the measurement of mental ability.

THE RELATION OF g  TO 10 AND SIMILAR TESTS OF ABILITY
The term intelligence quotient (IQ) refers to a score on a test that has certain 

characteristics. The test’s raw score distribution has typically been standardized 
in a large random or representative sample of a certain specified population. 
The standardization is done within narrow age intervals, so that the standardized 
scores, called IQ, will have the same mean and standard deviation (SD ) at every
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age level. IQ is conventionally scaled to a mean of 100 and a SD of 15. The 
form of the IQ distribution closely approximates the normal curve within the 
range of ±  2.5 SD  of the mean.

The chief characteristic of IQ tests, from Binet on, is that they all are highly 
g loaded. This is true even when the test constructors never used factor analysis, 
or even had g in mind, or even disbelieved in the existence of g. The purely 
pragmatic, criterion-oriented process of composing and selecting those test items 
that, in combination, show the largest range of individual differences in the 
population also shows the highest predictive validity for a broad variety of 
practical criteria. The attainment of these psychometric desiderata unavoidably 
results in a test that is highly g loaded.

The first “ IQ test”  (the term “ IQ ,” however, had not yet come into being) 
was invented by Binet in 1905. It was highly g loaded, even though, at the time, 
Binet had never heard of factor analysis or of g. Twenty years before Binet, the 
German psychologist Hermann Ebbinghaus (1850-1909) invented a “ sentence 
completion”  test (the testee fills in an omitted word to make sense of the sen­
tence). Scores on the test agreed with teachers' judgments of pupils’ “ bright­
ness.”  Sentence completion has since been found to be among the most highly 
g-loaded tests.

After innumerable factor analyses had clearly established what types of test 
items are most g loaded, test constructors deliberately composed and selected 
items so as to maximize the g-ness of their IQ tests. The most ^-loaded items 
are those that involve some form of inductive or deductive reasoning (i.e., Spear­
m an’s “ eduction of relations and correlates” ), problems that involve spatial 
visualization, quantitative reasoning, and verbal knowledge and reasoning (such 
as word meanings, distinctions between related words, antonyms-synonyms, ver­
bal analogies, and reading comprehension). The best g items make minimal 
demands for specialized or esoteric knowledge.

One may wonder why tests of vocabulary and of general information are 
typically found to be highly g loaded when subjects have had similar opportunity 
to acquire vocabulary and many bits of general information. The reason is that 
most words in a person’s vocabulary are learned through exposure to them in 
a variety of contexts that allow inferences of their meaning by the “ eduction of 
relations and correlates.”  The higher the level of a person’s g, the fewer en­
counters with a word are needed to correctly infer its meaning. Therefore, over 
a period of years, the amount of vocabulary acquired by adolescence shows 
large individual differences, even between full siblings brought up together. 
These significant differences in vocabulary are highly correlated with compa­
rable differences in g-loaded tests that have no verbal content. A vocabulary test 
that is factor-analyzed in a battery made up exclusively of nonverbal tests still 
shows a large g loading. The same is true of tests called “ general information.”

Another characteristic of most IQ tests is that the types of items that serve as 
media or vehicles for relation eduction are rather evenly balanced among verbal, 
spatial, and numerical (or other) contents. This serves, in effect, to “ average
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out”  the group factors associated with these differing types of content and al­
lows most of the variance in the total score to represent a g that is relatively 
uncontaminated by group factors. The IQ obtained from such tests, therefore, is 
a quite good, though slightly diluted, stand-in for g.

A very few nonverbal, nonspatial visualization, and nonnumerical tests (such 
as Raven’s Progressive Matrices and Cattell’s Culture-Fair Test of g), which are 
based entirely on figural materials, have been expressly devised to maximize 
relation eduction and to minimize group factors. When factor analyzed among 
a wide variety of other tests, they do, in fact, have among the highest g loadings, 
and they usually have nonsignificant loadings on any less general factors. The 
Raven Matrices is sometimes moderately loaded on a broad spatial group factor, 
but always far less than on the g factor. Also, the Raven has some specificity 
(5 to 10 percent) arising most probably from the matrix format of all its items. 
Cattell’s test largely “ averages out”  such specifics by including a variety of 
figural item types.

The g  Loading of IQ  Tests. Here it is important to distinguish between two 
things: (1) the proportion of the total variance attributable to g when we factor 
analyze the set of various subtests that compose the IQ test, and (2) the g loading 
of the IQ itself (derived from the total of the standardized scores on all of the 
subtests) when the IQ is factor-analyzed among a large collection of diverse 
cognitive tests.

1. Probably the most typical example is the Wechsler Intelligence Scale for 
Children (WISC) and for Adults (WAIS). The Wechsler battery consists of 
twelve subtests (Vocabulary, Similarities, Information, Comprehension, Arith­
metic, Digit Span, Digit Symbol, Picture Completion, Block Design, Picture 
Arrangement, Object Assembly and Mazes). When this battery is factor analyzed 
in various age groups of the standardization population, the percentage of the 
total variance in all the subtests accounted for by g averages about 30 percent 
in a hierarchical analysis and about 37 percent when g is represented by the 
first principal factor. The average percentage of variance accounted for by each 
of the three group factors in a hierarchical analysis is: Verbal 6 percent, Per­
formance (largely spatial ability) 6 percent, and Memory 4 percent. Some 40 
percent of the total variance is specific to each subtest, and about 10 percent is 
measurement error (unreliability). The g factor scores obtained from the whole 
Wechsler battery are correlated more than .95 with the tests’ total score (called 
Full Scale IQ). With such a high correlation between the factor scores and the 
IQ scores, it is pointless to calculate factor scores.17

2. Factor analyses of the composite scores (or IQs) of a number of standard 
IQ tests are exceedingly rare, because the total IQ is an amalgam of various 
factors that does not lend itself to factor analysis with much expectation of 
finding more than one significant factor, namely, g. Also, it is rare that more 
than two or three IQ tests are administered to a sample large enough to allow 
a proper factor analysis. Such a large study, which promises a virtually foregone 
conclusion yielding no new information of theoretical interest or practical use,
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would hardly justify the effort. However, one can make a good estimate of the 
g loadings of IQ tests from the correlations between various IQ tests reported 
in the literature, even when no more than two or three tests were administered 
to the same sample. I have summarized many such correlations elsewhere.1 IS' 
The correlations between various IQ tests average about +.77. The square root 
of this correlation (/T 7  =  .88) is an estimate of the average g loading of IQ 
tests, since the correlation between two tests is the product of their factor load­
ings. This value (.88) is an overestimate of the average g loading if it is assumed 
that various pairs of tests also have certain group factors in common (for ex­
ample, two purely verbal IQ tests). If we look at just those tests that appear to 
have no group factors in common (e.g., the Raven and the Peabody Picture 
Vocabulary), the average correlation between them is +.69, which estimates an 
average g  loading of / 6 9  =  .83. It would seem safe to conclude that the average 
g loading of IQ as measured by various standard IQ tests is in the +.80s.

So-called aptitude tests used in selection for employment, training programs, 
and college admissions, such as the General Aptitude Test Battery (GATB), the 
Armed Services Aptitude Battery (ASVAB), and the Scholastic Assessment Test 
(SAT), are nearly as highly g loaded as IQ tests. For example, the GATB G 
score (a composite of verbal, numerical, and spatial tests) has an average cor­
relation of + .76  with various IQ tests, suggesting an average g loading of .87. 
Aptitude tests, however, typically include items of scholastic knowledge or job 
information intended to reflect educational attainments or work skills relevant 
to the criteria the test is designed to predict (such as scholastic performance, or 
job performance, or success in a training program for a particular job). These 
sources of variance tend to dilute the test’s g loading if the item content merely 
requires direct recall of information without involving relation eduction. The 
more similar the educational background of the persons tested, however, the 
larger is the proportion of g variance in their scores on such tests. Those higher 
on g will have acquired more knowledge and skills from the same amount of 
schooling or work experience than persons who are lower on g.

SOME COMMON MISCONCEPTIONS ABOUT g
g  C anno t Be D escribed in Term s of Test C haracteristics. Unlike group 

factors, g cannot be described in terms of the superficial characteristics or in­
formation content of the tests in which it is loaded. All mental tests have some 
degree of g loading and even extremely dissimilar tests (e.g., sentence comple­
tion and block designs) can have nearly equal g loadings. Group factors, on the 
other hand, are labeled and described in terms of the obvious characteristics of 
the kinds of tests that load on them (such as verbal, numerical, spatial visuali­
zation, memory, mechanical, to name a few of the established group factors).

Further, g is not describable in terms of any pure or unique behavior. Verbal 
ability cannot be demonstrated without the person’s engaging in some form of 
behavior involving verbal material— read, heard, spoken, or written. And so it
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is for every other group factor. But not for g. There is no single distinct type 
or class of behavior or materials required for the manifestation of g.

Of course, neither g nor the group factors are properties of tests per se. Rather, 
(hey are components of variance in test scores obtained in some defined group 
of persons. Tests don’t “ contain”  g, but some tests are better indicators of it 
than others. One might say that the g factor emerges only after analysis has 
“ filtered out”  those characteristics of each test that make for group factors and 
specificity.

It is also a mistake to describe g (or, as one often hears, the “ essence”  of g, 
or its “ defining characteristic” ) in such terms as relation eduction, abstract rea­
soning, capacity for complex thinking, problem solving, or similar descriptive 
terms. These terms describe characteristics of certain test items, but they cannot 
describe g. As Spearman aptly noted, these descriptions of test characteristics 
merely identify g by site, not by nature. Or as David W echsler put it, g is not 
really an ability at all, but a property of the mind. It is true that tests that measure 
some form of relation eduction are the most highly g loaded, but they represent 
only the upper segment of the whole continuum  of g loadings. Many tests that 
categorically show none of the characteristics of tests based on relation education 
are also g loaded, although to a lesser degree. However, a composite score based 
on a number of such tests, none of which displays any of the above-named 
features mistakenly said to characterize the “ essence”  of g, can have as large 
a g loading as the type of test that displays the supposed “ defining character­
istics”  or “ essence”  of g. (The evidence for this, based on elementary cognitive 
tasks, is discussed in Chapter 8.)

The fact that a certain class of tests measures g more efficiently than other 
tests does not qualify the characteristics of the former tests to be considered the 
“ essence”  or “ defining characteristics” of g. Because a measuring tape is a 
more efficient and reliable device than a yardstick for measuring the circumfer­
ence of tree trunks does not make a measuring tape the defining characteristic 
of circumference. The salient characteristics of the most highly g-loaded tests 
are not essential or definitional, but are empirical phenomena in need of theo­
retical explanation in their own right. As will be seen in Chapter 8, the critical 
question is why the physiological substrate of g is expressed or aggregated more 
fully in the variance of some types of tests than it is in others.

A G eneral F acto r Is N ot Inevitable. Factor analysis is not by its nature 
bound to produce a general factor regardless of the nature of the correlation 
matrix that is analyzed. A general factor emerges from a hierarchical factor 
analysis if, and only if, a general factor is truly latent in the particular correlation 
matrix. A general factor derived from a hierarchical analysis should be based 
on a matrix of positive correlations that has at least three latent roots (eigen­
values) greater than 1.

For proof that a general factor is not inevitable, one need only turn to studies 
of personality. The myriad of inventories that measure various personality traits 
have been subjected to every type of factor analysis, yet no general factor has
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ever emerged in the personality domain. There are, however, a great many first- 
order group factors and several clearly identified second-order group factors, or 
“ superfactors”  (e.g., introversion-extraversion, neuroticism, and psychoticism), 
but no general factor. In the abilities domain, on the other hand, a general factor, 
g, always emerges, provided the number and variety of mental tests are sufficient 
to allow a proper factor analysis. The domain of body measurements (including 
every externally measurable feature of anatomy) when factor analyzed also 
shows a large general factor (besides several small group factors). Similarly, the 
correlations among various measures of athletic ability show a substantial gen­
eral factor.

Ability V ariation  between Persons and  w ithin Persons. It is sometimes 
claimed that any given person shows such large differences in various abilities 
that it makes no sense to talk about general ability, or to attempt to represent 
it by a single score, or to rank persons on it. One student does very well in 
math, yet has difficulty with English composition; another is just the opposite; 
a third displays a marked talent for music but is mediocre in English and math. 
Is this a valid argument against g ? It turns out that it is not valid, for if it were 
true, it would not be possible to demonstrate repeatedly the existence of all­
positive correlations among scores on diverse tests abilities, or to obtain a g 
factor in a hierarchical factor analysis. At most, there would only be uncorrelated 
group factors, and one could orthogonally rotate the principal factor axes to 
virtually perfect simple structure.

A necessary implication o f the claim that the levels of different abilities pos­
sessed by an individual are so variable as to contradict the idea of general ability 
is that the differences between various abilities within persons would, on aver­
age, be larger than the differences between persons in the overall average of 
these various abilities. This proposition can be (and has been) definitively tested 
by means of the statistical method known as the analysis of variance. The 
method is most easily explained with the following type of “ Tests X  Persons” 
matrix.

Persons 1 Tests 1 Mean P
A B c D E F G H I J _ 1

1 2*1 *81 *C1 • • • • • * « *i

2 Z AJ *82 *C2 • • • • • * « *2
3 • • *J3 *3
4

•

N *A« *BN *CN • • • • • *J» * N

Mean T *» * B • • • • *J
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It shows ten hypothetical tests of any diverse mental abilities (A, B , . .  . J) ad­
ministered to a large number, N, of persons. The test scores have all been stan­
dardized (i.e., converted to z scores) so that every test has a mean z =  0 and 
standard deviation =  1. Therefore, the mean score on every test (i.e., Mean T 
in the bottom row) is the same (i.e., Mean =  0). Hence there can be only three 
sources of variance in this whole matrix: (1) the differences between persons’ 
(P) mean scores on the ten tests (Mean P [z,, z2, z?, etc.] in last column), and
(2) the differences between test scores within each person (e.g., the zA1, zB1, zc i, 
etc., are the z scores on Tests A, B, C, etc., for Person 1). Now, if the average 
variance within persons proves to be as large as or larger than the variance 
between persons, one could say there is no overall general level of ability, or 
g , in which people differ. That is, differences in the level o f various abilities 
within a person are as large or larger, on average, than differences between 
persons in the overall average level of these various abilities. In fact, just the 
opposite is empirically true: Differences in the average level of abilities between 
persons are very significantly greater than differences in various abilities within 
persons.

It should be remembered that g and all other factors derived from factor 
analysis depend essentially on variance between persons. Traits in which there 
is very little or no variance do not show up in a factor analysis. A small range 
of variation in the measurements subjected to factor analysis may result in fewer 
and smaller factors. A factor analysis performed on the fairly similar body meas­
urements of all the Miss Universe contestants (or of heavyweight boxers), for 
example, would yield fewer and much smaller factors than the same analysis 
performed on persons randomly selected from the general population.

Difficulty Level of a Test and  g  A re Separate Concepts. A test’s level of 
difficulty and its g loading are conceptually distinct; they may be empirically 
related, but not necessarily. A test’s difficulty level depends on the ability level 
of the persons taking the test and is typically indexed by the proportion of the 
test items that are failed in a sample of some specified population. The closer 
that proportion is to 0.50, the greater the variance in test scores. Because the 
size of the correlations between tests is affected (positively) by the range of 
ability (hence the variance) in the population tested, the size of the g extracted 
from the intercorrelations among the tests is correspondingly affected. When the 
difficulty level of a wide variety of tests is held constant, however, the various 
tests show a wide range of g loadings. Tests that involve some form of reasoning 
or relation eduction, for example, have considerably higher g loadings than tests 
of rote memory, even though both types of tests are perfectly matched in their 
level of difficulty and have the same variance. So we see that a test’s g loading 
is not intrinsically related to the test’s level of difficulty. An appropriate level 
of difficulty for a given population is merely a psychometric requirement for 
the reliable measurement of individual differences.

The Confusion of g  w ith M ental Processes. It is important to understand
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that g is not a m en tal o r  co g n itiv e  p ro cess  o r one o f  the  o p era tin g  p rin c ip le s  o f  
the  m in d , su ch  as p e rcep tio n , learn ing , o r m em ory . E v ery  k ind  o f  co g n itiv e  
p e rfo rm an c e  d ep e n d s  upon  the o p era tio n  o f  so m e in teg ra ted  se t o f  p ro cesses in 
the bra in . T h ese  can  be ca lled  co g n itiv e  p ro cesses, in fo rm atio n  p ro cesses , or 
neural p ro cesse s . P resu m ab ly  th e ir o p era tio n  in v o lv es m any  co m p lex  design  
fea tu res o f  the b ra in  an d  its neural p ro cesses . B ut th ese  featu res are  not w h at g 
(or any  o th e r p sy ch o m e tric  fac to r) is about. R a th er, g o n ly  reflects so m e p a rt o f  
th e  individual differences in m en tal ab ilitie s  (as defined  in C h ap te r  2) th a t un ­
d o u b ted ly  d ep e n d  on the o p era tio n  o f  neural p ro cesse s  in the b rain . B y  in ference , 
g a lso  reflects  in d iv id u al d iffe ren ces  in th e  speed , o r e ffic iency , o r  cap ac ity  o f  
th ese  o p era tio n s . B u t g  is n o t th ese  o p era tio n s  th em selv es .

A  s im p le  d is tin c tio n  b e tw een  process and  fac to r is that a p ro cess co u ld  be 
d isco v e red  by o b se rv in g  o n e  p erso n , w h ereas a fac to r cou ld  be d isco v e red  only  
by o b se rv in g  a n u m b er o f  p ersons. F o r ex am p le , o n e  p erso n  is o b se rv ed  th ro w ­
ing darts  a t a ta rg e t, try in g  on each  tria l to  h it the b u ll’s-eye. In the  co u rse  o f  
fifty  tria ls , the  p erso n  g rad u a lly  im p ro v es in his level o f  p ro ficiency , from  at 
first b eing  ab le  to h it the b u ll’s-ey e on ly  o nce in every  ten tria ls to finally  h itting  
the b u ll’s -ey e  on n ine  o u t o f  every  ten trials . T h is o b se rv ab le  ch an g e  in the 
p e rso n ’s leve l o f  p ro fic ien cy  o v e r the  co u rse  o f  p rac tice  rep resen ts  a  process, 
in th is  ca se  learning. M an y  o f  its ch a rac te ris tic s  co u ld  be d iscov ered  by m eans 
o f  ex p e rim e n ts  on  a s in g le  person . (In fact, E b b in g hau s d iscov ered  so m e  o f  the 
b asic  fac ts  o f  le a rn in g  and  m em ory  by ex p e rim en ts  u sing  only  h im se lf  as a 
su b jec t.)  B u t n o w  w e o b serv e  an o th e r p erso n  p erfo rm in g  th e  sam e d art-th ro w in g  
task . W e se e  th a t it takes th is p erso n  2 0 0  trials to  a tta in  the sam e level o f  
p ro fic ien cy  as w as a tta in ed  by th e  first p erso n  in on ly  fifty trials. So h ere  w e 
see individual differences in the  p ro cess  o f  learn ing , in th is case , a  d iffe ren ce  
in the rate o f  learn ing . O b v io us ly , th is d iscov ery  th a t learn ing  ra tes fo r  th is task  
can  d if fe r  c o u ld  on ly  h av e  b een  d isco v e red  by ob serv in g  m ore than  o n e  ind i­
v idual. W e  co u ld  then  d ev ise  severa l o th er d iv erse  tasks in w hich  learn ing  (i.e., 
im p ro v em en t w ith  p rac tice) can  be seen  to  occur. W e m ay then  find th a t on 
ev ery  task  th ese  tw o  p erso n s d iffe r co n sis ten tly  in th e ir rate  o f  learn ing . If  so, 
th is w o u ld  m ean  th a t all the  tasks are  p o sitive ly  co rre la ted . A t th is  po in t, a 
factor, ca ll it “ g en era l learn ing  ab ility ,”  has been d iscov ered . S im p ly  sta ted , 
w e h av e  d em o n s tra ted  the ex is ten ce  o f  a  s in g le  d im ensio n  o f  in d iv idual d iffe r­
en ces th a t cu ts ac ro ss  a  v arie ty  o f  learn ing  tasks.

NOTES
1. Jensen & W eng, 1994. The late Professor Henry F. Kaiser (1927-1992), one of 

the world’s leading experts on factor analysis, made a valuable contribution to our effort 
through the extensive discussions that Weng and I were privileged to have with him 
about the fundamental issues dealt with in our article.

2. There are five alternative methods that do not have these problems, but the first 
two of these, at least, have certain problems of their own.

i. Principal components analysis. The first principal component (PCI) in a principal
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components analysis is often interpreted as g. Indeed, the PCI usually looks like g, as 
all of the variables usually have substantial loadings on the PC I. But the PCI has two 
shortcomings as an estimate o f g.

First, it slightly overestimates the g loadings of each of the variables and therefore 
also the total proportion of variance attributable to g. This is because the PCI includes 
some small part o f each variable’s uniqueness, which is unrelated to g (or any other 
common factor) and the PCI is therefore an inflated and contaminated estimate of g.

Second, the PCI may give the expected appearance of a g factor because of its all­
positive loadings on every variable, even when there is no general factor in the matrix. 
Although the PCI may give a reasonably good, but slightly inflated and slightly contam ­
inated, estim ate o f g when there is, in fact, a g in the matrix, the PCI can also fool us 
into thinking there is a g in the matrix by showing substantial positive loadings on all 
of the variables, even when, in fact, there is no g in the matrix. The reason for this is 
that principal components analysis was never devised to estimate the general factor of a 
correlation matrix, and the PCI should really not be defined as the general factor. The 
PCI is accurately defined only as the weighting factor that maximizes the variance of a 
linear (i.e., additive) combination of all of the variables. That is, if we multiply each 
person’s standardized score (z) on each test by the test’s loading on the PC I, and then 
obtain the sum (£ ) of these weighted scores (E zP C l) for each person, the values of 
X zPCl (over all persons) will have a larger variance than any other weighted combination 
of the test scores. The mathematical procedure of principal components analysis deter­
mines for each variable whatever weight is needed to accomplish this single purpose. 
But this does not guarantee that the weights given by the PCI are accurate estimates of 
the variables’ g loadings. However, if there really is a g in the matrix, the PCI will not 
be very far off the mark as estimates of the variables’ true g loadings. But if there really 
is no g in the matrix, or if the g accounts for only a small part of the total variance, the 
PCI can be misleading. This is unlikely in the case o f mental ability tests, however, 
simply because it is extremely hard to make up a set of diverse mental tests that does 
not have a large g factor.

Principal components analysis has one legitimate and useful feature as a preliminary 
to other analyses. It is useful in determining the number of independent factors in the 
correlation matrix. As pointed out in Chapter 3, each principal component has an asso­
ciated eigenvalue, and, as a rule, the number of significant common factors in a matrix 
is equal to the number o f principal components that have eigenvalues larger than 1. 
(However, there are alternative, and often better, ways to determine the number of com ­
mon factors, such as the goodness o f fit indices in confirmatory factor analysis.)

A little-known feature of the PCI is that its eigenvalue (A.) can be used to obtain the 
best estimate of the average correlation (ravc) in a square correlation matrix of p  variables 
by the following formula (Kaiser, 1968): r lvc = (X — 1 )/(p — 1).

ii. Principal fa ctor (PF) analysis. This is much like principal components (PC) anal­
ysis, except that in PF analysis only the common fa ctor  variance is analyzed into linearly 
independent components (then called factors). (PC analyzes the total variance, i.e., the 
common factor variance plus the unique variance.) Therefore, the first principal factor 
(PF1) in a PF analysis is preferable to the PCI as an estimate of g, because it is not 
spuriously inflated by the variables’ uniqueness, as is the PC I. But the PF1 has the same 
drawback as the PC I, in that it can give the appearance of a general factor even when 
a general factor does not exist in the matrix. In practice, its only real risk is that it can 
make a weak general factor look stronger than it really is. For example, it is possible
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for two (or more) uncorrelated variables, which actually have no factor in common, to 
deceptively show substantial loadings on the PF1, in which case the PF1 is not really a 
general factor. Like the P C I, the PF1 is accurately defined only as the weighting factor 
that maximizes the total variance o f the set of variables, in this case, after all the variables 
have been stripped of their uniqueness.

iii. Tandem criteria rotation. This method, which is not used as much as it probably 
should be, gets around the risk o f a “ deceptive”  g, as pointed out in connection with 
the PCI and PF1. The method begins with a principal factor analysis. The factor axes 
are then rotated in such a way as to meet two criteria (called tandem criteria  because 
they are used in tandem) which ensure that a “ deceptive”  g cannot appear and that if 
there really is a g in the matrix, it will show up. The tandem criteria are based on the 
following two principles: (I). I f  two variables are correlated, they should appear on the 
same factor. (II). I f  two variables are not correlated, they should not appear on the same 
factor. A principal factor rotated to these criteria and that has significant positive loadings 
in every variable qualifies as a general factor. (Invented by Andrew L. Comrey, the 
tandem method o f factor rotation is fully described in the textbook by Comrey & Lee 
[1992, pp. 194-204], The authors also provide a computer program for it, available from 
the publisher of their textbook.)

iv. Confirmatory fa c to r  analysis. This method permits one to hypothesize any particular 
factor model, for example, models that do or do not have a general factor, and to test 
statistically how well the observed correlations fit the model. Competing models (e.g., 
one with a g factor and one without) are compared in terms of an index of the data’s 
‘ ‘goodness o f fit’ ’ to the hypothesized model. The presence or absence of a general factor 
can be tested in this way, as can hypotheses about the number of factors in the matrix 
and precisely which variables should have substantial loadings on each factor. The pro­
cedure yields estimates o f all the factor loadings within the constraints of the particular 
hypothesized model.

v. Hierarchical fa c to r analysis. All o f the above methods are sensitive to “ psycho­
metric sampling error,”  i.e., having quite unequal numbers of tests that represent different 
factors in the test battery. A test battery composed of, say, ten memory tests, three verbal 
reasoning tests, and three spatial reasoning tests, would not yield a very good g if it were 
extracted by any o f the methods mentioned so far. The overrepresentation of memory 
tests would contaminate the g factor with memory ability (M); the PCI would really be 
g + kM , where k is some fraction of the memory factor. Hierarchical factor analysis 
(HFA) largely overcomes this problem by rotating the factor axes (obtained from a 
principal factor analysis) so as to obtain as clear-cut oblique group factors (in this case, 
numerical, verbal, and spatial) as possible, and then extracting g from the correlations 
among the group factors. If there is no general factor in the matrix, the group factors 
will not be correlated and therefore cannot yield a g. For these reasons, a hierarchical 
factor model is generally preferred for estimating the g factor and representing the other 
factors in the matrix. A two-strata hierarchical analysis is not feasible, however, unless 
there are enough different kinds of tests to produce at least three group factors (with a 
minimum o f three tests per factor). A correlation matrix that is suitable for the Spearman 
model, for example, would not lend itself to a hierarchical analysis.

3. The seven primary mental abilities that were well identified by Thurstone’s factor 
analyses of a great many tests and for which he devised “ factor-pure”  tests were: verbal 
comprehension, reasoning, word fluency, numerical ability, spatial visualization, percep­
tual speed, and associative memory. Since Thurstone’s time, many more primary ability
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factors have been identified. (See Carroll, 1993a, for the most comprehensive coverage 
of this subject.)

4. Although the bifactor model superficially may seem to resemble the hierarchical 
model, there are certain important differences involving the rank o f the correlation matrix 
represented by each model (the rank of the correlations represented by the hierarchical 
model is one less than that of the bifactor model). Also, the bifactor model, because it 
derives g directly from the original correlation matrix, has fewer mathematical constraints 
than the hierarchical model, which derives g from the correlations among the first-order 
factors (see Jensen & Weng, 1994). Thus the bifactor model can be called a “ top-dow n” 
factor analysis, whereas the hierarchical model is a “ bottom -up”  factor analysis. The 
computational procedures of the bifactor model are now most easily done by means of 
the LISREL-VII computer program, and as both the bifactor and hierarchical models can 
be specified in LISREL, the goodness of fit index can be used to determine which model 
better represents the factor structure of the variables.

5. Although hierarchical factor analysis with the Schmid-Leiman (1957) orthogon- 
alization is the most appropriate form of exploratory factor analysis and has been widely 
used in the last two decades, it (like virtually all other exploratory factor models) is 
rapidly being supplanted by confirmatory factor analysis implemented by the computer 
software package LISREL (an acronym for L inear Structural RELations) devised by the 
Swedish statistician Karl Joreskog (Joreskog & Sorbom, 1989). Essentially the same 
orthogonalized hierarchical factor model can be obtained with LISREL, with the added 
advantage o f an objective statistical comparison (for goodness of fit to the data) with 
other factor models, such as the bifactor model, that may be more suitable, depending 
on the nature of the correlation matrix. In analyzing a variety o f artificially devised 
correlation matrices in which all the factors are known exactly, we have found that the 
LISREL method of estimating the factors seems to show the best overall batting average.

6. The original correlation matrix can also be reconstituted from the factor loadings 
given in Table 4.2, by the rule that the correlation between any two variables is the sum 
of the products of their loadings on each factor. For example, the correlation between 
VI and V2 (in Table 4.1) is reconstituted from their factor loadings (in Table 4.2) as 
follows: (.72 X .63) +  (.3487 X .3051) =  .56.

7. Readers should be warned against misinterpreting the meaning of the word “ es­
tim ate”  when it is used in the context of empirical science, statistics, or factor analysis. 
In popular parlance “ estim ate”  usually means merely a guess or a rough calculation, as 
when a building contractor quotes an estimate of the final cost of a construction job. In 
science, however, it refers to a measurement that inevitably has some associated probable 
degree o f inaccuracy, which is true of all measurements in empirical science, although 
of course measurements differ in their degree of accuracy. But the hypothetical true 
measurement always remains unknown and is in principle unknowable. It is usually 
possible, however, to determine the probable error of a measurement and to state whether 
or not the measurement is sufficiently accurate for its intended purpose. Comparing the 
weights of different atoms obviously requires a very different degree of precision than 
comparing the weights o f hogs. The term “ estim ate”  can be dispensed with only in pure 
mathematics, in which a quantity can be defined exactly but does not pertain to any 
reality outside of itself. In statistics (and factor analysis) the concept of estimate presup­
poses a true measurement or value that can be estimated with some specified degree of 
accuracy (or “ probable error” ). In statistics, the true value is that which would be found 
if every element (i.e., person, item, object, or whatever) in the total population o f such



Models and Characteristics of 9 9

elements had been measured, rather than just a sample of these elements. In the factor 
analysis of abilities, the sampled “ elem ents”  are of two kinds: a defined population of 
persons (e.g., all American-born, English-speaking ten-year-olds) and a defined popula­
tion of mental ability tests (e.g., the more than 200 published tests classified as mental 
ability tests listed in the ninth edition of the Buros Mental Measurements Yearbook). The 
“ estimate”  obtained from the analysis of a sample of the population itself is not in the 
least inexact (assuming the calculations were done correctly), and therefore it is not an 
estimate of some characteristic of the sample per se. However, the precise value of a 
characteristic (e.g., a mean, a correlation coefficient, or a factor loading) obtained from 
the sample (called a statistic) is an estimate o f that characteristic in a population (called 
a parameter). A statistic has a precisely known standard error. SE  (or probable error, 
PE, which is .6745 SE), which is a function of the sample size. The sample value (or 
statistic) has a 50 percent chance of falling within ±  1 PE  o f the population value (or 
parameter). In the case of factor analysis, the estimated parameters (the factors themselves 
and the variables’ factor loadings) are also subject to one other source of variation (or 
error) in addition to sampling error (both for subjects and for tests, as sampled from 
specified populations of people and tests), namely, the particular method of factor anal­
ysis that is used. The results of different methods of factor analysis vary when they are 
applied to one and the same correlation matrix. (This is the main subject of the article 
by Jensen & W eng, 1994.)

8. The congruence coefficient (rc) is an index of factor similarity. Like the Pearson 
correlation coefficient (r), it is scaled to range from - 1  to 0 to + 1 . A value of rc of 
+ .90 is considered a high degree of factor similarity: a value greater than + .95 is gen­
erally interpreted as practical identity of the factors. The rc is preferred to the Pearson r 
for comparing factors, because the rc estimates the correlation between the factors  them­
selves, whereas the Pearson r  gives only the correlation between the two column vectors 
of factor loadings. Pearson r  is based on standardized deviations from the mean of each 
variate, whereas rc is based on raw deviations from zero. Comparing the definitional 
formulas for r and rc side-by-side shows how they differ. Say we wish to assess the 
similarity of two factors, here labeled X and Y (e.g., suppose the same battery of n tests 
was given to subject samples drawn from two different populations [called X  and Y] and 
after factor analyzing the battery within each sample, we wish to know how similar a 
particular factor in one sample is to the presumably corresponding factor in the other 
sample). So the n factor loadings of each of the n tests for each sample can be arrayed 
as two-column vectors (i.e., a column of the n factor loadings for each sample). The 
separate loadings are here called X and Y, with standardized values zx and zr )

Pearson r = X(z, zy)/n
Congruence coefficient rc = XXY/,/£X2XY2.

Showing the formulas for r and rc in terms of the original measurements, X and Y, will 
make the difference between the two coefficients more apparent, showing that r is based 
on the deviation o f the factor loadings from the local mean, whereas rc is based on the 
factor loadings’ deviations from zero:

X(X -  X) (Y -  Y)
,I (X  -  X)- I(Y  -  Y)3

I  (X -  0) (Y -  0) _  I  XY 
VX(X -  0)! X(Y -  0)! j l x -  1Y -
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It should be noticed that the Pearson r, being based on standardized factor loadings, 
cannot reflect a difference between the means of the loadings, whereas the rc does so. 
That is one advantage of rc over r. One reason that rc is used instead of r to compare 
factors is illustrated in the following example. Consider the following two sets o f factor 
loadings on hypothetical factors X and Y, which are hardly similar factors, much less 
the same factor. To save space on this page, the loadings are here presented as a row 
vector rather than as a column vector (which is the conventional form in a factor matrix.)

F a c to r L oadings
Factor X: .9 .8 .7 .6 .5 .4 .3 .2 .1
Factor Y: .4 .3 .2 .1 .0 -.1  - .2  - .3  - .4

The'Pearson r  =  1.00 gives the very misleading impression that the factors are identical. 
The coefficient of congruence rc =  .46. A rc of this size indicates that the factors are 
distinctly different factors, though not absolutely unrelated.

The main virtue o f  rc, however, is that it estimates the theoretical correlation (Pearson r) 
between the true fa c to r  scores of each o f the compared factors. (It is mathematically the ex­
act correlation in the case of principal components.) Gorsuch (1983) states: “ In the case of 
orthogonal components where the factor scores have means of zero and variances of one, 
the result o f calculating coefficients o f congruence on the factor pattern is identical to cor­
relating the exact factor scores and is, indeed, a simplified formula for that correlation’ ’ (p. 
285). (I have tested this empirically and found it to be accurate within the limits of rounding 
errors in the third decimal place. The approximation of rc to the actual correlation between 
estimated factor scores in the case o f principal factors and a hierarchical g  is almost as good 
as for the exact solution given for principal components.)

Another way of defining the congruence coefficient is in terms of the locations of the 
factor axes based on the same set o f variables (tests) obtained in two subject samples. 
Say we calculate and then plot on graph paper the first principal axis o f a set of tests 
given to Group A, and then superimpose upon this graph a plot of the first principal axis 
based on the same set of tests given to Group B. The cosine of the angle between these 
two principal axes, then, is the congruence coefficient. With perfect congruence the angle 
between the axes has 0 degrees, and the cosine of 0 equals 1. The cosine o f 90 degrees 
is 0 (no congruence); and the cosine o f 180 degrees is - 1 .  A congruence coefficient of 
+ .99  corresponds to an angle of 8.1 degrees.

9. The root mean square difference (RMSD) between two vectors is simply the 
square root o f the mean of the squared differences between each pair of factor loadings. 
In the above example (Note 8), the RMSD =  0.5, which is a very large value compared 
to the sizes of the factor loadings. It, too, indicates that these factors are quite different.

10. Ree & Earles, 1991a.
11. Detterman & Daniel, 1989.
12. By analogy with the concept of “ true” -score in classical test theory and the for­

mulation of the correlation rn, between obtained scores (o) and true-scores (t), the cor­
relation between the obtained g and the true g is given by the following formula (Kaiser 
& Caffrey, 1965):

/■„, = j[(nl(n -1)(1 -  l/\)],
where n is the number o f tests and X is the eigenvalue of the first principal component 
of the correlation matrix. Accordingly, the reliability of the factor is rM2. (See Jensen & 
W eng, 1994, for further discussion o f this formula.)
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13. Irvine & Berry (1988); see particularly Chapter 5, by Royce, who summarizes the 

main findings, giving references to most o f this literature; also see “ factor analysis”  and 
" g "  in the index o f the Irvine & Berry book for other references to cross-cultural factor 
analytic studies.

14. Jensen, 1983.
15. Jensen, 1985a; Jensen & Reynolds, 1982.
16. Nothing o f fundamental empirical or theoretical importance is revealed by the 

frequency distribution per se of the scores on any psychometric test composed o f items. 
This is true regardless of whether we are dealing with raw scores or standardized scores 
or any otherwise transformed scores. Therefore, it would be trivial and pointless to review 
the empirical test literature regarding the form of the distribution of mental test scores.

In a given population, the form of the distribution of raw scores (i.e., number of items 
passed) is entirely a function o f three interrelated item characteristics: (1) the average 
probability o f getting the correct answer by chance, i.e., by pure guessing, (2) the average 
level of difficulty of the items (as indexed by the percentage of the population that fails 
them), and (3) the average correlation between items. Item difficulty is completely under 
the test constructor’s control. Score increments due to chance guessing are a function of 
the number and quality of the alternatives in multiple-choice items and the nature of the 
instructions to subjects regarding the penalty for guessing at the answer instead of omit­
ting response when uncertain (e.g., total score based on number o f right minus number 
of wrong answers). The item intercorrelations can be controlled to a considerable degree 
(but never completely) through item selection. Hence, in constructing a test it is possible, 
within broad limits, to produce almost any desired form of frequency distribution of the 
raw scores in a given population.

If we have no basis for arguing that the obtained scores have true measurement prop­
erties in addition to merely having a rank-order correlation with the latent trait that they 
measure— and this seems to be typically the case for psychometric test scores— the pre­
cise form o f the obtained score distribution is essentially arbitrary. The very most that 
we can say in this case is that (within the limits of measurement error) our test scores 
have some monotonic relation to whatever the test really “ measures.”  If we could truly 
measure whatever latent variable, such as g, accounts for the variation in the obtained 
scores on an absolute scale (i.e., one having a true zero and additivity o f scale intervals), 
the form o f its population distribution could turn out to be quite different from that of 
the test scores we have actually obtained.

Certain forms of distribution are simply more useful than others, psychometrically and 
statistically, and it is this consideration that mainly determines the form of the distribution 
test constructors decide to adopt. The aims of maximizing the statistical discriminability 
o f scores throughout a fairly wide range of talent and of obtaining a fair degree of internal 
consistency reliability (i.e., interitem correlation) are what largely dictate item selection. 
The test scores that result under these conditions of item selection typically (and nec­
essarily) have a symmetrical and more-or-less “ bell-shaped”  frequency distribution. It 
is not truly the normal (or Gaussian) curve, although it usually resembles it closely. By 
juggling item characteristics the test constructor can get a distribution that reasonably 
approximates the normal curve. Or the scores can be transformed mathematically to 
approximate a normal distribution. (Such “ norm alized”  scores are obtained by convert­
ing the raw scores to ranks, then converting these to percentile ranks, and then, by 
reference to a table o f the areas under the normal curve, converting these to normal 
deviates, i.e., normalized z scores.) The reason for thus normalizing a score distribution
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is not mainly theoretical, but statistical. The normal curve has certain mathematical prop­
erties that make it extremely useful in statistical analysis and interpretation.

The argument is often made on theoretical grounds, however, that the main latent trait 
reflected by most complex cognitive tests— namely g— should be normally distributed 
in the general population. This argument, if accepted, justifies and indeed demands that 
IQs (or any other type of scores on any highly g-loaded tests) should be purposely scaled 
so that the form of their population distribution closely approximates the normal distri­
bution. W hat can be said for this argument? There are three main facets:

First, there is the argument by default: Unless there is some compelling reason to 
suppose that the form of the distribution of g is something other than normal, we might 
as well assum e that it is normal, which is at least statistically convenient.

Second, there is the argument from the Central-Limit Theorem  in mathematical statis­
tics, which essentially states that the distribution of a composite variable representing 
the additive effects of a number of independent elements (components, causes, or influ­
ences) rapidly approaches the normal distribution as the number o f elements increases. 
This should be the case for g, to the extent that we can argue on various theoretical and 
empirical grounds that individual differences in g are the result of a great many different 
additive effects: for example, individual differences in the efficiency o f a number of 
different cognitive processes, each of which is somewhat independently conditioned by 
polygenic inheritance interacting with a multitude of different environmental influences 
encountered throughout the course of development since the moment o f conception. The 
population distribution of any variable with such multiple additive determinants, theo­
retically, should approximate the normal curve.

Third, there is the argument by analogy with human characteristics that actually can 
be measured on an absolute scale, such as height, brain weight, neural conduction ve­
locity, sensory acuity, choice reaction time, and digit span memory (i.e., the number of 
digits that can be recalled entirely correctly after one presentation on 50 percent of the 
trials). We may reasonably presume that individual differences in each of these variables 
has multiple determinants, just as in the case of g. Indeed, we find that in very large 
samples of the general population the distribution o f each of these variables (measured 
on an absolute scale) approximates the normal curve. Marked deviations from the normal 
curve usually occur in the regions beyond ± 2 a  from the mean of the distribution. These 
deviations from normality can usually be explained in terms o f certain rare genetic or 
environmental effects that override the multiple normal determinants of variation. This 
line of argument by analogy makes it quite plausible that g (or any other complexly 
determined trait) is normally distributed, but it cannot prove it. Also, the argument by 
analogy is weakened by the fact that not all complexly determined biological variables 
that can be measured on an absolute scale necessarily conform to the normal distribution. 
Age at death (beyond five years), for example, has a very negatively skewed distribution, 
because the mode is close to 75 years and the highest known limit o f human longevity 
is about 113 years. (Below age five, the age of death is distributed as a so-called J curve, 
with the mode immediately after birth.)

Fourth, the assumption o f a normal distribution of g reveals a remarkable consistency 
between various population groups that show a given mean difference (in a  units) on 
highly g-loaded tests, such as IQ tests. By knowing the means and standard deviations 
of two population groups on such a measure, and by assuming that the latent trait, g, 
reflected by the measurements has a normal distribution in each group, one can make 
fairly accurate estimates of the percentages o f each group that fall above or below some
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criterion that is not measured by any psychometric technique but is known to be corre­
lated with g to some extent, such as number o f years of education, occupational level, 
or as being judged by nonpsychometric criteria as mentally retarded or as intellectually 
gifted. Even though these percentages may vary widely from one criterion to another, 
when the percentages are transformed to normal deviates (obtained from tables o f the 
normal curve), the differences between the groups’ normal deviates on various g-related 
criteria show a considerable degree o f constancy. This could not happen if the distribution 
of g were not approximately normal.

Probably the best answer at present concerning the distribution of g is that, although 
we cannot determine it directly by any currently available means, it is a reasonable 
inference that it approximates the normal curve and there is no good reason for assuming 
that the distribution o f g is not approximately normal, at least within the middle range 
o f about four standard deviations. Most psychometricians implicitly work on the statis­
tically advantageous assumption o f normality, and no argument has yet come forth that 
it is theoretically implausible or adversely affects any practical uses of g-loaded tests. 
But the question is mainly o f scientific interest, and a really satisfactory answer to it 
cannot come about through improved measurement techniques per se, but will become 
possible only as part and parcel o f a comprehensive theory of the nature of g. If we have 
some theoretical conception o f what the form of the distribution should be in a population 
with certain specified characteristics, we can use random samples from such a population 
to validate the scale we have devised to measure g. The distribution of obtained meas­
urements should conform to the characteristics of the distribution dictated by theoretical 
considerations.

17. The g factor scores are simply the linear weighted sum of an individual’s stan­
dardized subtest scores, each subtest score weighted by its g loading. The Full Scale IQ 
is based on an unweighted sum of the standardized subtest scores. With as many as 
twelve subtests entering into the composite, the weighted and unweighted sums will be 
highly correlated. A theorem put forth by Wilks (1938) offers a mathematical proof that 
the correlation between two linear composites having different sets of (all positive) 
weights tends toward 1 as the number of positively intercorrelated elements (e.g., sub­
tests) in the composite increases. For this reason, practically nothing is gained by ob­
taining g factor scores (instead o f unweighted composite scores) from a multitest battery 
such as the W echsler scales, the General Aptitude Test Battery (GATB), and the Armed 
Services Vocational Aptitude Battery (ASVAB). When g factor scores were obtained on 
the ASVAB (with ten subtests) for 9,173 recruits, they were correlated +.991 with the 
unweighted composite scores (Ree & Earles, 1991a).

One occasionally encounters an erroneous interpretation of the “ percentage of vari­
ance” (or “ proportion o f  variance” ) attributed to the g factor in a factor analysis o f a 
battery o f subtests, for example, the W echsler battery consisting of twelve subtests. The 
“ proportion of variance”  attributed to a given factor in this case refers only to the 
average of the variances (the squared factor loadings) of each of the separate subtests. 
The square root of the average proportion of variance due to (say) g in the n subtests is 
simply the best representation of the average of the g loadings of the separate subtests. 
The g loading o f the composite score (i.e., the sum of the subtest scores), if it could be 
included in the sam e factor analysis with all the subtests without affecting their g load­
ings, would be much larger than the average of the g loadings of the separate subtests, 
assuming a fair num ber of subtests. Spearman (1927, Appendix, pp. xix-xxi) derived the
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formula for the g loading o f  the total, or composite, score based on a number o f subtests 
for each of which the g loading has been determined by factor analysis:

= (I + {X[/V(‘-'"«*)]>-*) ',/'
where

/■,„ = the correlation between total score (composite of all subtests) and g (i.e., the g loading 
of the total score).

£  = the sum o f . . .
r ,x = each subtest’s squared correlation with g (i.e., each subtest’s squared g loading).

For example, applying this formula to the g loadings of the nine variables (VI . . .  V9) 
in Table 4.2 (p. 81), whose average is only J.2542 = .504, the g loading of a composite 
score based on all nine variables is .883.

18. Jensen, 1980a, pp. 314-315.



Chapter 5 
Challenges to g

Viewpoints and theories antithetical, or in some cases mistakenly 
thought to be antithetical, to the large body of psychometric evi­
dence supporting the presence of a predominant general factor, g , in 
the domain o f mental abilities are reviewed. The proponents of the 
specificity doctrine, which holds that mental tests measure only a 
collection of bits of knowledge and skills that happen to be valued 
by the dominant culture in a society, as well as those who hold that 
individual differences in mental abilities reflect only differences in 
opportunities for learning certain skills, largely of a scholastic na­
ture, or the contextualists who claim that mental ability is not general 
but is entirely specific to particular tasks and circumstances, have 
not produced any empirical evidence that contradicts the existence 
of the ubiquitous g factor found in any large and diverse collection 
of mental tests. There are, however, more rigorous critiques of g.

Guilford’s Structure-of-Intellect (SOI) model, which claims 150 
separate abilities, is supported only by a type of factor analysis that 
mathematically forces a large number of narrow factors to be un­
correlated, even though all the various ability tests that are entered 
into the analysis are correlated with one another. Guilford’s claim 
of zero correlations between ability tests is unsupported by evidence; 
the few zero and negative correlations that are found are attributable 
to sampling error and other statistical limitations.

Cattell’s theory of fluid intelligence (Gf) and crystallized intelli­
gence (Gc) is reflected as second-order factors in tests that are either 
highly culture-reduced (Gf) or highly culture-specific (Gc) and is 
particularly valid in culturally and educationally heterogeneous pop­
ulations. The greater the homogeneity in the population, however, 
the higher is the correlation between Gf and Gc. The correlation
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between these second-order factors is represented in a hierarchical 
factor analysis as a single third-order factor, namely g. Typically 
there is a near-perfect correlation between G f and g, so that when 
the second-order factors are residualized, thereby subsuming their 
common variance into g, the Gf factor vanishes. In other words, 
Cattell’s G f and the third-order factor, g, turn out be one and the 
same.

Guttman’s radex model, a multidimensional scaling method for 
spatially representing the relations between diverse mental tests, per­
fectly parallels the relationships shown in a hierarchical factor anal­
ysis. Tests’ g loadings derived from factor analysis are displayed 
spatially in the radex model by the tests’ proximity to the center of 
the circular array, with the most highly g-loaded tests being closest 
to the center.

Gardner’s theory of seven independent “ intelligences”  is contra­
dicted by the well-established correlations between at least four of 
these “ intelligences”  (verbal, logical-mathematical, spatial, musical, 
all of which are substantially g loaded; the factorial structure of two 
of the “ intelligences”  (interpersonal and intrapersonal) has not been 
determined, so their g loadings remain unknown; and one ability 
(kinesthetic) probably does not fall into the mental abilities domain 
as defined in Chapter 3. There is no incompatibility between g and 
the existence of neural modules that control particular abilities.

Sternberg’s componential and triarchic theories, which are some­
times mistakenly thought to be incompatible with g  theory, are 
shown to be entirely consistent with it. Sternberg’s theory explains 
the existence of g in terms of information-processing components 
and metacomponents rather than in terms of any unitary process or 
property of the brain, a subject to be considered in Chapter 8.

Virtually all present-day researchers in psychometrics now accept 
as a well-established fact that individual differences in all complex 
mental tests are positively correlated and that a hierarchical factor 
model, consisting of a number of group factors dominated by g at 
the apex (or the highest level o f generality), is the best representation 
of the correlational structure of mental abilities.

The previous chapter documented the evidence in support of the concept of 
a general factor as the most important source of individual differences in mental 
ability. The fact that g can be extracted in a hierarchical analysis from any large 
and diverse battery of mental tests itself proves the existence of g , at least at 
the level of factor analysis. Moreover, certain reliable empirical phenomena that 
are intrinsically related to g call for explanation, for example: (1) the existence 
of positive correlations among all mental tests however diverse; (2) tests differ



Challenges to g 107
with some consistency in their average correlation with many other tests, and 
the rank order of various tests’ average correlations with other tests is roughly 
similar to the rank order of the tests’ g loadings. In fact, a test’s g loading is a 
more refined and more accurate measure of the test’s average correlation with 
every other test, stripped of the correlation the test has with other tests that are 
like itself in type of information content and skill required, that is, the features 
from which the first-order group factors arise.

Given these empirical corollaries of g, one might ask why there is any ar­
gument at all over either the existence or the meaning of g. While g theory is 
far and away the prevailing view among the majority of practicing psychome­
tricians and authorities on human intelligence, agreement is not universal.

The arguments against g theory can be grouped , into two broad categories: 
(1) verbal arguments, and (2) mathematical and statistical arguments. The first 
category has produced little if anything in the way of an alternate research 
program or a body of data to be explained. It will, therefore, be given only a 
cursory examination. The second category includes important studies, concepts, 
and analyses. W hile I will show that none of these arguments disconfirms, or 
even weakens, g theory, they have provided important tests and additional data 
and have thereby refined and extended our knowledge of g and its practical 
usefulness.

VERBAL ARGUMENTS

THE SPECIFICITY DOCTRINE
The viewpoint that I have dubbed the specificity doctrine[]] is the belief that 

“ intelligence” consists of nothing other than a learned repertoire of many bits 
of knowledge and skills, and that environments differ in the opportunity they 
afford each individual to acquire these various bits of knowledge and skills. 
Therefore, people’s repertoires of knowledge and skills differ to varying degrees. 
IQ tests are designed to sample some very limited and selected portion of all 
these environmentally acquired bits of knowledge and skill, particularly those 
elements to which the socially dominant group attaches special value as requi­
sites for gaining and maintaining their status. A few actual quotations, each 
from a different source, may reveal the flavor of the specificity doctrine perhaps 
better than this general definition of it.

[M jodern science is looking at intelligence as a set of skills and techniques by 
which a person represents information from the environment and then acts upon 
that information in such a way as to produce more and more abstract id ea s .. . .
IQ tests must be recognized as artificial tools to rank individuals according to 
certain skills.
IQ tests measure the degree to which a particular individual who takes the test 
has experience with a particular piece of information, the particular bits of knowl­
edge, the particular habits and approaches that are tested by these tests.
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Each person functions in a unique way. The fact that she or he comes out with 
[an IQ] score that is above average or below average is an artifact of the technique 
we have used to measure the trait.
Children can be taught to do intelligence tests just as they can be taught to do 
English, arithmetic, chess, and crosswords.
Intelligence testing is a political expression of those groups in society who most 
successfully establish behavior they value as a measure of intelligence.

Note especially that the key words the specificity doctrine uses to describe “ in­
telligence”  and IQ tests are skills, techniques, and bits o f  knowledge. What these 
terms have in common is not just the implication of particularity, but the idea 
that intelligence is a learned, taught, or trained skill (like doing the manual of 
arms). Presumably, anyone can acquire such a specific skill through proper train­
ing and practice (in the military, basic training is built on precisely that as­
sumption). Therefore, a person’s lacking a particular skill or bit of knowledge 
implies only a failure to have acquired it, either by a fluke, or for lack of 
exposure to it in the person’s culture, or lack of proper education, or of interest, 
necessity, motivation, or opportunity. This particularistic interpretation of “ in­
telligence”  is especially alluring to the egalitarian viewpoint. If “ intelligence”  
consists only of learned skills, and if IQ tests are just contrivances for sampling 
those skills and bits of knowledge valued by the dominant segment of society, 
then the implications of observed individual and group differences in “ intelli­
gence”  are at best minimal or at worst a cry for social action.

At first glance, the premise that the “ intelligence”  tested by IQ tests is purely 
learned has obvious commonsense validity. How, one might reasonably ask, can 
a person possibly answer questions if the answers hadn’t been learned, or display 
skills that hadn’t been acquired? A test item and its correct answer are easily 
conceptualized as the stimulus (S) and the response (R) in the behavioristic 
theories of S-R conditioning and learning. Neurologically intact organisms pre­
sented with a particular stimulus can learn to make a particular response to it 
after repeated trials of the S-R sequence in which each trial is followed by 
reward (for the correct response) or punishment (for the incorrect response). The 
view that all complex human abilities are entirely the result of such conditioning 
or learning, and thus reflect nothing but the individual’s environmental experi­
ences, is the legacy of the “ radical behaviorism”  school of psychology founded 
in the 1920s by John B. Watson (1878-1958). One of the historic figures in 
American psychology, W atson’s most famous and often quoted words (from 
Behaviorism, 1924), which will probably outlive anything else he ever wrote, 
best expresses this point of view: “ Give me a dozen healthy infants, well- 
formed, and my own specified world to bring them up in and I’ll guarantee to 
take any one at random and train him to become any type of specialist I might 
select— doctor, lawyer, artist, merchant-chief and, yes, even beggar-man and 
thief, regardless of his talents, penchants, tendencies, abilities, vocations, and 
race of his ancestors.”
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“ In telligen ce”  as L earn ed B ehavior. From the 1930s to the 1970s, Amer­
ican psychology was predominantly behavioristic, though not entirely of the 
“ radical”  variety espoused by Watson. On the whole, behaviorism did much to 
help psychology break away from speculative philosophy and to make it a 
branch o f the natural sciences. For his pioneering role in this effort, Watson 
deserves an honored place in the history of behavioral science. The behaviorist 
approach unquestionably advanced the science of conditioning and learning, a 
field in which some of the great figures in the history of behavioral science—  
Ivan Pavlov, E. L. Thorndike, Clark Hull, and B. F. Skinner— earned their fame. 
Behaviorism has especially dominated that branch of psychology generally 
known as experimental psychology. It also contributed methods and tools that 
are now used in such diverse research areas as pharmacology and neurophy­
siology.

But there were some psychological phenomena that behaviorism proved un­
able either to explain or to understand. Behaviorism’s greatest inadequacy was 
its unwillingness even to consider the field of differential psychology. Largely 
as a result of the behaviorism that so pervaded American psychology for almost 
half a century, and its conspicuous inability to provide a coherent account of 
the main phenomena associated with individual differences, differential psy­
chology was virtually excluded from mainstream psychology for at least three 
decades.

Meanwhile, the main research tools of differential psychology— mental tests—  
developed independently into what became another major branch of psychology 
in its own right, namely, psychometrics. Psychometrics developed as a substan­
tively nontheoretical technology for reliably measuring individual differences 
and validating the practical use of the measurements for making decisions and 
predictions about individuals. The genuine success of psychometric technology 
in achieving its practical aims was amply demonstrated by the utility of psy­
chometric tests in the diagnosis of school learning problems, college admissions, 
personnel selection, and the assignment of recruits to different specialized train­
ing schools in the armed services. No other branch of psychology could claim 
practical applications with such conspicuously consequential and economically 
demonstrable impact.

Psychometric technology, however, was not expressly concerned with the 
nature of just what it is that is measured by mental tests (as, for example, 
Spearman was). It focused on proving the reliability and practical predictive 
validity of the measurements. Traditionally this purely practical orientation has 
emphasized the manifest features of tests and their measurement properties per 
se, rather than the latent traits that contribute to their variance. By latching on 
to the former aspect of mental tests and ignoring the latter, a few latter-day 
Watsonians still try to explain “ intelligence”  or IQ and the psychometric data 
strictly in terms of behavioristic theories of learning.2

The behavioristic approach attempts to understand IQ (or other mental test 
scores) in purely behavioral terms by applying the methods of experimental
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psychology to a “ task analysis”  of the specific behavior called for by single 
test items or a very narrow class of similar items. When subjects are trained on 
one type of task typical of certain mental test items, there is a “ transfer of 
training”  (that is, an increased proficiency in performance on similar tasks that 
have not been specifically trained). This is one of the principles of learning that 
is invoked to account for the correlation between various test items. However, 
it is a further principle that the amount of transfer decreases sharply as the 
similarity between the trained and untrained task requirements decreases. Trans­
fer of training cannot, therefore, explain the substantial correlations repeatedly 
found between highly dissimilar items. To explain the correlations between dif­
ferent kinds of items or tests, behavioristic theorists invoke yet another princi­
ple— the learning of general strategies, or systematic procedures, for solving 
broad classes of problems. The learned strategies that are invoked to explain 
high correlations between very dissimilar tasks must be made so all- 
encompassing as to be predicdvely vacuous. Most often, however, the cause of 
interitem correlations is simply ignored, because it cannot be explained con­
vincingly in strictly behavioristic terms.

If the only source of individual differences is past learning, it is hard to 
explain why individual differences in a variety of tasks that are so novel to all 
of the subjects as to scarcely reflect the transfer of training from prior learned 
skills or problem-solving strategies are still highly correlated. Transfer from 
prior learning is quite task-specific. It is well known, for example, that memory 
span for digits (i.e., repeating a string of n random digits after hearing them 
spoken at a rate of one digit per second) has a moderate correlation with IQ. It 
also has a high correlation with memory span for random consonant letters 
presented in the same way. The average memory span in the adult population 
is about seven digits, or seven consonant letters. (The inclusion of vowels per­
mits the grouping of letters into pronounceable syllables, which lengthens the 
memory span.) Experiments have been performed in which persons are given 
prolonged daily practice in digit span memory over a period of several months. 
Digit span memory increases remarkably with practice; some persons eventually 
become able to repeat even 70 to 100 digits without error after a single pres­
entation.131 But this developed skill shows no transfer effect on IQ, provided the 
IQ test does not include digit span. But what is even more surprising is that 
there is no transfer to letter span memory. Persons who could repeat a string of 
seven letters before engaging in practice that raised their digit span from seven 
to 70 or more digits still have a letter span of about seven letters. Obviously, 
practicing one kind of task does not affect any general memory capacity, much 
less g.

What would happen to the g  loadings o f a battery of cognitive tasks if they 
were factor analyzed both before and after subjects had been given prolonged 
practice that markedly improved their performance on all tasks of the same kind?
I know of only one study like this, involving a battery of cognitive and percep­
tual-motor skill tasks.141 Measures of task performance taken at intervals during
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the course of practice showed that the tasks gradually lost much of their g 
loading as practice continued, and the rank order of the tasks’ pre- and post­
practice g loadings became quite different. Most striking was that each task’s 
specificity markedly increased. Thus it appears that what can be trained up is 
not the g factor common to all tasks, but rather each task’s specificity, which 
reflects individual differences in the specific behavior that is peculiar to each 
task. By definition a given task’s specificity lacks the power to predict perform­
ance significantly on any other tasks except those that are very close to the given 
task on the transfer gradient.

The meager success of skills training designed for persons scoring below 
average on typical g-loaded tests illustrates the limited gain in job competence 
that can be obtained when specific skills are trained up, leaving g unaffected. 
In the early 1980s, for example, the Army Basic Skills Education Program was 
spending some $40 million per year to train up basic skills for the 10 percent 
of enlisted men who scored below the ninth-grade level on tests of reading and 
math, with up to 240 hours of instruction lasting up to three months. The pro­
gram was motivated by the finding that recruits who score well on tests of these 
skills learn and perform better than low scorers in many army jobs of a technical 
nature. An investigation of the program’s outcomes by the U.S. General Ac­
counting Office (G.A.O.), however, discovered very low success rates. Only a 
small percentage of the training program’s enrollees completed the program 
successfully, in terms of achieving the level of competence required for adequate 
performance of many jobs. But to remedy the problem, the G.A.O. suggested 
more highly specific forms of skills training. Il recommended that the Army 
carry out task analyses to determine the specific skills required for each partic­
ular military job and provide training for just those skills.151 The outcome of this 
approach was not reported, but as will be seen in Chapter 9, there is massive 
evidence that g is reflected even in individual differences in the outcome of 
training highly specific skills.

In jobs where assurance of competence is absolutely critical, however, such 
as airline pilots and nuclear reactor operators, government agencies seem to have 
recognized that specific skills, no matter how well trained, though essential for 
job performance, are risky if they are not accompanied by a fairly high level of 
g. For example, the TVA, a leader in the selection and training of reactor op­
erators, concluded that results of tests of mechanical aptitude and specific job 
knowledge were inadequate for predicting an operator’s actual performance on 
the job. A TVA task force on the selection and training of reactor operators 
stated: “ intelligence will be stressed as one of the most important characteristics 
of superior reactor operators.. .  . intelligence distinguishes those who have 
merely memorized a series of discrete manual operations from those who can 
think through a problem and conceptualize solutions based on a fundamental 
understanding of possible contingencies.” 161 This reminds one of Carl Bereiter’s 
clever definition of “ intelligence”  as “ what you use when you don’t know 
what to do.”
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It is also interesting that the conception of “ intelligence” as a mere repertoire 
of learned skills conflicts absolutely with the notion of “ intelligence”  that is 
implicit in common language usage. For example, try substituting the word 
“ intelligence”  in place of the italicized word in each of the following sentences: 
“ He learned math in school.”  His mother taught him m usic."  “ Although she 
was at the top of her class in Latin, she has since forgotten most of it.”  “ She 
picked up her accent from her Scottish grandmother.”  Obviously, the word 
“ intelligence”  has evolved in common language to mean some quality or at­
tribute, however ill-defined, that is essentially different from learning per se or 
from the acquisitions of learning in the form of knowledge and skills.7 However, 
people often infer a person’s “ intelligence”  from their impression of the per­
son’s knowledge and skills. The idea of learning ability (e.g., characterizing 
someone as a “ fast learner” ) is closely associated with “ intelligence”  in com­
mon expression. While the acquisitions o f learning (knowledge and skill) and 
learning ability are commonly perceived as correlated, they also remain con­
ceptually distinct. (The relation of learning ability to g  is discussed in Chap­
ter 9.)

Closely related to the notion of “ intelligence”  as a repertoire of specific skills 
is the idea of competence. Some psychologists disparage or belittle the concept 
of g and the use of highly g-loaded tests, and argue that tests of “ competence” 
should be used instead. No one denies the reality or value of competence, loosely 
defined though it is. But to the extent that actual examples of competence in­
volve something much more general than demonstrated capability in a specific 
situation calling for well-learned skills, its main ingredient is probably g. Com­
petence is not a unitary trait, but a combination of traits: mostly g plus certain 
personality factors plus resourcefulness and perseverance in bringing one’s ac­
quired skills and know-how to bear in certain situations. Aside from prior dem­
onstrated competence in a fairly broad sphere of activity, by far the best 
predictor of competence is a highly g-loaded test battery. (The predictive validity 
of g for a wide variety of competence in “ real life”  situations is the topic of 
Chapter 9.)

The specificity doctrine and theories of individual differences based exclu­
sively on learning principles are contradicted further by several important phe­
nomena in the ability domain.

The most distinctive aspects of mental maturation cannot be explained exclu­
sively in terms of learning. Few children at age five are able to copy a diamond­
shaped figure (♦); most five-year-old children cannot even be taught to do it 
with specific training. Yet by age seven more than 50 percent can do it easily 
without any prior training. A child cannot copy (much less draw from memory) 
a figure that he or she cannot conceptualize. It is the abstract conceptualization 
of the figure that makes it g loaded, and that is why this task is used in Binet’s 
test and other tests of children’s general ability. Certain figures cannot be ade­
quately conceptualized until the child reaches a certain level of mental maturity 
related to brain development.
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T h e  causa] underpinnings o f mental development take place at the neurolog­

ical level even in the absence of any specific environmental inputs such as those 
that could possibly explain mental growth in something like figure copying in 
terms of transfer from prior learning. The well-known “ Case of Isabel”  is a 
classic exam ple.181 From birth to age six, Isabel was totally confined to a dimly 
lighted attic room, where she lived alone with her deaf-mute mother, who was 
her only social contact. Except for food, shelter, and the presence of her mother, 
Isabel was reared in what amounted to a totally deprived environment. There 
were no toys, picture books, or gadgets of any kind for her to play with. When 
found by the authorities, at age six, Isabel was tested and found to have a mental 
age of one year and seven months and an IQ of about 30, which is barely at 
the imbecile level. In many ways she behaved like a very young child; she had 
no speech and made only croaking sounds. When handed toys or other unfa­
miliar objects, she would immediately put them in her mouth, as infants nor­
mally do. Yet as soon as she was exposed to educational experiences she 
acquired speech, vocabulary, and syntax at an astonishing rate and gained six 
years of tested mental age within just two years. By the age of eight, she had 
come up to a mental age of eight, and her level of achievement in school was 
on a par with her age-mates. This means that her rate of mental development— 
gaining six years of mental age in only two years— was three times faster than 
that of the average child. As she approached the age of eight, however, her 
mental development and scholastic performance drastically slowed down and 
proceeded thereafter at the rate of an average child. She graduated from high 
school as an average student.

What all this means to the g controversy is that the neurological basis of 
information processing continued developing autonomously throughout the six 
years of Isabel’s environmental deprivation, so that as soon as she was exposed 
to a normal environment she was able to learn those things for which she was 
developmentally “ ready”  at an extraordinarily fast rate, far beyond the rate for 
typically reared children over the period of six years during which their mental 
age normally increases from two to eight years. But the fast rate of manifest 
mental development slowed down to an average rate at the point where the level 
of mental development caught up with the level of neurological development. 
Clearly, the rate of mental development during childhood is not just the result 
of accumulating various learned skills that transfer to the acquisition of new 
skills, but is largely based on the maturation of neural structures.

Another refutation of the attempt to explain variation in mental ability as 
purely differences in learned skills is the fact that the size of the correlations 
between various abilities that are exclusively due to the abilities’ g loadings 
(that is, correlation excluding group factors) cannot be explained in terms of 
learning and transfer or general problem-solving strategies. These explanations 
may be idly invoked, but they have no predictive power. Is there any principle 
of learning or transfer that would explain or predict the high correlations be­
tween such dissimilar tasks as verbal analogies, number series, and block de-
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signsl Could it explain or predict the correlation between pitch discrimination 
ability and visual perceptual speed, or the fact that they both are correlated with 
each of the three tests mentioned above?

Finally, to the extent that a theory of mental ability tries to explain individual 
differences solely as the result of learning, it is doomed to refutation by the 
evidence of behavioral genetics, which shows that a preponderant proportion of 
the variance of IQ (even more so of g) consists of genetic variance. An indi­
vidual’s genes are certainly not subject to learning or experience. But it is cer­
tainly a naive mistake to suppose that the high heritability of g implies that a 
great variety of learning experience is not a prerequisite for successful perform­
ance on the tests that measure g. What high heritability means is that individual 
differences in test scores are not mainly attributable to individual differences in 
opportunity for the prerequisite learning. (A review of recent developments in 
the genetics of mental ability is presented in Chapter 7.)

C ontextualism . This is a fairly recent idea—-I would call it an ideology— 
that is mistakenly thought to challenge g. It really does nothing of the kind. 
What it essentially boils down to is little more than another argument about 
how “ intelligence”  should be defined. The general answer given by contex- 
tualists is that no one cross-cultural definition of “ intelligence”  is possible in 
behavioral or psychometric terms, because “ intelligence”  is just whatever kinds 
of behavior are typically valued in any particular cultural context. Examples are 
usually drawn from cultures that are most different and remote from modern 
Western civilization.

Contextualism argues, for example, that some cultures might consider Einstein 
“ unintelligent”  if it were found that he could not throw a spear skillfully enough 
to fell a wild boar in the bush. That Einstein spent his time scribbling formulas 
like E  =  me2 would probably be seen as a mental disorder in this culture that 
valued hunting skill above all other abilities. The behavior that one culture 
values as “ intelligent,”  it is argued, may be seen as maladaptive in some other 
culture. Beliefs, motives, skills, and actions are perceived as “ intelligent”  only 
in terms of what certain persons consider effective or rewarding in a particular 
context. Thus criminal and antisocial acts, provided they escape the law while 
seeming to benefit the perpetrator, may be admired as “ intelligence”  in certain 
subcultures. Contextualism is trivial from the standpoint of research on mental 
ability because it provides no answer for the wide range of individual differences 
that exists even when the total context of performance is held constant (as, for 
example, among full siblings reared together). The interpretations of “ intelli­
gence”  offered by cultural relativism and contextualism indeed strengthen my 
contention in Chapter 2 that attempts to define “ the essence”  of “ intelligence” 
are scientifically unproductive.9
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MATHEMATICAL AND STATISTICAL ARGUMENTS
The following challenges to g are considerably more serious and sophisticated 

than those mentioned thus far. They have had a stronger and more enduring 
influence on research and theories of mental ability. Although some are quite 
elaborate theories, only their specific aspects that may seem to pose a challenge 
to the construct o f g are discussed here.

GUILFORD’S “STRUCTURE-OF-INTELLECT” MODEL
While he was director of aviation psychology for the U.S. Air Force during 

World War II, the eminent psychologist Joy Paul Guilford (1897-1987) devel­
oped his widely known Structure-of-Intellect (SOI) model of human abilities.1101 
Guilford’s thinking was more diametrically opposed to Spearman’s than was 
any other theorist’s. Guilford’s theory does not recognize the existence of g and 
formally has no place even for second-order group factors. But it also proved 
to be an unconvincing and short-lived challenge— one might say pseudo­
challenge— to g theory. Carroll’s summary of the SOI model fairly represents 
the viewpoint of most present-day researchers in this field: “ Guilford’s SOI 
model must, therefore, be marked down as a somewhat eccentric aberration in 
the history of intelligence models; that so much attention has been paid to it is 
disturbing, to the extent that textbooks and other treatments of it have given the 
impression that the model is valid and widely accepted, when clearly it is 
not.” 1" 1

The SOI model is termed a facet model. The model presupposes three facets 
of ability, each with several forms: Contents (visual, auditory, symbolic, se­
mantic, behavioral), Products (units, classes, relations, systems, transformations, 
implications), and Operations (cognition, memory, divergent production, con­
vergent production, and evaluation). Each of the three facets can be represented 
as one dimension of a rectangular prism containing 5 X 6 X 5  =  150 cells. 
Each cell is one of the abilities postulated by the SOI. Each of the 150 abilities 
is thus derived by the intersection of one form of each of the three facets, as 
shown in Figure 5.1. Guilford found or devised at least 100 tests that he assigned 
to different cells of the SOI. Some forty or fifty cells remained unfilled by actual 
tests, but suggested the kinds of tests that would need to be developed to fill 
them. In the SOI model, separate or independent abilities are simply postulated 
by the model according to a predetermined scheme. Tests are devised to measure 
each of the postulated abilities. Many existing tests can be classified into one 
of the SOI categories.

Auditory digit span memory, for example, would fall into the cell created by 
the intersection of Contents-m&xiovy X Products-units X Operations-memory. 
Visual digit span memory would fall into a different cell on one facet, namely 
Contents-visua\, with the other facets remaining the same. According to the 
model, the abilities represented in each of the 150 cells are assumed to be
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CONTENTS

Figure 5 .1 . G uilford’s facet model, known as the Structure-of-Intellect (SOI), in which 
each cell, created by the intersection of a particular form o f each of the three facets 
(Contents, Products, Operations), defines a distinct ability. The SOI is really a schema 
for classifying or generating a wide variety o f cognitive tests rather than a theory of 
mental ability. The SOI does not map onto the factors derived from any form of hier­
archical factor analysis. (The Structure-of-Intellect model, J. P. Guilford, in B. B. Wol- 
man, ed., Handbook o f  intelligence: Theories, measurements, and applications, Copyright 
® 1985. Reprinted by permission of John Wiley & Sons, Inc.)

uncorrelated. In fact, however, auditory and visual digit span memory are per­
fectly correlated (after correction for attenuation) in the normal population.1121 
(The correlation is made less than perfect by including persons who have a 
temporal lobe lesion, which results in a form of aphasia that impairs processing 
of auditory but not visual information.) Many other tests that are placed in 
different cells of the SOI are also highly correlated.13

Any form of factor analysis that allows the extraction of a general factor has 
no trouble finding a very robust g in any sizable collection of Guilford’s tests 
despite their assignment to distinct cells of the SOI. Guilford nonetheless argued 
that the 150 cells were orthogonal, or uncorrelated, primary factors. His empir­
ical demonstration of so many orthogonal factors, however, relied on a technique 
known as targeted orthogonal rotation. Aptly named Procrustes, this method 
literally forces tests that were specifically selected or designed to measure the
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SOI abilities to have significant loadings only on particular factors, the number 
and definitions of which are predetermined by the SOI model. This cannot be 
accepted as evidence that the 150 abilities in different cells of the SOI are not 
intercorrelated, since Guilford’s Procrustes method of orthogonal rotation fore­
ordains uncorrelated factors. In brief, Guilford simply assumed a priori that g 
does not exist, and he eschewed any type of factor analysis that would allow g 
to appear.

Zero Correlations between Abilities. Guilford’s contention that g is unten­
able probably originated, at least in part, from his observation that some con­
siderable number o f cognitive tests showed correlations with each other that are 
not significantly different from zero. The finding of nonsignificant correlations 
in Guilford’s data based on U.S. Air Force personnel led to his extensive re­
view1'41 o f the 7,082 correlations among various SOI tests accumulated over 
some fifteen years. He concluded that about 24 percent of the correlations were 
not significantly greater than zero. For a good many years, this claim was in 
fact considered the chief item of evidence against g theory.

Guilford’s analysis and conclusion, however, have since been found falla­
cious. The nonsignificant and near-zero correlations he found in his data were 
the result of several artifacts: sampling error, restriction of the range-of-talent, 
attenuation due to measurement error, and the inclusion of some tests of “ di­
vergent thinking”  that do not qualify as tests of ability as it is defined in Chapter
3. The 7,082 correlations in Guilford’s study show a normal frequency distri­
bution, with the number of zero and negative correlations no greater than would 
be theoretically expected because of chance error. When proper corrections are 
made for restriction of range and attenuation, all of the correlations are above 
zero, with a mean of + .45 .11,1 With the collapse of Guilford’s claim of zero 
correlations between mental abilities, there remains no bona fide evidence in the 
SOI model that contradicts the basic premise of g theory that all mental tests 
are positively correlated.

SAMPLING THEORIES OF THORNDIKE AND THOMSON
The sampling theories of g do not really question the existence of g as a 

factor analytic construct, yet it is often mistakenly believed that they somehow 
challenge or disprove the “ true”  existence of g. While acknowledging g as a 
factor, sampling theory interprets it as representing not a unitary property of the 
mind or brain, such as Spearman’s hypothesis of “ mental energy,”  but as the 
overlap of complex mental tests that draw upon different samples of the myriad 
uncorrelated “ elem ents”  that, in various combinations, constitute the different 
mental abilities measured by tests.

Sampling theory, though not called by that name until later, seems to have 
originated with Edward Lee Thorndike (1874-1949), America’s first major abil­
ities theorist. Thorndike was most famous for his theory of learning, which he 
named connectionism. It held that learning consists of “ selecting and connect-
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Figure 5 .2 . Illustration o f the sampling theory o f ability factors, in which the small circles 
represent neural elements or bonds and the large circles represent tests that sample different 
sets of elements (labeled A, B, and C). Correlation between tests is due to the number of 
elements they sample in common, represented by the areas of overlap. The overlap of A-B- 
C is the general factor, while the overlaps of A-B, A-C, and B-C are group factors. The non­
overlapping areas are the tests’ specificities. Source: Bias in mental testing by Arthur R. 
Jensen, Fig. 6.13, p. 238. Copyright ® 1980 by Arthur R. Jensen. Reprinted with permission 
of the Free Press, a Division of Simon & Schuster, and Routledge Ltd.

ing”  stimuli (S) and responses (R). The S-R connections were called bonds. 
Thorndike thought of these bonds in neural terms, presumably as synaptic con­
nections. He hypothesized that individuals differ in the total number of potential 
bonds they are able to acquire through learning and experience. But as a staunch 
hereditarian, he believed that individual differences in the number of nerve cells 
available for acquiring such bonds are innate. Successful performance on any 
given mental test item would involve the activation of some limited set of the 
S-R bonds, and any test composed of a wide variety of items would therefore 
involve a great many S-R bonds. Different tests composed of a variety of items 
would inevitably tap some of the same bonds, and the fact that various tests 
sample some of the same bonds in common is what causes the tests to be 
correlated. The sampling theory can be depicted in terms of the elements sam­
pled by different tests, as shown in Figure 5.2.

Thorndike came to these conclusions even as early as 1903, a year before 
Spearman’s g entered the picture. Of course, Thorndike immediately saw the 
opposition between his connectionist interpretation and Spearman’s idea that test 
intercorrelations reflect some underlying unitary cause.

In 1923, a young British psychologist, Godfrey Thomson (1881-1955), came 
to spend a year in Thorndike’s department at Columbia University. At that time, 
Thomson was already known as the sharpest critic of Spearman’s theory of 
mental ability as a unitary factor, and it was partly on that basis, along with his 
expertness in mathematics and statistics, that Thorndike sought him for a posi­
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tion on the Columbia faculty.1'61 After a year at Columbia, however, Thomson 
accepted a distinguished professorship at Edinburgh University and became fa­
mous in his own right, being one of the only three British psychologists (along 
with Sir Frederick Bartlett and Sir Cyril Burt) ever knighted. Thomson and 
Thorndike were of like mind regarding the interpretation of Spearman’s g, but 
because of Thom son’s superior understanding of factor analysis, he was able to 
formalize Thorndike’s argument in mathematical terms. It was Thomson’s par­
ticular formulation that became known as the sampling theory of intelligence.

Thomson demonstrated mathematically that various-sized groups of digits 
randomly sampled from a large pool of digits (each equally represented) could 
be correlated with each other in terms of the number of digits any two random 
samples had in com m on.17 He showed that the correlations among a number of 
groups of randomly sampled digits displayed the same kind of hierarchy that 
Spearman had found for mental tests, and that Spearman’s two-factor theory 
(i.e., a general factor + specific factors) could be demonstrated for the groups 
of random digits that he generated by tossing dice. The random (hence uncor­
related) digits theoretically correspond to the multitude of neural elements or 
“ bonds”  originally hypothesized by Thorndike, while the various-sized groups 
into which they were randomly selected correspond to mental tests. Thomson 
correctly argued from this random sampling demonstration that, although Spear­
man’s g can indeed be extracted from the matrix of test intercorrelations by 
means o f factor analysis, Spearman’s hypothesis that g reflects some unitary 
cause, such as the general level of neural or mental “ energy” available to the 
brain’s activity, is not a necessary explanation of g or of the all-positive cor­
relations among mental tests. These correlations could be explained just as well, 
and perhaps more parsimoniously, by the overlap of the multiple uncorrelated 
causal elements that enter into performance on all mental tests. To simulate the 
results of the factor analysis of mental tests, the sampling model only requires, 
in Thom son’s words, “ that it be possible to take our tests with equal ease from 
any part o f the causal background; that there be no linkages among the bonds 
which will disturb the random frequency of the various possible combinations; 
in other words, that there be no ‘faculties’ in the mind. . . . The sampling theory 
assumes that each ability is composed of some but not all of the bonds, and 
that abilities can differ very markedly in their ‘richness,’ some needing very 
many ‘bonds,’ some only a few .” 1'81 Thomson’s formulation appears quite plau­
sible and has attracted many subscribers.19 On these terms, it seems at least as 
plausible as Spearman’s unitary “ mental energy”  theory of g.

A major criticism of Thom son’s version of sampling theory (and the same 
can probably be said of Spearman’s “ energy” ) is that, as originally formulated, 
it is unsusceptible to falsification and is thus empirically vacuous. The psy­
chometrician Jane Loevinger expressed this view as follows:

The sam pling theory hardly qualifies as a true theory, for it does not make any
assertion to which evidence is relevant. Perhaps the large number of adherents to
this view is due to the fact that no one has offered evidence against it. But until
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the view is defined more sharply, one cannot even conceive of the possibility of 
contrary evidence, nor, for that matter, confirmatory evidence. A statement about 
the human mind which can be neither supported nor refuted by any facts, known 
or conceivable, is certainly useless. Bridgman and other philosophers of science 
would probably declare the sampling theory to be meaningless.1201

The plausibility of sampling theory gains its strength from two undeniable ob­
servations that are consistent with it. First, it is a fact that the brain is composed 
of a great many neural elements and some large number of these necessarily 
play a role in any kind of mental activity. The second is that the degree to which 
mental tests are correlated with each other is related to the complexity of the 
mental operations they call for. More complex tests are highly correlated and 
have larger g loadings than less complex tests. This is what one would predict 
from the sampling theory: a complex test involves more neural elements and 
would therefore have a greater probability of involving more elements that are 
common to other tests.

But there are other facts the overlapping elements theory cannot adequately 
explain. One such question is why a small number of certain kinds of nonverbal 
tests with minimal informational content, such as the Raven matrices, tend to 
have the highest g loadings, and why they correlate so highly with content- 
loaded tests such as vocabulary, which surely would seem to tap a largely dif­
ferent pool of neural elements. Another puzzle in terms of sampling theory is 
that tests such as forward and backward digit span memory, which must tap 
many common elements, are not as highly correlated as are, for instance, vo­
cabulary and block designs, which would seem to have few elements in com­
mon. Of course, one could argue trivially in a circular fashion that a higher 
correlation means more elements in common, even though the theory can’t tell 
us why seemingly very different tests have many elements in common and 
seemingly similar tests have relatively few.

Even harder to explain in terms of the sampling theory is the finding that 
individual differences on a visual scan task (i.e., speed of scanning a set of 
digits for the presence or absence of a “ target”  digit), which makes virtually 
no demand on memory, and a memory scan test (i.e., speed of scanning a set 
of digits held in memory for the presence or absence of a “ target”  digit) are 
perfectly correlated, even though they certainly involve different neural proc­
esses.1211 And how would sampling theory explain the finding that choice reac­
tion time is more highly correlated with scores on a nonspeeded vocabulary test 
than with scores on a test of clerical checking speed? Another apparent stum­
bling block for sampling theory is the correlation between neural conduction 
velocity (NCV) in a low-level brain tract (from retina to primary visual cortex) 
and scores on a complex nonverbal reasoning test (Raven), even though the 
higher brain centers that are engaged in the complex reasoning ability demanded 
by the Raven do not involve the visual tract.

Perhaps the most problematic test of overlapping neural elements posited by 
the sampling theory would be to find two (or more) abilities, say, A and B, that
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are highly correlated in the general population, and then find some individuals 
in whom ability A is severely impaired without there being any impairment of 
ability B. For example, looking back at Figure 5.2, which illustrates sampling 
theory, we see a large area of overlap between the elements in Test A and the 
elements in Test B. But if many of the elements in A are eliminated, some of 
its elements that are shared with the correlated Test B will also be eliminated, 
and so performance on Test B (and also on Test C in this diagram) will be 
diminished accordingly. Yet it has been noted that there are cases of extreme 
impairment in a particular ability due to brain damage, or sensory deprivation 
due to blindness or deafness, or a failure in development of a certain ability due 
to certain chromosomal anomalies, without any sign of a corresponding deficit 
in other highly correlated abilities.22 On this point, behavioral geneticists Will- 
erman and Bailey comment: “ Correlations between phenotypically different 
mental tests may arise, not because of any causal connection among the mental 
elements required for correct solutions or because of the physical sharing of 
neural tissue, but because each test in part requires the same ‘qualities’ of brain 
for successful performance. For example, the efficiency of neural conduction or 
the extent of neuronal arborization may be correlated in different parts of the 
brain because of a similar epigenetic matrix, not because of concurrent func­
tional overlap.” 22 A simple analogy to this would be two independent electric 
motors (analogous to specific brain functions) that perform different functions 
both running off the same battery (analogous to g). As the battery runs down, 
both motors slow down at the same rate in performing their functions, which 
are thus perfectly correlated although the motors themselves have no parts in 
common. But a malfunction of one machine would have no effect on the other 
machine, although a sampling theory would have predicted impaired perform­
ance for both machines.

Cognitive Process Theories. Sampling theory need not be limited to positing 
an indefinitely large number of undefined elements or hypothetical neural 
“ bonds”  as the units of sampling. The idea of elementary cognitive processes 
(ECPs, also called information processes) has also been proposed as a basis for 
a sampling theory of g and the group factors. The advantage of ECPs is that 
they are few in number, capable of being operationally defined, and can be 
measured at the behavioral level, though not always directly in an isolated form, 
by the use of elementary cognitive tasks (ECTs). The ECPs are processes such 
as stimulus apprehension, encoding of stimuli, discrimination, choice, retrieval 
of information from short-term or long-term memory, transformation or manip­
ulation of information in working memory, and response inhibition or response 
execution.

The laboratory tasks (ECTs) used to measure these ECPs are so simple that 
virtually all persons can perform them. The only reliable individual differences 
are in response times and the degree of consistency of response times over many 
repeated trials for different individuals. Individual differences in these simple 
measures of the efficiency of information processing are correlated with scores
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on various psychometric tests to the degree that the tests are g loaded. It has 
been hypothesized that various psychometric tests involve different subsets of 
the ECPs to varying degrees and that the most highly g-loaded tests are those 
that call upon a larger number o f the ECPs or upon those ECPs that most 
crucially determine capacity for information processing (analogous to a com­
puter’s central processing unit). This line of theory and research is an important 
recent development in the science of human abilities (see Chapter 8).

B ehavioral R epertoire T heory. One of the leading researchers on human 
abilities, Lloyd G. Humphreys, has long espoused what can be described as a 
pragmatic behavioristic sampling theory of “ intelligence.” 23 It represents the 
purest form of scientific positivism one is likely to find in all of psychology, 
outside the writings of B. F. Skinner and his most literal disciples. Humphreys 
favors Thomson’s sampling theory, but prefers that the units of sampling be 
“ phenotypic,”  that is, a repertoire of observable behavior.

Humphreys is not in the least a critic of g theory, but he has his own rather 
unique definition of it, although he seems to prefer the term “ general intelli­
gence.”  He has consistently defined it within the positivism-behaviorist bound­
aries, as follows:

Intelligence is the acquired repertoire of all intellectual (cognitive) skills and 
knowledge available to the person at a particular point in time. Individual differ­
ences in intelligence are monotonically related to the size of this repertoire. To 
avoid circularity, intellectual is defined by the consensus of experts working in 
the area. The repertoire is acquired during development, but it is acquired, stored, 
and retrieved by a biological organism. Thus there is both a genetic and an en­
vironmental substrate for the tra it . . . .  A test cannot measure the entire repertoire, 
but it can measure a broad representative sample of the elements. (1994, p. 180)

I believe that a scientific construct or theory should not have to depend upon a 
consensus o f experts (or of anyone else) for its validity, although there may 
well be a consensus that certain data or empirically tested predictions are in 
accord with the construct. This is especially so for a theory that strives so hard 
to be positivistic. Also, in the advanced sciences, theoretical constructs, as g is, 
are not defined in terms of a “ repertoire”  of all their multifarious effects, but 
in terms that account for these effects. As Eysenck noted: “ Physicists do not 
define gravitation in terms of its consequences, such as the apple falling on 
Newton’s head, planetary motions, the tides, the shapes of the planets, the move­
ments of the moon, the bulging of the equator, the existence of black holes, the 
earth’s rate of precession, galaxy formation, the movements of comets, or the 
existence of asteroids. They define gravitation as that which is responsible for 
all these events, and clearly no agreement would ever be reached if definitions 
were phrased solely in terms of the consequences of gravitational forces!” 1241

CATTELL’S THEORY OF FLUID AND CRYSTALLIZED ABILITIES
Several years after Raymond B. Cattell (b. 1905) earned his Ph.D. degree 

(1929) under Spearman, developments in mental testing led him to the hypoth­
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esis that Spearman’s g is not a unitary factor but a composite of two quite 
different general factors, either of which may dominate depending on the nature 
of the tests that are factor analyzed. In Cattell’s thinking, these two presumably 
new, semigeneral factors completely replaced Spearman’s single overarching g. 
Cattell termed them flu id  intelligence and crystallized intelligence, now conven­
tionally symbolized as G f  and Gc.25

G f  might be called fluid reasoning, or the capacity to figure out novel prob­
lems. It is indeed the “ eduction of relations and of correlates”  as these are 
demonstrated in mental tests (or life situations) in which specific prior learned 
knowledge, skills, algorithms, or strategies are of relatively little use. In Cattell’s 
words,25 G f  ‘ ‘is an expression of the level of complexity of relationships which 
an individual can perceive and act upon when he does not have recourse to 
answers to such complex issues already stored in memory”  (p. 99). G f  is most 
loaded in tests that have virtually no scholastic or cultural content, such as 
perceptual and figural tests like Raven’s matrices, or in verbal tests that depend 
mainly on figuring out the relationships between certain words when the mean­
ings of all the words themselves are highly familiar.

Gc could be called consolidated knowledge. As described by Cattell25 Gc 
“ arises not only from better educational opportunity but also from a history of 
persistence and good motivation in applying fluid intelligence to approved areas 
of learning’ ’ (p. 96). Gc therefore reflects scholastic and cultural knowledge 
acquisition. Cattell theorizes that a person’s G f is invested in the person’s learn­
ing experiences throughout the life span. As children grow up and their oppor­
tunities and interests differentiate, their G f  is invested in different subjects to 
different degrees. But in large part, individual differences in G f determine in­
dividual differences in Gc among persons with similar educational and cultural 
opportunities. Persons high in G /tend  to acquire more Gc (i.e., they reap greater 
returns on their initial investment) from their opportunities for learning than 
persons o f lower Gf. Persons from very different cultural backgrounds, however, 
may differ markedly in the Gc appropriate to any one culture, even though they 
may be equal in Gf. But each person’s Gc would closely parallel his or her G f 
in the person’s own culture.

Gc is most highly loaded in tests based on scholastic knowledge and cultural 
content where the relation-eduction demands of the items are fairly simple. Here 
are two examples of verbal analogy problems, both of about equal difficulty in 
terms of percentage of correct responses in the English-speaking general pop­
ulation, but the first is more highly loaded on G f and the second is more highly 
loaded on Gc.

1. Temperature is to cold as Height is to
(a) hot (b) inches (c) size (d) tall (e) weight

2. Bizet is to Carmen as Verdi is to
(a) Aida (b) Elektra (c) Lakme (d) Manon (e) Tosca

(Answers: 1, d; 2, a)
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G f  and Gc typically emerge as higher-order (usually second-order) factors in 

any large collection of tests given to a highly heterogeneous subject sample in 
terms of educational or cultural background. In factor analyses based on groups 
that are quite homogeneous in these respects, such as schoolchildren of the same 
age and social-cultural background, G f  and Gc often are not clearly differentiated 
and amalgamate into a single general factor. But in the general population G f 
and Gc are clearly discerned, and the psychological distinctions that Cattell 
makes between them are valid. The major exception is Cattell’s prediction that 
the heritability26 of G f is greater than that of Gc. Although this may be true in 
culturally or linguistically heterogeneous samples for which some of the Gc- 
loaded tests may be inappropriate or culturally biased measures, the usual finding 
is that G f and Gc have about the same heritability. In fact, the heritability of 
scores on scholastic achievement tests is about the same as that on the best tests 
of Gf. In terms of Cattell’s “ investment”  theory, one could say that persons’ 
standing on tests of Gc quite closely reflects the amount of G f they had to invest 
in the kinds of content that typically compose highly Gc-loaded tests.

Since the discovery of G f and Gc, Cattell and his former student John Horn 
have identified a number of other “ general”  factors (better called broad factors) 
that emerge from large and diverse batteries as second-order factors, such as Gs 
(visual inspection speed), Gv (visual-spatial reasoning), Ga (auditory thinking), 
Gq (quantitative reasoning independent of Gc), and G r (fluency in recall of 
learned information, as in speed of naming familiar objects). These broad abil­
ities, though each is labeled G (with a distinguishing subscript), are of course 
not general to the whole matrix of tests. Along with G f  and Gc, they are cor­
related second-order factors from which a higher-order factor, or g, can be ex­
tracted. But Cattell and Horn prefer not to extract the third-order factor, or g, 
contrary to the practice of most factor analysts. The Cattell-Horn model of abil­
ities, therefore, is called a truncated hierarchy. That is, it lacks the apex of the 
hierarchy of factors, which is g. Cattell has stated in italics25 that "there can be 
no such thing as a categorical general factor” (p. 87). (By “ categorical” here 
he presumably means “ uniquely determined”  or “ invariant”  across factor anal­
yses of different groups of tests.) But this objection to extracting g from the set 
of second-order factors, such as Gf, Gc, and all the other second-order factors 
listed above, provided they are all present in the analyzed battery, does not take 
into consideration the degree of invariance of the estimates of g that would 
actually be found across different test batteries in which all of these second- 
order factors could be identified. The departure from perfect invariance would 
most likely be small.

At the time that only two factors, G f  and Gc, stood at the highest level of 
Cattell’s “ truncated”  hierarchy, there was a valid reason not to extract a third- 
order g. The reason is not that g doesn’t exist in the test battery, but that a third- 
order hierarchical g is mathematically indeterminate when there are no more 
than two second-order factors. That is, there is only one correlation (i.e., the 
correlation between the two second-order factors, e.g., G f and Gc) and all that
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can be determined is the geometric mean of the these factors’ g loadings, which 
is equal to the square root of the correlation between the two second-order 
factors. Although we can know the average of the two factors’ g loadings, we 
can’t know the exact g loading of each factor separately, and ipso facto we 
cannot properly calculate the g loadings of each of the tests in the battery or 
calculate the g factor scores of the subjects who took the tests.

What happens when a very large battery of tests yielding G f and Gc, along 
with all the other second-order factors listed above (and a good many other 
second-order factors not listed here), are subjected to a hierarchical factor anal­
ysis in which the analysis is carried all the way, allowing a third-order g to 
emerge? This has been done in five independent studies by the Swedish psy- 
chomctrician Jan-Eric Gustafsson27 and also by others, all with the same result. 
Gustafsson found G f and Gc and most of the other above-mentioned second- 
order factors, and quite a few others. But Gustafsson’s most interesting and 
important finding, which was consistent in all five studies, was that the third- 
order g is perfectly correlated with Gf, so that when all the second-order factors, 
including Gf, were residualized (i.e., the common-factor part of each second- 
order factor that went into the g factor was removed), G f completely disap­
peared. G f  was subsumed into the single, higher-order g. The other second-order 
factors remained, although their substantial common variance was absorbed into 
the g. The residualized Gc remained as an exclusively verbal-numerical- 
educational factor. The residualized second-order factors represented mostly 
types of test content, such as verbal and numerical in Gc and figural content in 
Gv, but some second-order factors (e.g., auditory perception and memory) rep­
resent processes that operate on many types of content. In brief, given a wide 
variety of tests in the factor analysis, G f  and g appear to be one and the same 
factor, or at least to be so highly correlated as to make G f redundant for all 
practical purposes.

Despite Gustafsson’s impressive demonstration, however, some psychologists 
argue that there are too few large-scale studies at present to permit a definitive 
conclusion about the equivalence of G f and g.2* There are probably sufficient 
data in the Cattell-Horn data banks to permit a definitive conclusion if the data 
were analyzed by confirmatory factor analysis expressly to test this hypothesis. 
Such an analysis would be well worth performing for its theoretical significance.

W idth and A ltitude o f  Intellect. E. L. Thorndike1291 hypothesized the exis­
tence of two aspects o f mental ability, termed width and altitude, which are 
somewhat akin to Gc and Gf, respectively. Width is measured by the number of 
different kinds of things a person knows that are fairly easy to know— for ex­
ample, common vocabulary and general information items that some 50 to 60 
percent of the general population can answer correctly. Altitude is measured by 
various kinds of reasoning problems in which information content is much less 
important than relation eduction. The items range in complexity, and hence level 
of difficulty, from problems that can be solved by 95 percent of the general 
population to items that can be solved by fewer than 5 percent. A person’s
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altitude score reflects the level of complexity of the problems that the person 
can solve.

Much to Thorndike’s surprise, his tests of altitude and width were almost 
perfectly correlated. They were not distinct aspects of intellect at all, but re­
flected one and the same general ability, or g. This is very much like the high 
correlation typically found between G f  and Gc and the near equivalence of G f 
and g. It is a safe bet that if tests of a very wide variety of Gc types of items 
(much like Thorndike’s test of “ width of intellect” ) were factor analyzed, they 
would yield a general factor that is correlated probably as much as + .90  with 
the general factor extracted from tests composed entirely of G f  types of items. 
In fact, the items of the Verbal and the Performance scales of the Wechsler 
Intelligence Scale for Children (WISC) correspond rather closely to Gc and G f 
types o f tests, respectively. In the national standardization sample, a general 
factor extracted from just the Verbal scale subtests is correlated .80 with the 
general factor extracted from just the Performance scale subtests. The average 
g loading of the Verbal and Performance scales is therefore (.80 =  .89. This is 
almost as high as the reliability of IQ on the WISC, and correction for attenu­
ation would bring this average g very close to unity.

It appears that the g  extracted from a wide variety of tests with regard to 
information content and task demands is in effect a distillate of some relatively 
small number of basic cognitive processes that enter into performance on this 
wide variety o f test items. The variance associated with the wide variety of 
knowledge content and specific skills tapped by the many diverse tests is 
“ strained out,”  so to speak, by the factor analytic procedure, most of it being 
left in the tests’ specificities, while some of it goes into the first-order factors, 
and less into the second-order factors. Little, if any, gets into the third-order 
factor, or g, which therefore is like a distillate obtained from many diverse 
abilities, qualitatively unlike any of them and reflecting individual differences 
only in the overall efficiency of cognitive processes.

MULTIDIMENSIONAL SCALING AND GUTTMAN’S RADEX 
MODEL

Louis Guttman (1916-1987), the eminent Israeli psychometrician, devised a 
method for representing the relationships between various mental tests, which 
he called a radex model.30 Because Guttman’s radex does not use the terminol­
ogy of factor analysis and appears to have little resemblance to it, especially 
making no mention of g (or of group factors), some psychologists have mistak­
enly believed that it contradicts g theory or does away with g altogether.

The radex is obtained by what Guttman called “ smallest space”  analysis, 
using nonmetric multidimensional scaling. It is a planar spatial representation 
of the degree of similarity between tests based on their correlations (or actually 
the inverse of their correlations). That is, the larger the correlation between any 
two tests, the smaller is the distance separating them. If each o f many tests is
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Figure 5 .3 . A radex representation of various ability tests given to 241 high school 
students. The factor clusters (Gf, Gv, Gc, MS, PS, CS) are superimposed. (From Mar- 
shalek, Lohman, & Snow, 1983. Used with permission of Ablex.)

represented as a dot in a spatial array, the dots are scattered over a roughly 
circular area. In many applications of the radex plot to different batteries of 
diverse mental tests, the cognitively most complex tests are found to congregate 
near the center of the circle (i.e., they are the tests that have the highest average 
correlations with other tests). Radiating out from the center are tests of lesser 
complexity (and lower average correlations). Proximity to the center, therefore, 
indicates greater complexity and greater generality (i.e., higher intercorrelations).

The other notable feature of the radex is that tests that are similar in content 
(such as verbal, numerical, spatial, and memory) fall into different sectors of 
the circle. The circle can be divided up, like cutting a pie, such that each slice 
contains a particular type of tests. In other words, the locations of the tests in 
the circular space (the radex) indicate (a) their degree of complexity and gen­
erality (i.e., average correlation with other tests), and (b) their degree of simi­
larity to other tests in terms of content. A radex representation of a large battery 
of tests is shown in Figure 5.3. Note that Raven’s matrices test, which is usually 
the most highly g loaded in many factor analyses, lies closest to the center of 
the radex

In this analysis, as in others, Richard Snow and his co-workers at Stanford



128 The g  Factor
University have found that a hierarchical factor analysis of the same battery of 
tests almost perfectly maps onto Guttman’s radex.31 That is, every test’s degree 
of proximity to the center of the radex corresponds to the size of the test’s 
(inverse) g loading, and every test’s proximity to the midline of the particular 
sector in which it is located corresponds to the size of the test’s (inverse) loading 
on the group factor. The set of tests that identify a group factor in the hierar­
chical factor analysis falls within the same sector of the radex. In short, Gutt­
man’s radex model amounts to a spatial representation of a hierarchical factor 
analysis. That a method other than factor analysis orders tests spatially in such 
close accord with their g loadings as obtained from factor analysis further sup­
ports g theory.

GARDNER’S SEVEN “FRAMES OF MIND” AND MENTAL 
MODULES

Howard Gardner has been perceived as a critic of g theory and of tests that 
mainly reflect g, such as the IQ. I suspect that this is partly, if not largely, the 
basis of the popularity accorded Gardner’s views, especially in educational cir­
cles, as many teachers feel desperate over the wide range of individual differ­
ences displayed in their classes. If a child has a low IQ and is doing poorly in 
school, there are, according to Gardner’s theory,1321 several other kinds of “ in­
telligence”  in one or more of which the child may excel. Two of the seven 
“ intelligences”  claimed by Gardner— linguistic and logical-mathematical—- 
would considerably overlap the conventional IQ. The remaining five “ intelli­
gences”  are spatial, musical, bodily-kinesthetic, and two kinds of personal “ in­
telligences,”  intrapersonal, or the perception of one’s own feelings, and 
interpersonal, or the perception of others’ feelings, motives, and the like (also 
called “ social intelligence” ). As exemplars of each of these “ intelligences”  
Gardner mentions the following famous persons: T. S. Eliot (linguistic), Einstein 
(logical-mathematical), Picasso (spatial), Stravinsky (musical), Martha Graham 
(bodily-kinesthetic), Sigmund Freud (intrapersonal), and Mahatma Gandhi (in­
terpersonal). In an interesting book1331 Gardner gives biographical analyses of 
each of these famous creative geniuses to illustrate his theory of multiple “ in­
telligences”  and of the psychological and developmental aspects of socially 
recognized creativity. When I personally asked Gardner for his estimate of the 
lowest IQ one could possibly have and be included in a list of names such as 
this, he said, “ About 120.”  This would of course exclude 90 percent of the 
general population, and it testifies to the threshold nature of g. That is, a fairly 
high level of g is a necessary but not sufficient condition for achievement of 
socially significant creativity.

Gardner’s seven “ intelligences”  were not arrived at through the factor anal­
ysis of psychometric tests, but are identified in terms of several kinds of cate­
gorical criteria, such as the extent to which an ability can be impaired or 
preserved in isolation by brain damage, the existence of idiots savants and prod­
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igies in the particular ability, a common set of information-processing opera­
tions, a distinct developmental history, evolutionary plausibility, type of 
encoding in a symbolic system, modular or domain-specific abilities revealed 
by laboratory tasks, and the finding that psychometric tests such as IQ have low 
correlations with at least three of Gardner’s seven “ intelligences.”

The boundaries of these criteria seem vague or elastic and one can easily 
imagine other “ intelligences”  that could be admitted by such criteria. Why is 
there no “ sexual intelligence”  (Casanova) or “ criminal intelligence”  (A1 Ca­
pone)?

Some of Gardner’s seven “ intelligences”  clearly correspond to well-identified 
group factors, such as linguistic (or verbal), logical-mathematical (or quantitative 
reasoning), and spatial. Tests of these abilities are all highly g loaded, and many 
elements of musical aptitude have been found to be moderately g loaded (see 
Chapter 8, p. 223). Other of Gardner’s “ intelligences”  are not yet quantified or 
measurable in a way that makes it possible at present to assess their g loadings 
or their place in the factor analytic hierarchy. Some may not meet the criteria 
of mental abilities as set forth in Chapter 3, but are rather products of psycho- 
metrically identified abilities and certain personality traits (see Chapter 14, pp. 
572-578). The completely nonquantitative nature of Gardner’s theorizing about 
“ intelligences”  makes it impossible to assess their relative importance in terms 
of variance accounted for in the total range of human variation or in terms of 
their predictive validity in real-life situations.

As interesting as his theory of “ multiple intelligences”  may seem from the 
standpoint of literary psychology, in which Gardner has no betters, it is hard to 
see that it contributes anything substantively new to the taxonomy of abilities 
and personality discovered by factor analysis.

In fact, it is hard to justify calling all of the abilities in Gardner’s system by 
the same term— “ intelligences.”  If Gardner claims that the various abilities he 
refers to as “ intelligences”  are unrelated to one another (which has not been 
empirically demonstrated), what does it add to our knowledge to label them all 
“ intelligences” ? All of them, of course, are abilities (as defined in Chapter 3), 
several qualify as group factors, and at least three of the seven are known to be 
substantially g loaded. To assign to the remaining traits the label “ intelligences” 
makes no more sense to me than regarding chess-playing ability an athletic skill. 
(After all, playing chess requires some little physical activity, and chess players 
are jokingly called “ wood pushers” ). Bobby Fisher, then, could be claimed as 
one of the world’s greatest athletes, and many sedentary chess players might be 
made to feel good by being called athletes. But who would believe it? The skill 
involved in chess isn 't the kind of thing that most people think of as athletic 
ability, nor would it have any communality if it were entered into a factor 
analysis of typical athletic skills. Gardner’s analogous extension of the ordinary 
meaning of “ intelligence” probably serves more to make people feel good than 
to advance the science of mental ability.

In summary, I find nothing in Gardner’s writings that could be considered a
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technically meaningful or coherent criticism of g theory. Gardner is at his best 
in writing about persons with some unusual accomplishment to illustrate his 
theory of different kinds of “ intelligences.”  Galton, in his Hereditary Genius 
(1869), recognized that a high level of general ability is a necessary but not 
sufficient condition for outstanding achievement. Besides an above-average level 
of g, an exceptionally synergistic combination of special abilities or talents and 
personality traits is always found in the kinds of outstanding exemplars of Gard­
ner’s several kinds of “ intelligences,” such as the famous persons mentioned 
above. Most psychomtricians would probably agree with the criticism of Gard­
ner’s theory of “ multiple intelligences”  in a recent textbook1341 on “ intelli­
gence” : “ I have argued that a consideration of several sources of evidence used 
by Gardner to establish the existence of independent intelligences may be used 
to support the existence of a superordinate general intelligence factor. Thus I 
find his taxonomy to be arbitrary and without empirical foundation. Neither his 
rejection of a superordinate general factor [g] nor the specific subset of intelli­
gences that he postulates appears to have a firm theoretical or empirical basis’ ’ 
(p. 40).

Modular Abilities. Gardner invokes recent neurological research on brain 
modules in support o f his theory.35 But there is nothing at all in this research 
that conflicts in the least with the findings of factor analysis. It has long been 
certain that the factor structure of abilities is not unitary, because factor analysis 
applied to the correlations among any large and diverse battery of ability tests 
reveals that a number of factors (although fewer than the number of different 
tests) must be extracted to account for most of the variance in all of the tests. 
The g factor, which is needed theoretically to account for the positive correla­
tions between all tests, is necessarily unitary only within the domain of factor 
analysis. But the brain mechanisms or processes responsible for the fact that 
individual differences in a variety of abilities are positively correlated, giving 
rise to g , need not be unitary. Whether the neural basis of g is some unitary 
process or a number of distinct processes is a separate empirical question (see 
Chapter 8).

Some of the highly correlated abilities identified as factors probably represent 
what are referred to as modules. But here is the crux of the main confusion, 
which results when one fails to realize that in discussing the modularity of 
mental abilities we make a transition from talking about individual differences 
and factors to talking about the localized brain processes connected with various 
kinds of abilities. Some modules may be reflected in the primary factors; but 
there are other modules that do not show up as factors, such as the ability to 
acquire language, quick recognition memory for human faces, and three- 
dimensional space perception, because individual differences among normal per­
sons are too slight for these virtually universal abilities to emerge as factors, or 
sources of variance. This makes them no less real or important. Modules are 
distinct, innate brain structures that have developed in the course of human 
evolution. They are especially characterized by the various ways that informa­
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tion or knowledge is represented by the neural activity o f the brain. The main 
modules thus are linguistic (verbal/auditory/lexical/semantic), visuospatial, ob­
jec t recognition, numerical-mathematical, musical, and kinesthetic.

Although modules generally exist in all normal persons, they are most strik­
ingly highlighted in two classes of persons, (a) those with highly localized brain 
lesions or pathology, and (b) idiots savants. Savants evince striking discrepan­
cies between amazing proficiency in a particular narrow ability and nearly all 
other abilities, often showing an overall low level of general ability. Thus we 
see some savants who are even too mentally retarded to take care of themselves, 
yet who can perform feats of mental calculation, or play the piano by ear, or 
memorize pages of a telephone directory, or draw objects from memory with 
photographic accuracy. The modularity of these abilities is evinced by the fact 
that rarely, if ever, is more than one of them seen in a given savant.

In contrast, there are persons whose tested general level of ability is within 
the normal range, yet who, because of a localized brain lesion, show a severe 
deficiency in some particular ability, such as face recognition, receptive or ex­
pressive language dysfunctions (aphasia), or inability to form long-term mem­
ories of events. Again, modularity is evidenced by the fact that these functional 
deficiencies are quite isolated from the person’s total repertoire of abilities. Even 
in persons with a normally intact brain, a module’s efficiency can be narrowly 
enhanced through extensive experience and practice in the particular domain 
served by the module.

Such observations have led some researchers to the mistaken notion that they 
contradict the discovery of factor analysis that, in the general population, indi­
vidual differences in mental abilities are all positively and hierarchically cor­
related, making for a number of distinct factors and a higher-order general factor, 
or g. The presence of a general factor indicates that the workings of the various 
modules, though distinct in their functions, are all affected to some degree by 
some brain characteristic(s), such as chemical neurotransmitters, neural conduc­
tion velocity, amount of dendritic branching, and degree of myelination of ax­
ons, in which there are individual differences. Hence individual differences in 
the specialized mental activities associated with different modules are correlated.

A simple analogy might help to explain the theoretical compatibility between 
the positive correlations among all mental abilities and the existence of modu­
larity in mental abilities. Imagine a dozen factories (“ persons” ), each of which 
manufactures the same five different gadgets (“ modular abilities” ). Each gadget 
is produced by a different machine (“ module” ). The five machines are all con­
nected to each other by a gear chain that is powered by one motor. But each of 
the five factories uses a different motor to drive the gear chain, and each fac­
tory's motor runs at a constant speed different from the speed of the motors in 
any other factory. This will cause the factories to differ in their rates of output 
of the five gadgets (“ scores on five different tests” ). The factories will be said 
to differ in overall efficiency or capacity, because the rates of output of the five
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gadgets are positively correlated. If the correlations between output rates o f the 
gadgets produced by all five factories were factor analyzed, they would yield a 
large general factor. Gadgets’ output rates may not be perfectly correlated, how­
ever, because the sales demand for each gadget differs across factories, and the 
machines that produce the gadgets with the larger sales are better serviced, better 
oiled, and kept in consistently better operating condition than the machines that 
make low-demand gadgets. Therefore, even though the five machines are all 
driven by the same motor, they differ somewhat in their efficiency and consis­
tency of operation, making for less than a perfect correlation between the rates 
of output. Now imagine that in one factory the main drive shaft of one of the 
machines breaks, and it cannot produce its gadget at all (analogous to localized 
brain damage affecting a single module, but not g). In another factory, four of 
the machines break down and fail to produce gadgets, but one machine is very 
well maintained because it continues to run and puts out gadgets at a rate com­
mensurate with the speed of the motor that powers the gear chain that runs the 
machine (analogous to an idiot savant).

STERNBERG'S COMPONENTIAL AND TRIARCHIC THEORIES 
OF “INTELLIGENCE”

Robert J. Sternberg, an eminent psychologist at Yale University, is an 
astoundingly prolific contributor to the literature on mental abilities. Because he 
is also known as a critic of what he has called the g-ocentric theory of “ intel­
ligence,”  he has been categorized by some psychologists (and by many jour­
nalists in the popular press) as being an anti-g theorist. This is wrong, as there 
is nothing in any of Sternberg’s writings that in the least contradicts anything 
that I am saying about g. In the words of Sternberg (and his coauthor M. K. 
Gardner):36 “ We interpret the preponderance of evidence as overwhelmingly 
supporting the existence of some kind of general factor in human intelligence. 
Indeed, we are unable to find any convincing evidence at all that militates against 
this view”  (p. 231).

Sternberg’s theory doesn’t posit anything instead of g, but attempts essentially 
two things: to explain g and to supplement g (and the major group factors found 
in psychometric tests) with other broad classes of individual difference variables 
that contribute to successful coping in “ real life”  situations.

Sternberg’s explanation of g falls within the purview of his componential 
theory of cognition. A component is really a hypothetical construct, defined as 
an elementary information process that operates upon internal representations of 
objects or symbols. Metacomponents are higher-order executive processes that 
govern the deployment and coordination of the more elemental components 
needed for solving a specific problem. The g factor reflects individual differences 
mainly in the metacomponents; the greater the demand made upon them by a 
given task, the greater is its g loading. This is the gist of Sternberg’s theory,



Challenges to g 133
albeit oversimplified, but to say more would go beyond the scope and purpose 
of this chapter.37

Sternberg’s aim to make ability theory more comprehensive is represented in 
his triarchic theory, which embraces the componential theory but also includes 
“ social intelligence”  and “ tacit knowledge”  (i.e., practical knowledge about 
the particular context of one’s coping activity that is not acquired through formal 
instruction). These are really achievement variables that reflect how different 
individuals invest g in activities as affected by their particular opportunities, 
interests, personality traits, and motivation (see Chapter 14, pp. 575-578). Be­
yond this, it would be an injustice to try to describe the triarchic theory in less 
than a full chapter.38 W hat is important to note here is that it is not antithetical 
to g theory.
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particularly as fluid and crystallized abilities are related to the growth and decline of 
mental abilities across the life span.

26. Heritability is the proportion of population variance in a phenotypic trait that is 
attributable to genetic factors. It is a major topic in Chapter 7.

27. Gustafsson (1988). This is one of the important articles of the last decade; it 
summarizes much o f G ustafsson’s important work on the hierarchical factor analysis of 
abilities and cites many related studies by other Scandinavian psychometricians and stat­
isticians. It is highly recommended for those with some technical background.

28. Carroll (1993a) has done a Schmid-Leiman hierarchical factor analysis o f Gus­
tafsson’s data (to which Gustafsson had applied a hierarchical analysis using confirmatory 
factor analysis [LISREL]) and found that a weakly identified second-order G f remained 
after the extraction of the third-order g .  In a footnote (p. 114), Carroll suggests that his 
exploratory analysis of G ustafsson’s data leaves the question of the equivalence of G f 
and g unsettled, but that his analysis of Gustafsson’s data “ should by no means be taken 
as a conclusive negative answer to the question of their equivalence.”  However, the 
third-order g obtained by Carroll is undoubtedly highly congruent with the g obtained 
by Gustafsson.

29. Thorndike, 1927, Chapters XI and XII.
30. Guttman & Levy, 1991. This is Guttm an’s posthumously published summary 

statement of his thinking about the measurement of “ intelligence.”  It contains references 
to virtually all o f G uttm an’s publications on the measurement and analysis o f mental 
abilities. G uttm an’s prescription for mental test construction is a face t approach, which 
is especially useful in composing classes of tests with similar characteristics in terms of 
stimulus and response modalities, contents, and other formal features. The radex dis­
cussed in the present text, for example, is for “ paper-and-pencil”  tests, the radex rep­
resentation of which is one horizontal slice of a vertical cylinder. Other “ slices”  of the 
cylinder are radexes for tests that are given orally, and for tests that involve physical 
manipulation o f objects. In every “ slice,”  a test’s proximity to the center of the cylinder 
corresponds to its g loading.

31. Snow, Kyllonen, & M arshalek, 1984. This is probably the most informative and 
comprehensive discussion of the radex (and related models) I have found in the literature. 
Also see M arshalek, Lohman, & Snow (1983) for an empirical demonstration of the 
similarity between the radex and a hierarchical factor model.

32. Gardner, 1983. This is the main exposition of Gardner’s theory of “ multiple in­
telligences.”

33. Gardner, 1993.
34. Brody, 1992.
35. Fodor, 1983. A book edited by Detterman (1992) contains several interesting pa­

pers on the concept o f modularity.



136 The g  Factor
36. Sternberg & Gardner, 1982. This is probably the most detailed account of Stern­

berg’s explanation o f g in terms of the metacomponents in his componential theory.
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complaint is echoed by Messick (1992), who has written what is probably the most 
comprehensive and penetrating critical essay-review of both Sternberg and Gardner, com ­
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Chapter 6 
Biological Correlates of g

The fact that psychometric g has many physical correlates proves 
that g is not just a methodological artifact of the content and formal 
characteristics of mental tests or of the mathematical properties of 
factor analysis, but is a biological phenomenon. The correlations of 
g with physical variables can be functional (causal), or genetically 
pleiotropic (two or more different phenotypic effects attributable to 
the same gene), or genetically correlated through cross-assortative 
mating on both traits, or the nongenetic result of both being affected 
by some environmental factor (e.g., nutrition). The physical char­
acteristics correlated with g that are empirically best established are 
stature, head size, brain size, frequency of alpha brain waves, latency 
and amplitude of evoked brain potentials, rate of brain glucose meta­
bolism, and general health.

The general factor of learning and problem-solving tasks in infra­
human animals has some properties similar to the g factor in hu­
mans, and experimental brain lesion studies suggest that a task’s 
loading on the general factor is directly related to task complexity 
and to the number of neural processes involved in task performance.

It is clear that g, since it is a product of human evolution, is 
strongly enmeshed with many other organismic variables.

Hierarchical factor analysis has solved the taxonomic problem of dealing with 
the myriad mental abilities that have been observed and measured. The factors 
discussed so far, however, concern variables entirely within the realm of con­
scious, intentional performance on psychometric tests, wherein g appears as a 
predominant and ubiquitous factor.

Is g a phenomenon that is entirely confined to the psychometric and behav­
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ioral realm in which it was discovered, or does it extend beyond psychometric 
tests and factor analysis, even beyond behavior, to the broader biological, phys­
ical realm? The answer to this question has two important and related aspects.

First, psychometric tests were never intended or devised to measure anything 
other than purely behavioral variables. Constructors of IQ tests, in fact, have 
tried to eliminate any source of test item variance that might reflect individual 
differences in physical attributes such as muscular strength and sensory acuity. 
Certainly there has never been the least intent that mental tests should reflect 
any strictly anatomical or physiological variables, which are directly measurable 
by other methods. It would therefore be most surprising and remarkable if IQ 
tests were significantly correlated with physical variables. Yet they are. IQ— 
especially the g factor of IQ tests— is correlated with a variety of physical 
variables. What does this mean? For the time being, about all one can say with 
certainty is that whatever is measured by IQ tests-—mostly g— is somehow en­
meshed in a host of organismic variables and therefore involves something be­
yond the purely psychological or behavioral. It also proves that g is not just an 
artifact of the way psychometric tests are constructed, nor is g a mere figment 
of the arcane mathematical machinations of factor analysis. Obviously, a cor­
relation between psychometric g and a physical variable means that g is some­
how connected with underlying biological systems.

The second, and perhaps more important, question for understanding g is 
much more complicated: How and why is g related to certain physical variables? 
No single answer can suffice for every physical variable that is related to g, 
because not all such variables are related to g for the same reason. In each case, 
the reason may be ontogenetic, that is, occurring within the time span of the 
individual’s own development; or it may be phylogenetic, that is, having come 
about during the biological evolution of the species. And the correlation may 
also be genetic, or environmental, or both. Each of these possibilities invites 
further analysis and explanation. Although certain analytic methodologies nar­
row down the type of possible explanations of why a particular physical variable 
is correlated with g, at this point most explanations are still conjectural.

From a scientific standpoint, it is crucial to distinguish between the two types 
of correlation that can exist between a behavioral variable (e.g., IQ) and a phys­
ical variable (e.g., height). Such a correlation can represent either an intrinsic 
relationship or an extrinsic relationship between the variables. The easiest way 
to show how one “ zeroes in”  on the nature of the observed correlation between 
a behavioral and a physical variable is simply to describe the methodology and 
its rationale.1' 1
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STATISTICAL METHODS IO R  STUDYING BIOLOGICAL 
CORRELATES OF g

INTRINSIC AND EXTRINSIC CORRELATION
Intrinsic C orrelation . A correlation is intrinsic if variables X and Y are 

functionally related. That is, variation in one variable is inexorably related to 
variation in the other. Provided the correlation is statistically significant, its 
absolute size says nothing about whether the correlation is intrinsic or extrinsic. 
(If the correlation is not significant, there is no evidence of any real relationship.) 
Variable Y may be affected by many other variables besides X (and vice versa), 
or both variables may have multiple causes, so in either case the correlation 
between X and Y may be small. The correlation rXY is classed as intrinsic or 
functional, however, only if there is a causal connection between them. Running 
speed (a behavioral variable) and leg length (a physical variable), for example, 
are intrinsically correlated.

An intrinsic relationship cannot be eliminated by selective breeding. If X and
Y are intrinsically correlated, genetic selection exclusively for trait X will also 
affect trait Y as it appears in the offspring. However, some genetic traits are 
intrinsically correlated in this way without there necessarily being any apparent 
functional, or directly causal, connection between their phenotypes. This phe­
nomenon is called pleiotropy, which means that the same gene (or genes) that 
affects X also affects Y. Even though X and Y may not be functionally related, 
they are intrinsically related because of their connection with the same gene(s). 
It is therefore impossible to eliminate the correlation between them by selective 
breeding.

An intrinsic or functional correlation can also be caused by an environmental 
factor that affects both traits, assuming individual differences due to the envi­
ronmental factor. If the correlation between size of biceps and weight-lifting 
ability is .20 in a class of high school boys none of whom has practiced weight 
lifting, and then a random half of the class is given a year of daily practice in 
weight lifting, the correlation between biceps size and weight-lifting perform­
ance in the whole class might increase to .40. At least some part of the increase 
in the correlation from .20 to .40 is environmental. Another hypothetical ex­
ample: Half of the schoolchildren selected at random are given an optimum 
daily supplement of vitamins and minerals, which has the dual effect of increas­
ing growth rate (hence greater height at a given age) and reducing the number 
of days per year that children are absent from school because of illness. In the 
whole population of this school, therefore, one would find a negative correlation 
between pupils’ height and their amount of absenteeism (i.e., greater height goes 
with fewer absences). This is an environmentally caused, functional correlation 
resulting from the fact that some part of the variance in height and in absten- 
teeism is directly attributable to individual differences in nutrition. The negative
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correlation between height and absenteeism will remain as long as there are 
differences in the pupils’ nutrition.

Extrinsic Correlation. Here there is no functional or directly causal rela­
tionship between variables X and Y. Yet they may be phenotypically correlated 
for either genetic or environmental reasons, or both. There are mainly two ways 
that X and Y can be genetically correlated in the population: (1) by pleiotropy, 
that is, one gene affecting two (or more) phenotypically different traits, and (2) 
by simple genetic correlation due to the common assortment of the different 
genes for the different traits.

When there is a spousal correlation between two phenotypically or genotyp­
ically distinct traits, it is termed cross-assortative mating for the two traits. That 
is, persons’ standing on trait X is correlated with their mates’ standing on trait 
Y. Unlike pleiotropy, a simple genetic correlation can be created or eliminated 
by selective breeding, but both traits have to be selected, because there is no 
direct causal connection between them. Different sets of genes influence each 
trait. The genes for the different traits get assorted together in the gametic cre­
ation of individuals because of the parents’ cross-assortative mating for the traits.

An example will show how cross-assortative mating works. Assume there is 
zero correlation between height and eye color (blue or brown) in the population, 
that is, one could not predict people’s eye color from a knowledge of their height 
any better than chance. Then suppose it becomes a general custom for tall people 
to seek out blue-eyed people as mates (and vice versa) and for short people to 
seek out brown-eyed people (and vice versa). (This is an example of cross- 
assortative mating for height and eye color.) After several generations of such 
cross-assortative mating, we would find that the genes for tallness and the genes 
for blue eyes would have become sorted together in the offspring of many 
families, and the same would be true for shortness and brown eyes, so that in 
the population as a whole there would be a correlation between individuals’ 
height and their eye color. Individuals who have inherited genes for tallness 
would be more likely also to have inherited genes for blue eyes. But the high 
association of blue eyes with tallness could just as well have gone in exactly 
the opposite direction if it had been the custom for tall people to seek out brown­
eyed mates and short people to seek out blue-eyed mates. In other words, there 
is no functional or causal connection between height and eye color. The con­
nection between them could perhaps be called a “ cultural”  correlation, because 
a cultural custom in this population influenced mating preferences and so 
brought about this adventitious or extrinsic correlation of height and eye color. 
Although variation in each trait is highly genetic, the covariation (or correlation) 
between them is nonfunctional (i.e., neither affects the other) and extrinsic (i.e., 
they are not caused by the same genes).

The distinction between intrinsic and extrinsic correlation is very important 
for interpreting the correlation between a physical and a psychological variable, 
described in the second part of this chapter. If the correlation is not intrinsic, it 
provides no clues to the biological underpinning of the psychological variable.
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Method of Distinguishing between Intrinsic and Extrinsic Correlation.
This distinction between intrinsic and extrinsic correlation cannot be made if all 
we know is the correlation between X and Y in a group of individuals. To 
determine that, we also need to know the correlation between X and Y in a 
large group composed of pairs of fu ll siblings who were reared together. (Sib­
lings are individuals who have the same two biological parents and thus have, 
on average, approximately 50 percent of their segregating genes in common. 
Segregating genes are genes that have two or more alleles and contribute to the 
genetic variance in the trait; there are about 100,000 such functional gene loci 
in the human genome. Dizygotic twins will serve as well, as they are like or­
dinary siblings except that twins are gestated at the same time.) Every pair of 
siblings must come from a different set of biological parents and must have 
grown up together in the same family environment.

There is no statistical reason to expect the correlation between traits X and
Y in this group of siblings (taken as individuals) to be significantly different 
from the correlation between X and Y obtained in a comparable group composed 
entirely of unrelated persons randomly sampled from the same population. The 
great advantage of obtaining rXY in a group made up of sibling pairs is that the 
obtained rXY is a composite of two distinct correlations, each of which can be 
determined: the between-families correlation (BF/-) and the within-families cor­
relation (WFr).

The between-families correlation of X and Y (BFrXsYs) is the correlation be­
tween Xs (the sums of the siblings’ scores in each pair on variable X) and Ys 
(the sums of the siblings’ scores in each pair on variable Y).

The within-families correlation of X and Y (W FrXdYll) is the correlation be­
tween X(l (the signed difference between the siblings’ scores in each pair on 
variable X) and Ytl (the signed difference between the siblings’ scores in each 
pair on variable Y).

Assuming there is a true (population) correlation between X and Y based on 
individuals (IrXY), it is possible for the true values of BFrXY and W FrXY both 
to be some absolute2 value greater than zero, or for either correlation to be zero 
while the other correlation is greater than zero.3

What can the BF and WF correlations tell us? The answer is rather hard to 
explain but important to understand.

A BFrXY =  0 means that if IrXY >  0 it cannot be attributed to any systematic 
influence(s) on both X and Y in which families (here defined as the average of 
the siblings in each family) differ from one another. Though BFrxy =  0 and Irxy
>  0 is theoretically possible, it would seem highly improbable, and in fact, an 
instance has not yet been found. Empirically, when the IrXY is greater than zero, 
the BFrXY is always greater than zero.

A W FrXY =  0 means that there is no relation between X and Y within fam­
ilies; that is, there is no systematic tendency for the sibling who is more extreme 
in X also to be more extreme in Y. If the hypothesis that W FrXY =  0 cannot 
be statistically rejected in a large sample or in a meta-analysis4 of many inde­
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pendent samples, it completely rules out any intrinsic (functional or pleiotropic) 
correlation between X and Y. The correlation must therefore be attributable to 
influences on X and Y that exist only between families, that is, influences that 
differ from one family to another. The usual cause of this situation where BFrXY
>  0 and W FrXY =  0 is population heterogeneity, whereby two (or more) var­
iables are associated in different subpopulations but the variables are not func­
tionally or pleiotropically related. (Like the hypothetical example given above 
of a correlation between height and eye color.) The correlation may be due to 
any genetic or environmental or cultural factors that are related (but not causally 
related) to both X and Y. A clear-cut example: In a heterogeneous population 
composed of two subpopulations, Anglo-Americans and Chinese-Americans, we 
would find a correlation between hair color (black vs. not black) and bilingual­
ism (English only vs. English +  Cantonese). This correlation would not exist 
within families (assuming most Chinese-American siblings speak both English 
and Cantonese and most Anglo-Americans speak only English). The correlation 
would exist only between families. Of course, there is no intrinsic (functional 
or pleiotropic) connection between people’s hair color and their tendency to 
bilingualism. If there were an intrinsic relationship, it would show up as a WF 
correlation, assuming everyone had equal opportunity to acquire a second lan­
guage.

Why is a simple genetic correlation between X and Y in the population found 
only between families but not within families? The answer is known as M endel’s 
law of segregation and independent (i.e., random) assortment of genes: Each 
sibling receives a random one-half of each parent’s genes, and because the 
complement received by each sibling is a random assortment of the parental 
genes, the single genes affecting any two (or more) genotypically distinct traits 
are not correlated in the individual’s genotype any more than would be expected 
by chance, which by definition is a population correlation of zero. (Just as the 
heads/tails outcome of tossing one coin is uncorrelated with the outcome of 
tossing another coin.)

A W FrXY >  0 is also an important finding. It implies there is something that 
affects two distinct traits in one (or some) sibling(s) but not in the other(s). This 
something can be either genetic (i.e., pleiotropic) or environmental (e.g., an 
illness in one sibling, but not in any others, that adversely affects both physical 
and mental growth and would therefore result in a W F correlation between 
height and IQ). The W F correlation therefore is intrinsic, that is, it represents a 
functional or a pleiotropic relation.

Most studies of the correlation between IQ and physical variables are based 
on individuals and do not permit determination of BF and W F correlation. But 
both BF and W F correlations have also been obtained in some studies. The 
theoretically more important relationships between psychometric and physical 
variables are those that are intrinsic, as indicated by a significant WF as well 
as a BF correlation. In the review that follows, it will be noted whether each 
correlation is extrinsic, intrinsic, or of unknown status.
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But before reviewing the empirical evidence, one other methodological issue 
must be considered, namely, whether the correlation between a physical variable 
and a factorially complex psychometric test, such as IQ, is a correlation between 
the physical variable and the g factor or is a correlation between the physical 
variable and some psychometric factor other than g.

THE METHOD OF CORRELATED VECTORS
Because most of the variance in IQ is g, it is quite improbable that the cor­

relation between IQ and some physical variable (say X) does not involve g. We 
can generally assume that if X is correlated with IQ, it is also correlated with 
g. Belter evidence would come from a correlation between measurements of X 
and g factor scores, but even that would not be absolutely definitive, because 
factor scores are only estimates of the true factor scores and the method of 
calculating factor scores may leave the scores slightly “ contaminated”  with bits 
of non-g variance from lower-order factors and specificity. I have proposed a 
method, called the method o f  correlated vectors, that can determine whether 
there is a correlation between g and X (or any other factor and X). However, it 
does not tell us the numerical value of the correlation between g and X (which 
can only be estimated by the correlation between g factor scores and X). But it 
can prove that there is a correlation between g and X and it can show whether 
any other factors (independent of g) are or are not correlated with X.

Explaining how the method of correlated vectors works may possibly seem 
dauntingly complicated to all but the statistical-minded. (It is explained in detail 
with a real worked example in Appendix B.) Readers who do not feel compelled 
to understand the technical details should skip to the next section, in which 
examples of results obtained by this method are shown graphically for certain 
biological correlates of g (e.g., evoked brain potentials).

In the present context, a vector (V) is defined simply as a column consisting 
of a number (n) of quantitative elements (hence it is also called a column vector). 
A vector may be a column composed of each of the n tests’ factor loadings on 
a particular factor; or it may be a column composed of each of the n tests’ 
correlations with some single variable, X, that is experimentally independent of 
the set of tests from which the factor loadings are derived. (For example, X 
could be measures of subjects’ height, visual acuity, reaction time, socioeco­
nomic status, or whatever, so long as variable X has not entered into the cal­
culation of any elements in the vector of factor loadings.) If the factor is g, for 
example, the vector of g can be symbolized Vg, and the correlation (r) between 
Vg and the vector of X would be symbolized rVgVx . (The value rVgVx is, of 
course, not the correlation between g and X per se, but the correlation between 
the parallel column vectors of g and X.)

If rVgVx is significantly greater than zero, it is proof that g and X are cor­
related, but only after a possible artifact has been ruled out. This artifact arises 
if the column vector composed of the tests’ reliability coefficients is correlated
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with either Vg or Vx or both. Each of the elements in both V and Vx, of course, 
is affected by measurement error in the test scores from which each element is 
derived. The various tests’ reliability coefficients may differ considerably, with 
the consequence that the relative sizes of the elements in the two vectors, and 
therefore also their rank order, will be partly determined by the differences in 
their reliability.

Because each test’s reliability affects its corresponding elements in both Vg 
and Vx, there is the possibility that the correlation between Vg and Vx (whether 
it is significant or not) is an artifactual result of the fact that both vectors are 
correlated with the vector of the test’s reliability coefficients, Vlv This possibility 
can be ruled out by the statistical device known as partial correlation. (If A and 
B are correlated with each other, and A or B [or both] are correlated with C, 
one can statistically remove the effect of C from the correlation between A and 
B, yielding the partial correlation between A and B, written rABC. Variable C 
is said to be “ partialed out”  of the correlation between A and B.)

If the correlation between Vg and Vx with Vn partialed out remains significant, 
it means that their correlation is not an artifact of the tests’ variable reliability 
coefficients. If, however, the partial correlation between Vs and Vx with V,, 
partialed out is not significant, a further analysis is needed. Each of the elements 
in V and Vx must be corrected for attenuation, which removes the measurement 
error from each element, provided there are highly reliable estimates of each 
tests’ reliability coefficient. (A test’s g loading is corrected by dividing it by the 
square root of the test’s reliability coefficient. A test’s correlation with X is 
corrected in the same way. If the reliability coefficient of X is available, the 
test’s correlation with X can be corrected by dividing it by the square root of 
the product of the tests’ reliability coefficient and the reliability coefficient 
of X.)

The Pearson correlation (r) between the vectors should be calculated, but it 
needs to be supplemented by Spearman’s rank-order correlation. Because the 
Pearson r is a parametric statistic based on the assumption that each of the 
correlated variables is normally distributed in the population, and because this 
assumption may not be tenable for the correlated vectors, the statistical signif­
icance of r cannot be tested rigorously. Therefore, a nonparametric measure of 
correlation, such as Spearman’s rank-order correlation (rs), must also be calcu­
lated between the vectors. Its significance can be determined, as it does not 
depend upon any assumptions about the population distributions of the corre­
lated variates. The significance of rs is based simply on what is known as a 
permutation test. Given that each of the correlated column vectors has n ele­
ments, the significance level of an obtained rs is simply the probability (p) that 
a value of r s as large as or larger than the obtained value would occur among 
all possible permutations of the rank order of the n elements in the correlated 
vectors. If the obtained value of rs between the vectors of g and X is significant 
at some specified p  value (e.g., p  <  .01), we may conclude that a true correlation
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exists between g and X, with the probability p  that our conclusion is wrong and 
the probability 1 -  p  that our conclusion is correct.

Researchers should be aware of two conditions that can militate against dem­
onstrating a statistically significant rs even when there is a true correlation be­
tween the vectors. The most obvious pitfall is having too few elements in the 
vectors, because the significance of rs depends on the number («) of ranked 
elements in one vector.5 (For example, with n = 10, the rs must be at least .648 
to be significant at the 5 percent level, or p <  .05.) Therefore, when n is small, 
the method of correlated vectors lacks statistical power and incurs considerable 
risk of wrongly accepting the null hypothesis that the true correlation between 
the vectors is zero when in fact it is greater than zero. (In statistics this is known 
as a Type II error.*) The other danger lies in not having a subject sample large 
enough to ensure highly reliable elements in each vector. The less variation 
there is among the elements, the more accurate each of them must be to show 
up in their true rank order. Each of the elements in the vectors, of course, has 
some sampling error (which is inversely related to the square root of the subject 
sample size), and the smaller the sampling error, the more accurate will be the 
obtained correlation between the vectors. (Note: The effect of sampling error is 
entirely distinct from the effect of measurement error, which involves the com­
plement of the measurement’s reliability coefficient, i.e., 1 — rxx.) When the 
true correlation between two vectors is greater than zero, sampling error in the 
vectors’ elements reduces the size of the obtained correlation between the vec­
tors as compared to the size of their true correlation.

What all of this essentially means for using the method of correlated vectors 
is that when a statistically significant correlation between vectors emerges it has 
done so against severe odds and is therefore a quite secure phenomenon. But 
the steep odds against finding a significant correlation between vectors also 
means that a correlation that falls just short of significance at the .05 level (say, 
p <  .10 or p  <  .15) must be interpreted cautiously, mindful of the risk of a 
Type II error.

RESEARCH FINDINGS ON THE BIOLOGICAL 
CORRELATES OF g

SPECIFIC BIOLOGICAL CORRELATES OF IQ AND g
Because a very comprehensive and detailed review of this subject has been 

presented elsewhere,7 it will suffice here to give only a synopsis of the main 
empirical findings. See the more detailed review for references to the specific 
studies that support each finding.

In most of the studies described, the physical variable is correlated with scores 
on an IQ test or other highly g-loaded test. In a few studies in which a number 
of different tests are correlated with the same physical variable, it is possible to
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apply the method of correlated vectors to determine if the physical variable is 
correlated specifically with the g factor. The word in parentheses after each 
heading tells whether the biological correlate of mental ability is extrinsic, in­
trinsic, or undetermined. (See discussion earlier in this chapter [and in Appendix 
B] for definitions of extrinsic and intrinsic.)

Body Size (Extrinsic). It is now well established that both height and weight 
are correlated with IQ. When age is controlled, the correlations in different 
studies range mostly between + .10 and +.30, and average about +.20. Studies 
based on siblings find no significant within-family correlation, and gifted chil­
dren (who are taller than their age mates in the general population) are not taller 
than their nongifted siblings.

Because both height and IQ are highly heritable, the between-families cor­
relation of stature and IQ probably represents a simple genetic correlation re­
sulting from cross-assortative mating for the two traits. Both height and 
“ intelligence”  are highly valued in Western culture and it is known that there 
is substantial assortative mating for each trait.

There is also evidence of cross-assortative mating for height and IQ; there is 
some trade-off between them in mate selection. When short and tall women are 
matched on IQ, educational level, and social class of origin, for example, it is 
found that the taller women tend to marry men of higher intelligence (reasonably 
inferred from their higher educational and occupational status) than do shorter 
women. Leg length relative to overall height is regarded an important factor in 
judging feminine beauty in Western culture, and it is interesting that the height 
X  IQ correlation is largely attributable to the leg-length component of height. 
Sitting height is much less correlated with IQ. If there is any intrinsic component 
of the height X  IQ correlation, it is too small to be detected at a significant 
level even in quite large samples. The two largest studies181 totaling some 16,000 
sibling pairs, did not find significant within-family correlations of IQ with either 
height or weight (controlling for age) in males or females or in blacks or whites.

Head Size and Brain Size (Intrinsic). There is a great deal of evidence that 
external measurements of head size are significantly correlated with IQ and other 
highly g-loaded tests, although the correlation is quite small, in most studies 
ranging between + .10  and +.25, with a mean r «  +.15. The only study using 
g factor scores showed a correlation of + .30 with a composite measure of head 
size based on head length, width, and circumference, in a sample of 286 ado­
lescents.191 Therefore, it appears that head size is mainly correlated with the g 
component of psychometric scores. The method of correlated vectors applied to 
the same sample of 286 adolescents showed a highly significant rs =  +.64 
between the g vector of seventeen diverse tests and the vector of the tests’ 
correlations with head size. The head-size vector had nonsignificant correlations 
with the vectors of the spatial, verbal, and memory factors of + .27, .00, and 
+ .05, respectively.

In these studies, of course, head size is used as merely a crude proxy for
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brain size. The external measurement of head size is in fact a considerably 
attenuated proxy for brain size.

The correlation between the best measures of external head size and actual 
brain size as directly measured in autopsy is far from perfect, being around 
+ .50 to + .60  in adults and slightly higher in children. There are specially de­
vised formulas by which one can estimate internal cranial capacity (in cubic 
centimeters) from external head measurements with a fair degree of accuracy. 
These formulas have been used along with various statistical corrections for age, 
body size (height, weight, total surface area), and sex to estimate the correlation 
between IQ and brain size from data on external head size. The typical result 
is a correlation of about .30.

These indirect methods, however, are no longer necessary, since the technol­
ogy of magnetic resonance imaging (MRI) now makes it possible to obtain a 
three-dimensional picture of the brain of a living person. A highly accurate 
measure of total brain volume (or the volume of any particular structure in the 
brain) can be obtained from the MRI pictures. Such quantitative data are now 
usually extracted from the MRI pictures by computer.

To date there are eight MRI studies1'01 of the correlation between total brain 
volume and IQ in healthy children and young adults. In every study the corre­
lations are significant and close to + .40  after removing variance due to differ­
ences in body size. (The correlation between body size and brain size in adult 
humans is between + .20  and + .25.) Large parts of the brain do not subserve 
cognitive processes, but govern sensory and motor functions, emotions, and 
autonomic regulation of physiological activity. Controlling body size removes 
to some extent the sensorimotor aspects of brain size from the correlation of 
overall brain size with IQ. But controlling body size in the brain X  IQ corre­
lation is somewhat problematic, because there may be some truly functional 
relationship between brain size and body size that includes the brain’s cognitive 
functions. Therefore, controlling body size in the IQ X  brain size correlation 
may be too conservative; it could result in overcorrecting the correlation. M ore­
over, the height and weight of the head constitute an appreciable proportion of 
the total body height and weight, so that controlling total body size could also 
contribute to overcorrection by removing some part of the variance in head and 
brain size along with variance in general body size. Two of the MRI studies 
used a battery of diverse cognitive tests, which permitted the use of correlated 
vectors to determine the relationship between the column vector of the various 
tests’ g factor loadings and the column vector of the tests’ correlations with 
total brain volume. In one study,"01'1 based on twenty cognitive tests given to 
forty adult males sibling pairs, these vectors were correlated +.65. In the other 
study,110el based on eleven diverse cognitive tests, the vector of the tests’ g 
loadings were correlated +.51 with the vector of the tests’ correlations with 
total brain volume and + .66 with the vector of the tests’ correlations with the 
volume of the brain’s cortical gray matter. In these studies, all of the variables 
entering into the analyses were the averages of sibling pairs, which has the effect
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of increasing the reliability of the measurements. Therefore, these analyses are 
between-families. A problematic aspect of both studies is that there were no 
significant within-family correlations between test scores and brain volumes, 
which implies that there is no intrinsic relationship between brain size and g. 
To conclude that the within-family correlation in the population is zero, how­
ever, has a high risk of being a Type II error, given the unreliability of sibling 
difference scores (on which within-family correlations are based) and the small 
number of subjects used in these studies. Much larger studies based merely on 
external head size show significant within-family correlations with IQ. Clearly, 
further MRI studies are needed for a definitive answer on this critical issue.

Metabolically, the human brain is by far the most “ expensive”  organ in the 
whole body, and the body may have evolved to serve in part like a “ power 
pack”  for the brain, with a genetically larger brain being accommodated by a 
larger body. It has been determined experimentally, for example, that strains of 
rats that were selectively bred from a common stock exclusively to be either 
good or poor at maze learning were found to differ not only in brain size but 
also in body size.1' 11 Body size increased only about one-third as much as brain 
size as a result of the rats being selectively bred exclusively for good or poor 
maze-learning ability. There was, of course, no explicit selection for either brain 
size or body size, but only for maze-learning ability. Obviously, there is some 
intrinsic functional and genetic relationship between learning ability, brain size, 
and body size, at least in laboratory rats. Although it would be unwarranted to 
generalize this finding to humans, it does suggest the hypothesis that a similar 
relationship may exist in humans. It is known that body size has increased along 
with brain size in the course of human evolution. The observed correlations 
between brain size, body size, and mental ability in humans are consistent with 
these facts, but the nature and direction of the causal connections between these 
variables cannot be inferred without other kinds of evidence that is not yet 
available.

The IQ X head-size correlation is clearly intrinsic, as shown by significant 
correlations both between-families (r =  +.20, p <  .001) and within-families (r 
=  + .11, p <  .05) in a large sample of seven-year-old children, with head size 
measured only by circumference and IQ measured by the Wechsler Intelligence 
Scale for Children.1121 (Age, height, and weight were statistically controlled.) 
The same children at four years of age showed no significant correlation of head 
size with Stanford-Binet IQ, and in fact the WF correlation was even negative 
( - .0 4 ) . This suggests that the correlation of IQ with head size (and, by infer­
ence, brain size) is a developmental phenomenon, increasing with age during 
childhood.

One of the unsolved mysteries regarding the relation of brain size to IQ is 
the seeming paradox that there is a considerable sex difference in brain size (the 
adult female brain being about 100 cm3 smaller than the male) without there 
being a corresponding sex difference in IQ.1'31 It has been argued that some IQ 
tests have purposely eliminated items that discriminate between the sexes or
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have balanced-out sex differences in items or subtests. This is not true, however, 
for many tests such as Raven’s matrices, which is almost a pure measure of g, 
yet shows no consistent or significant sex difference. Also, the differing g load­
ings of the subscales of the W echsler Intelligence Test are not correlated with 
the size of the sex difference on the various subtests.'141 The correlation between 
brain size and IQ is virtually the same for both sexes.

The explanation for the well-established mean sex difference in brain size is 
still somewhat uncertain, although one hypothesis has been empirically tested, 
with positive results. Properly controlling (by regression) the sex difference in 
body size diminishes, but by no means eliminates, the sex difference in brain 
size. Three plausible hypotheses have been proposed to explain the sex differ­
ence (of about 8 percent) in average brain size between the sexes despite there 
being no sex difference in g:

1. Possible sexual dimorphism in neural circuitry or in overall neural con­
duction velocity could cause the female brai to process information more effi­
ciently.

2. The brain size difference could be due to the one ability factor, independ­
ent of g, that unequivocally shows a large sex difference, namely, spatial vi­
sualization ability, in which only 25 percent of females exceed the male median. 
Spatial ability could well depend upon a large number of neurons, and males 
may have more of these “ spatial ability”  neurons than females, thereby increas­
ing the volume of the male brain.

3. Females have the same amount of functional neural tissue as males but 
there is a greater “ packing density”  of the neurons in the female brain. While 
the two previous hypotheses remain purely speculative at present, there is recent 
direct evidence for a sex difference in the “ packing density”  of neurons.1'51 In 
the cortical regions most directly related to cognitive ability, the autopsied brains 
of adult women possessed, on average, about 11 percent more neurons per unit 
volume than were found in the brains of adult men. The males and females 
were virtually equated on Wechsler Full Scale IQ (112.3 and 110.6, respec­
tively). The male brains were about 12.5 percent heavier than the female brains. 
Hence the greater neuronal packing density in the female brain nearly balances 
the larger size of the male brain. Of course, further studies based on histological, 
MRI, and PET techniques will be needed to establish the packing density hy­
pothesis as the definitive explanation for the seeming paradox of the two sexes 
differing in brain size but not differing in IQ despite a correlation of about +  .40 
between these variables within each sex group.

M yopia and IQ  (In trinsic). It has long been known that myopia, or near­
sightedness, is related to high IQ. The evidence, reviewed elsewhere,1161 is based 
on many studies and huge samples. In terms of correlation the r is about + .20 
to +.25. M yopia is highly heritable and a single gene that controls the shape 
of the eyeball has been identified as mainly responsible. Myopia in adolescents 
and adults can be predicted by ocular examination in infants as young as one 
year of age.
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The “ near-work”  hypothesis that myopia is solely caused by excessive use 
of the eyes for “ near-work”  such as reading, sewing, and the like has been 
largely discredited by modern researchers. Major chromosomal anomalies, such 
as trisomy 21 (Down’s syndrome), which override the effects of the normal 
polygenic causes of individual differences in mental ability and result in severe 
mental retardation, militate against reading and most other forms o f “ near­
work.”  Yet the incidence of myopia among persons with these conditions is the 
same as in the general population. Also, myopia has high heritability. As myopia 
is a continuous trait, it appears that an interaction between a genetic predispo­
sition and at least some slight degree of engagement in “ near-work,”  such as 
most schoolwork, during childhood are necessary to produce a degree of myopia 
in adolescence or adulthood that calls for corrective eyeglasses.

Individual differences in degree of myopia and in IQ are positively correlated 
in the general population. Children in classes for the intellectually gifted (IQ >  
130), for example, show an incidence of myopia three to five times greater than 
the incidence among pupils in regular classes.

The question arises of whether the relation of myopia to IQ is an intrinsic or 
extrinsic correlation (as defined on pages 139^10). The correlation could well 
be extrinsic due to population heterogeneity in both myopia and IQ, because 
various racial groups differ in the incidence of myopia and also differ, on av­
erage, in IQ. To find the answer to this question, the degree of myopia was 
measured as a continuous variable (refraction error) by means of optical tech­
niques in a group of sixty adolescents selected only for high IQs (Raven ma­
trices) and their less gifted full siblings, who averaged fourteen IQ points lower, 
a difference equivalent to 0.92o. The high-IQ subjects differed significantly from 
their lower-IQ siblings in myopia by an average of 0 .39a on the measure of 
refraction error.1161 In other words, since there is a wj'r/zm-families correlation 
between myopia and IQ, the relationship is intrinsic. However, it is hard to think 
of any directly functional relationship between myopia and IQ. The data are 
most consistent with there being a pleiotropic relationship. The causal pathway 
through which the genetic factor that causes myopia also to some extent elevates 
g (or vice versa) is unknown. Because the within-family relationship of myopia 
and IQ was found with Raven’s matrices, which in factor analyses is found to 
have nearly all of its common factor variance on g ,n  it leaves virtually no doubt 
that the IQ score in this case represents g almost exclusively.

Electrochemical Activity in the Brain.1'81 Neurons are cells that act much 
like an electrical storage battery with a capacitor that cumulates electrical po­
tential by the unequal concentration of positive and negative ions (Na+ and C l”) 
on either side of the cell membrane. Nerve impulses are propagated through an 
electrochemical process that occurs at the cell membrane, whereby the positively 
and negatively charged ions of common salt, or sodium chloride (sodium N a+ 
and chlorine Cl"), neutralize each other, creating an action potential that rapidly 
progresses down the length of the neuron’s tube-like axon at speeds up to about 
100 meters per second. This wave of depolarization of ions down the axon is
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of course extremely slow compared to the flow of electricity in a wire, because 
the action potential moving through the axon is due to the depolarization of ions 
(electrically charged atoms), whereas in a wire it is only the atoms’ free electrons 
that flow, and with much less resistance than is met by the ions.

The speed of nerve conduction is a positive function of the diameter of the 
axon and its degree of myelination. The myelin sheath, composed of fat, sur­
rounds the axon and acts like the insulation on an electric wire. When the neuron 
is stimulated by a sense organ or at its synaptic connection with an adjacent 
neuron, it sets off a change in the permeability of the axonal membrane that 
rapidly moves through the length of the neuron, allowing the positive and neg­
ative ions to come together, thereby creating the action potential. The nerve 
impulse is propagated down the length of the axon. Neurotransmitters at the 
synaptic connections with other neurons then repeat the process. Neural exci­
tation is thereby transmitted from some part of the body, through the spinal 
cord, to some region of the brain, and from one region of the brain to another. 
When this happens simultaneously in millions of neurons, as is always the case 
in the intact brain, the fluctuating potentials in specific regions of the brain can 
be detected by electrodes attached to the scalp. These fluctuating potentials are 
often called brain waves. They can be amplified and recorded on a moving paper 
tape or photographed on an oscilloscope.

The technical process of recording brain waves is called electroencephalog­
raphy (EEG). The waves (i.e., electrical potentials) fluctuate above zero ampli­
tude (negative waves, labeled N) and below zero amplitude (positive waves, 
labeled P). The waves can be described in terms of their frequency  (measured 
in Hz, or number of cycles per second) and amplitude (measured in microvolts, 
(jV). The number of times the wave crosses the zero point in a specified period 
of time is a measure of “ zero-crossings.”

EEG waves differ in frequency and amplitude when obtained from different 
parts of the brain (according to electrode placement) and in different states of 
the subject, such as deep sleep, dreaming sleep, relaxed wakefulness with eyes 
closed, wide-awake attentiveness to stimuli, and ongoing purposive thinking or 
problem solving. Within the differing general characteristics of the brain waves 
typically obtained under these various conditions there are reliable individual 
differences in frequency and amplitude. The correlation between these individual 
measurements of EEG waves and IQ has been the subject of hundreds of studies. 
It is possible here to give only a brief summary of the typical findings. Excellent 
detailed review s"91 of this research are available for anyone who wishes to delve 
further into the more specialized details of this very complex field.

Two main classes of EEG data have been studied in relation to IQ: (1) natural 
(termed spontaneous) EEG rhythms occurring in various states of sleep and 
wakefulness, and (2) the average evoked potential (AEP) to a specific stimulus. 
EEG waves contain a great deal of background “ noise”  due to random neural 
activity, and the signal-to-noise ratio is so low that it is hard to obtain very 
reliable measures of individual differences in normal EEG records for any of
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the characteristic EEG waves. This drawback is virtually eliminated, however, 
for the average evoked potential (AEP), which consists of the average of usually 
hundreds of wave samples obtained from one person in response to a specific 
stimulus. Whatever is consistent (i.e., signal) is enhanced; whatever is random 
(i.e., “ noise” ) is averaged out. (Similar techniques of signal extraction are used 
in radar and sonar systems.) Individual differences in the AEP waves are 
therefore clearly discernible. Various individual difference measurements are 
obtainable from these AEP records and can be correlated with scores on psy­
chometric tests.

SPONTANEOUS EEG CORRELATES OF g
Among the simple, nonaveraged EEG waves, the frequency of the alpha wave 

has most often shown correlations with IQ. These range between zero and about 
+ .60. The alpha rhythm consists of relatively intermediate brain waves, in the 
range of 7.5 to 12.5 Hz, that occur when the subject is in a state of relaxed 
wakefulness, with eyes closed. The alpha frequency in Hz is usually averaged 
over a number of one-second intervals selected at random from an EEG record­
ing that can last several minutes. The studies of the correlation between the 
alpha frequency and IQ are consistent only in showing a positive relationship, 
that is, higher IQ is directly related to a higher alpha frequency. This suggests 
a relationship between alpha frequency and IQ. The cause of the relationship is 
unknown, but hypotheses, such as more sustained attention in high-IQ subjects, 
have been suggested. Beyond that fact, however, the literature seems too chaotic 
to warrant averaging the results of many studies. Their methodologies are far 
from standardized and the various methodologies are seldom replicated. The 
results of all these studies probably reflect “ method variance”  as much as any­
thing else. The unsystematic nature of this particular body of EEG research on 
alpha waves (and other nonaveraged brain waves) increases the risk of a statis­
tical Type I error in drawing conclusions from a meta-analysis of all the avail­
able evidence.

The problem of the excessive “ noise”  level in nonaveraged EEG records is 
now being overcome by the application of newly developed nonlinear, mathe­
matical analyses based on deterministic chaos theory, and recent research on the 
relation of EEG to IQ has become methodologically more sophisticated. This 
research suggests that it is the complexity of EEG waves, more than their fre­
quency, that is positively related to IQ.1201 Complexity here refers to the number 
of different dimensions needed to describe the waves, which suggests that the 
more complex waves are determined by the influence of more differentiated 
processes.

AVERAGE EVOKED POTENTIAL CORRELATES OF g
The AEP has shown more consistent and substantial correlations with IQ than 

have spontaneous EEG waves. In the typical AEP experiment, the subject sits
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relaxed in a reclining chair. A recording electrode is attached to the scalp at the 
vertex of the head and reference electrodes are clipped to the earlobes. At ran­
dom intervals, averaging a few seconds apart, a brief stimulus, such as a sharp 
“ click,”  occurs and is repeated over a period of several minutes. Each occur­
rence of the stimulus evokes a momentary change in the electrical potential of 
millions o f neurons in the cortex of the brain. For a given subject, this evoked 
potential is recorded during a “ time-locked”  segment of the brain waves that 
immediately follow the onset of the evoking stimulus. All of the time-locked 
segments of evoked potentials obtained in this manner during the testing session 
are averaged by computer over a great many trials. Since each characteristic 
brain wave in response to the stimulus can be “ lined up”  precisely with the 
onset of the stimulus, they can all be neatly averaged by computer, giving a 
segment of brain waves (the AEP) from which the random neural background 
“ noise”  has been virtually eliminated.

Figure 6.1 shows a typical AEP record. The occurrence of the auditory stim­
ulus is indicated by the letter A, which is the zero point on the time line (in 
milliseconds). The averaged fluctuations in voltage have characteristic peaks (N, 
for negative deviation from the average baseline [zero] voltage) and troughs (P, 
for positive deviation). The several distinct waves are thought to reflect the 
successive stages of the cognitive processing of the stimulus event by the cer­
ebral cortex.

In studying individual differences in the AEP, four of its features are meas­
ured: (1) the number of zero-crossings in a specified epoch (time interval from 
zero), (2) the latency, or the time elapsed between the stimulus and one of the 
peaks or troughs or the average time of two or three such points; (3) the am­
plitude (in (0.V) of a peak or trough, or their average; and (4) the complexity of 
the wave in a specified epoch, that is, the length of the total waveform. This 
last measure was originally obtained by laying a piece of string over the set of 
waves and then measuring the length of the straightened string, or by tracing 
the waves with a map wheel. (This measurement is now performed by a com­
puter.) When a specific person’s AEP is obtained several times, it is also possible 
to compute the intraindividual variability of the AEP latency (or any of the 
other indices), which is considered a measure of neural transmission errors.

All of these AEP measures have shown significant correlations with IQ. Some 
critics have claimed that the AEP discriminates only between mentally retarded 
persons and those in the average and above-average range of IQ. But this claim 
is disproved by the many studies that show significant correlations within groups 
whose IQs are in the retarded, average, and gifted ranges of IQ. Higher IQ 
subjects show shorter latencies (faster neural reaction), more peaks and troughs 
(more zero-crossings within a specified epoch), smaller amplitude in response 
to expected stimuli (more efficient expenditure of neural energy, as shown by 
the positron emission tomography scan studies discussed in the next section), 
greater complexity (longer “ string”  measure) of the AEP waves, and lesser 
intraindividual variability (greater consistency) in each of these indices. Cor-
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Figure 6.1. The average evoked potential (AEP), showing the waveform of a person 
with above-average IQ. N and P are negative and positive potentials, respectively, num­
bered in temporal order. The arrow at A indicates the occurrence of the evoking stimulus, 
which begins (at time 0) the time-locked epoch (of 500 msec), measured in milliseconds 
(msec). Following point A there are twelve zero-crossings (i.e., the wave crossing the 
baseline) in the 500-msec epoch. The latency of a given wave (say, N 3) is the time 
interval (measured in msec) between the onset of the evoking stimulus (at time 0) and 
the peak o f the N , wave. The amplitude of a wave, measured in microvolts (nv), is the 
distance of the peak (or trough) of the wave above (or below) the 0 baseline. The com ­
plexity of the waveform is the length of the waveline (called the “ string”  measure) 
throughout the epoch (in this case 0 to 500 msec).

relations of these AEP variables with IQ typically range between about .30 and 
.60, with the highest correlations found in the interval between PI and P2 (see 
Figure 6.1).

The latency of the P3 (also called P300, because it occurs on average about 
300 msec after the evoking stimulus) shows significant correlations with IQ in 
some studies. The one study based on g factor scores (derived from the Multi­
dimensional Aptitude Battery, which has ten subtests) found a correlation of 
— .36 (p  <  .05) between the P300 latency and the g factor scores.21 The later 
components of the AEP beyond P300 have not been found to correlate with IQ.

Even higher correlations between the AEP and IQ can be obtained by com­
bining some of the AEP indices, such as latency and intraindividual variability, 
or from the difference between AEP indices obtained under different experi­
mental conditions that tap the influence of cognition on the AEP. An example
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of the latter is the index of “ neural adaptability” (NA) invented by pioneer 
AEP researcher Edward W. P. Schafer.1221 Essentially, the auditory AEP is ob­
tained under two conditions: (1) self-stimulation (SS) in which the subject self- 
administers the auditory “ clicks”  by pressing a hand-held microswitch button 
fifty times at random intervals averaging about two or three seconds; and (2) 
random automatic stimulation (AS), in which the series of fifty “ clicks” that 
were self-administered by the subject in the previous condition are played back, 
while the subject remains inactive. The neural adaptability (NA) score is the 
ratio of the average amplitude of the evoked potential under automatic stimu­
lation (AS) to the amplitude under self-stimulation (SS), that is, NA = AS/SS.

Persons with high IQs show a larger NA score than those with lower IQs. 
The expectancy of a self-administered “ click”  results in lower amplitude, the 
more so the higher the IQ. It appears that stimulus expectancy permits higher- 
IQ subjects to conserve more brain energy than lower-IQ subjects. In this sense, 
higher IQ reflects a more efficient use of neural resources. Neural adaptability 
in humans could have evolved through natural selection for greater efficiency 
in the brain’s utilization of energy as well as selection for the greater cognitive 
and behavioral capacities associated with increased brain size.

In several studies, the NA index has shown correlations with IQ in the + .50 
to +  .70 range. In one study,1221 for example, seventy-four normal adults ranging 
in W echsler IQ from 98 to 135, with mean IQ of 118, showed a correlation 
between NA and IQ of +.66. As this subject sample had a restricted range of 
IQ (the group’s standard deviation was only 9.2/15 =  .61 as large as the SD in 
the general population), one can correct the obtained correlation for range re­
striction to estimate the population correlation, which turns out to be + .82. This 
is close to the population correlation between two highly g-loaded IQ tests (e.g., 
the W echsler and the Stanford-Binet).

Another measure derived by Schafer from the average amplitude of the 
evoked potential (EP) is the habituation of the EP. The amplitude of the EP is 
recorded for each of 50 auditory “ clicks”  administered at a stimulus interval 
of 2 seconds, while the subject relaxes in a reclining chair. It is found that the 
amplitude of the EP gradually decreases over the 50 “ clicks,”  indicating that 
“ practice”  (or expectancy) causes habituation, or a diminishing magnitude of 
the cortical response to the repeated auditory stimulus. A simple measure of the 
degree of habituation is the difference in average amplitude between the first 25 
EPs and the last 25 EPs. This difference score is called the habituation index 
(HI). Higher IQ subjects show a greater degree of habituation, hence a higher 
HI.

Schafer used this index to test the hypothesis that a mental test’s g loading 
would predict its correlation with the EP habituation index, or HI, a nonbehav- 
ioral, physiological measure.1231 In a group of fifty-two normal adults, ranging 
in IQ from 98 to 142, the correlation of the HI with the Full Scale Wechsler 
IQ was + .59; corrected for restriction of IQ range in this group, the correlation 
rose to .73. Using the method of correlated vectors, the vector of each of the



156 The g  Factor

X 0 .6 0  o>XI cI— I

I  0 .5 0  
o

r  0.40jd0 
X

01 0 .3 0  
UJ 

_C
J 0.20

c o
O 0-10 
<D
q  0.00

0 .0 0  0.10 0 .2 0  0 .3 0  0 .4 0  0 .5 0  0 .6 0  0 .7 0  0 .8 0  
g F a c t o r  Loading

Figure 6.2. A scatter diagram of the correlation of the habituation index of the evoked 
potential (EP) with the W echsler Adult Intelligence Scale (WAIS) subtests plotted as a 
function of the subtests’ g loadings. WAIS subtests are Vocabulary (V), Information (I), 
Similarities (S), Picture Arrangement (PA), Arithmetic (A), Comprehension (C), Block 
Design (BD), Object Assembly (OA), Picture Completion (PC), Coding (Cod), and Digit 
Span (DS).

eleven W echsler subtests’ correlations with the HI was correlated with the vector 
of the subtests’ g loadings. (See Appendix B for a detailed explanation of this 
analysis.) The Pearson correlation (r) between the two vectors is +.80; the 
Spearman rank-order correlation (rs) is + .77 (p <  .01). The scatter plot of the 
correlated vectors is shown in Figure 6.2.24 The analogous plots for the vectors 
of the three group factors independent of g (Verbal, Spatial, and Memory) that 
were extracted from the Wechsler battery all showed near-zero correlations with 
the EP habituation index.

A similar analysis, with the eleven W echsler subtests and the AEP on 219 
normal adolescents, was performed by Eysenck and Barrett.|2,J Instead of using 
Schafer’s habituation index, they used a composite measure that reflected both 
the complexity of the AEP (i.e., the “ string”  measure described on p. 153) and 
the intraindividual variance of the AEP waveform. This composite AEP index 
correlated .83 with the Full Scale IQ. The method of correlated vectors showed 
a rank-order correlation o f .95 between the vector of the eleven subtests’ cor­
relations with the AEP composite score and the vector of the subtests’ g load­
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ings. (This correlation falls from .95 to .93 when the vector of the subtests’ 
reliability coefficients is partialed out.)

These studies argue strongly that psychometric g is closely related to the 
electrophysiological information-processing activity of the brain and that g is 
the main, or even the only, cognitive factor represented in the correlation be­
tween IQ and the AEP.

Cerebral Glucose Metabolism. The brain’s main source of energy is glucose, 
a simple sugar. Its rate of uptake and subsequent metabolism by different regions 
of the brain can serve as an indicator of the degree of neural energy expended 
in various locations of the brain during various kinds of mental activity. This 
technique consists of injecting a radioactive isotope of glucose (F-18 deoxyglu­
cose) into a person’s bloodstream, then having the person engage in some mental 
activity (such as taking an IQ test) for about half an hour, during which the 
radioactive glucose is metabolized by the brain. The isotope acts as a radioactive 
tracer of the brain’s neural activity.

Immediately following the uptake period in which the person was engaged in 
some standardized cognitive task, the gamma rays emitted by the isotope from 
the nerve cells in the cerebral cortex can be detected and recorded by means of 
a brain-scanning technique called positron emission tomography (or PET scan). 
The PET scan provides a picture, or map, of the specific cortical location and 
the amount of neural metabolism (of radioactive glucose) that occurred during 
an immediately preceding period of mental activity.

Richard J. Haier, a leading researcher in this field, has written a comprehen­
sive review1263' of the use of the PET scan for studying the physiological basis 
of individual differences in mental ability. The main findings can be summarized 
briefly. Normal adults have taken the Raven Advanced Progressive Matrices 
(RAPM) shortly after they were injected with radioactive glucose. The RAPM, 
a nonverbal test of reasoning ability, is highly g loaded and contains little, if 
any, other common factor variance. The amount of glucose metabolized during 
the thirty-five-minute testing period is significantly and inversely related to 
scores on the RAPM, with negative correlations between — .7 and - .8 .  In solv­
ing RAPM problems of a given level of difficulty, the higher-scoring subjects 
use less brain energy than the lower-scoring subjects, as indicated by the amount 
of glucose uptake. Therefore, it appears that g is related to the efficiency of the 
neural activity involved in information processing and problem solving. Nega­
tive correlations between RAPM scores and glucose utilization are found in 
every region of the cerebral cortex, but are highest in the temporal regions, both 
left and right.

The method of correlated vectors shows that g is specifically related to the 
total brain’s glucose metabolic rate (GMR) while engaged in a mental activity 
over a period of time. In one of Haier’s studies,|26bl the total brain’s GMR was 
measured immediately after subjects had taken each of the eleven subtests of 
the W echsler Adult Intelligence Scale-Revised (WAIS-R), and the GMR was 
correlated with scores on each of the subtests. The vector of these correlations
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was correlated r — — .79 (rs =  —.66, p <  .05) with the corresponding vector 
of the subtests’ g loadings (based on the national standardization sample).

A phenomenon that might be called “ the conservation of g ” and has been 
only casually observed in earlier research, but has not yet been rigorously es­
tablished by experimental studies, is at least consistent with the findings of a 
clever PET-scan study by Haier and co-workers. The “ conservation of g ” refers 
to the phenomenon that as people become more proficient in performing certain 
complex mental tasks through repeated practice on tasks of the same type, the 
tasks become automatized, less g demanding, and consequently less g loaded. 
Although there remain individual differences in proficiency on the tasks after 
extensive practice, individual differences in performance may reilect less g and 
more task-specific factors. Something like this was observed in a study26b in 
which subjects’ PET scans were obtained after their first experience with a video 
game (Tetris) that calls for rapid and complex information processing, visual 
spatial ability, strategy learning, and motor coordination. Initially, playing the 
Tetris game used a relatively large amount of glucose. Daily practice on the 
video game for 30 to 45 minutes over the course of 30 to 60 days, however, 
showed greatly increasing proficiency in playing the game, accompanied by a 
decreasing uptake of glucose and a marked decrease in the correlation of the 
total brain glucose metabolic rate with g. In other words, the specialized brain 
activity involved in more proficient Tetris performance consumed less energy. 
Significantly, the rate of change in glucose uptake over the course of practice 
is positively correlated with RAPM scores. The performance of high-g subjects 
improved more from practice and they also gained greater neural metabolic 
efficiency during Tetris performance than subjects who were lower in g, as 
indexed by both the RAPM test and the Wechsler Adult Intelligence Scale.

Developmental PET scan studies in individuals from early childhood to ma­
turity show decreasing utilization of glucose in all areas of the brain as individ­
uals mature. In other words, the brain’s glucose uptake curve is inversely related 
to the negatively accelerated curve of mental age, from early childhood to ma­
turity. The increase in the brain’s metabolic efficiency seems to be related to 
the “ neural pruning,”  or normal spontaneous decrease in synaptic density. The 
spontaneous decrease is greatest during the first several years of life. “ Neural 
pruning”  apparently results in greater efficiency of the brain’s capacity for in­
formation processing. Paradoxical as it may seem, an insufficient loss of neurons 
during early maturation is associated with some types of mental retardation.

Another study1271 investigated glucose metabolic rate (GMR) as a function of 
the “ mental effort”  expended on a task. The investigators did not correlate 
GMR with the same test for each individual, but compared groups of average- 
and high-IQ subjects (mean IQ of 104 vs. 123) on easy tasks and on difficult 
tasks that were equated for the same degree of either “ easiness”  or “ difficulty”  
within each group. Regardless of the task’s objective demands, tasks for which 
90% of the responses were correct (within the average group, or within the high- 
IQ group) were defined as “ easy”  for each group, and tasks for which only
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75% of the responses were correct (within each group) were defined as “ diffi­
cult.”  In other words, the level of a task’s subjective difficulty was calibrated 
relative to each group’s ability. For example, the average-IQ group could recall
6 digits backwards on 75% of the trials, whereas the high-IQ group could recall
7 digits on 75% of the trials. The measurements of GMR during these tasks 
revealed a significant interaction between IQ level and “ mental effort”  (i.e., 
level of difficulty relative to the individual’s general ability level). Average- and 
high-IQ subjects hardly differed in GMR on the “ easy”  items but differed 
markedly on the “ difficult”  items. The high-IQ subjects brought more “ fuel” 
to bear on the more difficult task. This increase in GMR by the high-IQ subjects 
suggests that more neural units are involved in their level of performance on a 
difficult task that is beyond the ability of the average-IQ subjects.

Peripheral Nerve Conduction Velocity. Several studies1281 done in the 1920s 
claimed rather surprisingly high correlations between nerve conduction velocity 
(NCV) and IQ, but their methods were primitive by modern standards of elec- 
trophysiological research, and their results could not be replicated in later studies 
in the 1930s. Interest in the subject became almost nonexistent. Then, in 1984, 
a geneticist, T. Edward Reed, hypothesized individual differences in NCV as 
the mechanism for the heritability of IQ.1291 The well-established heritability of 
IQ, of course, implies some physiological basis of IQ differences. Reed sug­
gested that inherited properties of the neuron that govern its conduction velocity 
are causally related to IQ. There are now five modern studies that have tested 
Reed’s hypothesis. Four of the studies are based on the measurement of NCV 
in peripheral nerves and one study is based on NCV in a brain tract.

Why should the hypothesis be tested on a peripheral nerve? Located outside 
the central nervous system, peripheral nerves are not at all involved in the higher 
thought processes or the kinds of problem solving called for by IQ tests. How­
ever, it is possible that the properties of neural tissue that are associated with 
individual differences in NCV may be more or less similar in all nerve cells 
throughout both the peripheral and the central nervous systems. If this were true, 
and if individual differences in NCV were related to the cognitive processes 
reflected in g, then individual differences in NCV in peripheral nerves should 
also be related to g.

Working from this supposition, Canadian psychologists Vernon and Mori 
(1989, 1992) found a significant correlation of +.41 between NCV in the median 
nerve of the arm (finger to wrist and wrist to elbow) and IQ (Multidimensional 
Aptitude Battery, or MAB) in a sample of eighty-five male and female college 
students. A replication of this study, based on eighty-eight students, found a 
correlation of + .46. Using the method of correlated vectors, the vector of the 
ten MAB subtests’ correlations with NCV was correlated +.44 with the vector 
of the MAB subtests’ g loadings.1300' It was all a very nice picture and bore out 
Reed’s hypothesis to a tee. Unfortunately, it was at odds with two other studies 
that were both performed at about the same time, in London and in Berkeley.

British psychologists Barrett, Daum, and Eysenck (1990), using advanced
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techniques, measured NCV in the ulnar nerve (finger to wrist) of both the right 
and left hands of forty-four young adults and found near-zero correlations with 
IQ (Raven Advanced Progressive Matrices, or RAPM). However, they did find 
a significant and substantial negative correlation (—.44) between IQ and the 
variability of NCV from trial to trial.130"1 (Each trial consists o f a brief electrical 
stimulation of the nerve while recording the speed of its action potential between 
two points.)

At the same time, Reed and Jensen (1991), at Berkeley, measured IQ (also 
with the RAPM) and NCV in the median nerve of the arm (from wrist to elbow) 
in 200 white male college students. The correlation between IQ and NCV was 
virtually zero, even though the reliability of the IQ and NCV measurements was 
very high.|30c|

So here was an anomaly. Two apparently solid studies showed a significant 
IQ X  NCV correlation and two equally solid studies did not show any corre­
lation. The studies all had certain minor methodological differences which might 
account for the contradictory results. But the mystery deepened when the exact 
same procedures that were used in the two Canadian studies were repeated again, 
this time with thirty-eight young adult females.1311 The IQ X  NCV correlation 
was virtually zero. This result prompted a reanalysis of the earlier Canadian 
studies based on samples composed of both males and females. It was found 
that the correlations for males and females were very different: males had much 
higher correlations (over + .60) than females. This is consistent with the failure 
to find a correlation in the third Canadian study, based entirely on females, but 
it is even more at odds with the two contradictory studies (in Britain and in 
Berkeley). Although these studies were based on largely male samples, they 
found virtually zero correlations between IQ and peripheral NCV. Still another 
study, based on twins, also found no significant corrrelation between peripheral 
NCV and IQ, but did find substantial heritability of NCV.l3lbl

The mystery is compounded further by a recent study by a Turkish physiol­
ogist, Uner Tan, which found that peripheral NCV measured in the median nerve 
had a near-zero correlation with IQ (Cattell’s Culture Fair Test) in a mixed 
group of forty-five men and thirty-seven women, but that there was a positive 
correlation for men (r =  + .63) and a negative correlation for women (r =  
- .5 5 ) .1321 Tan suggests that the correlation of NCV with g is affected by tes­
tosterone level. Clearly, the nature and degree of the relationship between g and 
peripheral NCV remains a puzzle that must be resolved by further research.

Brain Nerve Conduction Velocity. Reed and Jensen (1992) measured NCV 
in the primary visual tract between the retina of the eye and the visual cortex 
in 147 college males and found a significant correlation of + .26 (p =  .002) 
between NCV and Raven IQ. (The correlation is + .37 after correction for re­
striction of range of IQ in this sample of college students.) When the sample is 
divided into quintiles (five equal-sized groups) on the basis of the average ve­
locity of the P100 visual evoked potential (V:P100), the average IQ in each 
quintile increases as a function of the V:P100 as shown in Figure 6.3.
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(113.8) (115.9) (116.5) (120.8) (122.4) ± + ± ± ± 1.8 1.8 2.4 2.2 1.3
V:P100 Quintile

(Mean IQ Score +/- S.E.)

Figure 6 .3 . Mean IQ in each quintile of nerve conduction velocity (V:P100) as meas­
ured in the visual tract in 147 male students. (From Reed & Jensen, 1992. Used with 
permission of Ablex.)

A theoretically important aspect of this finding is that the NCV (i.e., V:P100) 
is measured in a brain tract that is not a part of the higher brain centers involved 
in the complex problem solving required by the Raven test, and the P100 visual 
evoked potential occurs, on average, about 100 milliseconds after the visual 
stimulus, which is less than the time needed for conscious awareness of the 
stimulus. This means that although the cortical NCV involved in Raven per­
formance may be correlated with the NCV in the subcortical visual tract, the 
same neural elements are not involved. This contradicts Thomson’s sampling 
theory of g , which states that tests are correlated to the extent that they utilize 
the same neural elements. But here we have a correlation between the P100 
visual evoked potential and scores on the Raven matrices that cannot be ex­
plained in terms of their overlapping neural elements. In the same subject sam­
ple, Reed and Jensen found that although NCV and choice reaction time (CRT) 
are both significantly correlated with IQ, they are not significantly correlated 
with each other.1331 This suggests two largely independent processes contributing 
to g, one linked to NCV and one linked to CRT. As this puzzling finding is 
based on a single study, albeit with a large sample, it needs to be replicated
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before much theoretical importance can be attached to it. There is other evidence 
that makes the relationship of NCV to g worth pursuing. For one thing, the pH 
level (hydrogen ion concentration) of the fluid surrounding a nerve cell is found 
experimentally to affect the excitability of the nerve, an increased pH level (i.e., 
greater alkalinity) producing a lower threshold of excitability.13401 Also, a study 
of 42 boys, aged 6 to 13 years, found a correlation of .523 (p <  .001) between 
a measure of intracellular brain pH and the WISC-III Full Scale IQ.|34h| More­
over, the method o f correlated vectors shows that the vector of the 12 WISC 
subtests’ correlations with pH are significantly correlated with the vector of the 
subtests’ g loadings (r = + .63, rs =  + .53, p  <  .05). This relationship of brain 
pH to g certainly merits further study.

Miscellaneous Physical Correlates of IQ. A number of other physical cor­
relates of IQ have been reported in the literature, as reviewed in detail else­
where.1351 Although the correlations are generally small, they are nevertheless 
significant. In most cases, it has not been established whether the correlations 
are intrinsic or extrinsic.

Among these physical correlates of IQ are certain blood groups and particu­
larly the positive correlation of g with the number of homozygous genetic loci 
(i.e., the same alleles at each locus on both chromosomes) for various blood 
types, which indicates greater-than-usual genetic similarity of the individual’s 
parents. This would ensure less immunological risk of antigenic incompatibility 
between mother and fetus, a prenatal factor that can have subtle deleterious 
effects on brain development in utero. The best-known antigenic incompatibility 
between mother and fetus with potentially harmful effects on fetal development 
is that for the Rh factor, which occurs in second-born (and later-born) children 
when the mother is Rh-negative and the fetus is Rh-positive (having received 
the Rh+ allele from the father). Dizygotic (DZ) twins who are discordant for 
the Rh factor (and certain other blood antigens as well) show greater IQ differ­
ences than DZ twins who are concordant.

Another blood variable o f interest is the amount of uric acid in the blood 
(serum urate level). Many studies have shown it to have only a slight positive 
correlation with IQ. But it is considerably more correlated with measures of 
ambition and achievement. Uric acid, which has a chemical structure similar to 
caffeine, seems to act as a brain stimulant, and its stimulating effect over the 
course of the individual’s life span results in more notable achievements than 
are seen in persons of comparable IQ, social and cultural background, and gen­
eral life-style, but who have a lower serum urate level. High school students 
with elevated serum urate levels, for example, obtain higher grades than their 
IQ-matched peers with an average or below-average serum urate level, and, 
amusingly, one study found a positive correlation between university professors’ 
serum urate levels and their publication rates. The undesirable aspect of high 
serum urate level is that it predisposes to gout. In fact, that is how the association 
was originally discovered. The English scientist Havelock Ellis, in studying the
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lives and accomplishments of the most famous Britishers, discovered that they 
had a much higher incidence of gout than occurs in the general population.

Asthma and other allergies have a much-higher-than-average frequency in 
children with higher IQs (over 130), particularly those who are mathematically 
gifted, and this is an intrinsic relationship. The intellectually gifted show some 
15 to 20 percent more allergies than their siblings and parents. The gifted are 
also more apt to be left-handed, as are the mentally retarded; the reason seems 
to be that the IQ variance of left-handed persons is slightly greater than that of 
the right-handed, hence more of the left-handed are found in the lower and upper 
extremes of the normal distribution of IQ.

Then there are also a number of odd and less-well-established physical cor­
relates of IQ that have each shown up in only one or two studies, such as vital 
capacity (i.e., the amount of air that can be expelled from the lungs), handgrip 
strength, symmetrical facial features, light hair color, light eye color, above- 
average basic metabolic rate (all these are positively correlated with IQ), and 
being unable to taste the synthetic chemical phenylthiocarbamide (nontasters are 
higher both in g and in spatial ability than tasters; the two types do not differ 
in tests of clerical speed and accuracy). The correlations are small and it is not 
yet known whether any of them are within-family correlations. Therefore, no 
causal connection with g has been established.

Finally, there is substantial evidence of a positive relation between g and 
general health or physical well-being.1361 In a very large national sample of high 
school students (about 10,000 of each sex) there was a correlation of +.381 
between a forty-three-item health questionnaire and the composite score on a 
large number of diverse mental tests, which is virtually a measure of g. By 
comparison, the correlation between the health index and the students’ socio­
economic status (SES) was only +.222. Partialing out g leaves a very small 
correlation ( +  .076) between SES and health status. In contrast, the correlation 
between health and g when SES is partialed out is +.326.

A General Factor in Infrahuman Animal Behavior. As there are no fun­
damental differences of a qualitative nature between various mammalian species 
in the anatomy and neurophysiology of the brain, the science of animal behavior 
generally supports the working hypothesis that interspecies variations in the 
cognitive abilities inferred from observed differences in behavioral capacities 
are not discrete gaps but rather quantitative gradations in the complexity of the 
information-processing systems of mammals. Experimental animal psychology 
has indeed made important contributions to understanding the basic operating 
principles of behavioral capacities such as conditioning, learning, perception, 
and problem solving and in discovering the brain mechanisms underlying these 
functions. Because most animal behavior research has not focused on individual 
differences in behavioral capacities within a given species, exceedingly few in­
frahuman animal studies have been designed that resemble the factor analytic 
research on g in humans. Yet, judging from the three studies described below,
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animal experimental psychology would appear to be a promising avenue for 
testing hypotheses concerning the neural basis of g in humans.

The earliest study,1371 by Robert L. Thorndike in 1935, was designed simply 
to determine whether there is in fact a general factor in the abilities of albino 
rats. (Coming from twenty different litters of laboratory rats, they were probably 
a mixture of genetically heterogeneous strains. The highly inbred or isogenic 
strains used in most research today are virtually the equivalent of monozygotic 
twins, triplets, etc. If raised in similar laboratory conditions, they would probably 
be unsuitable for such a study, as they would most likely have a too-limited 
range of individual differences.) The ninety rats in Thorndike’s study were given 
nine distinct tasks that measured activity level and drive level, as well as speed 
and accuracy of performance on several more cognitive tasks, such as condi­
tioned responses, learning mazes of various degrees o f complexity, and puzzle- 
box problem solving. With a few exceptions, the performance measures were 
positively correlated, and factor analysis yielded a general factor that accounted 
for about two-thirds of the common factor variance and about one-third of the 
total variance. In this respect, at least, the results were similar to the factor 
analyses of many psychometric batteries. To distinguish psychometric g from 
the general factor found in animal studies, the latter is labeled G. Whether G 
has certain psychological (as opposed to purely statistical) properties similar to 
g is the open question. Thorndike’s analysis is not very enlightening on this 
point, except that the less “ cognitive”  measures, such as activity level, drive, 
and conditioning, had smaller G loadings, on average, than did the somewhat 
more “ cognitive”  abilities assessed by mazes and puzzle-boxes. Judging from 
the tests with the larger loadings on G and his personal observation of the rats’ 
performance on these tests, Thorndike interpreted the G factor as “ docility— 
maze-learning, intelligence, tameness”  (p. 63). This modest conclusion was 
hardly more than suggestive of an interesting hypothesis awaiting investigation, 
namely, that the G loadings of rat “ cognitive”  tasks reflect task complexity.

A recent study,1381 by Britt Anderson in 1993, tested this hypothesis using a 
genetically heterogeneous group of twenty-two male Long-Evans laboratory rats. 
The rats were given tests selected to measure reasoning and problem solving, 
in which the rat must deduce a solution (not previously trained) that leads to 
food reward. The tests required a reasoned (novel), rather than a learned, re­
sponse. The specific tests involved preference for novelty (which, in human 
infants, is correlated with later IQ), and speed, accuracy, and response flexibility 
in maze reasoning problems. Shortly after the completion of testing, each rat 
was autopsied and its brain removed for weighing. A factor analysis of the test 
variables yielded a G factor that accounted for 32.3 percent of the total variance. 
The number of perfect trials on the maze reasoning task had the highest G 
loading (.70); speed of reasoning was loaded .58; the least demanding task, 
preference for novelty, had the lowest G loading (.43). Anderson concluded, 
“ [T]he general factor [G] may best be conceived of as relating to individual 
differences in cognitive ability”  (p. 101). Probably the most interesting finding
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of this study is that the G factor scores derived from the rat tests were correlated 
with brain weight (r =  + .48) to a degree not unlike that found between g and 
brain size in humans.

A third study, by Francis Crinella and Jen Yu in 1995, used a genetically 
inbred strain of 120 adult male Sprague-Dawley laboratory rats, in which there 
are hardly any natural individual differences. Individual differences had to be 
minimal as the aim of the experiment was to discover how much each specific 
region of the brain was involved in each of the various behavioral measures. 
This was done surgically by creating small lesions in 48 specific brain sites 
selected on the basis of the findings on the rat brain-behavioral correlates found 
in previous research by Crinella and Yu.1391 In the Iesioned group, only one of 
the 48 sites was Iesioned in each pair of rats. A control group of 24 rats was 
given the same surgical procedure, but without creating a lesion at any site. 
After full recovery from the operation, all 120 rats were tested in each of seven 
diverse laboratory tests of learning and problem solving (reasoning). The per­
formance measures from this battery were all positively correlated and yielded 
a g factor that accounted for 34 percent of the total variance in the seven tests. 
Probably the most important finding is the very high correlation between the 
various tasks’ G loadings and the number of brain structures that are significantly 
involved in task performance— a rank-order correlation of +.91. For example, 
one o f the most highly G-loaded (.81) tasks (a detour problem, which requires 
reasoning) is significantly influenced by each of 17 brain structures, whereas a 
relatively simple conditioned avoidance task, with a lowest G loading of only 
.08, significantly involved only four brain structures. The unlesioned control 
group performed better on each of the tasks than did the Iesioned group. The 
vector of standardized mean differences between the unlesioned and Iesioned 
(U-L) groups on each of the seven tasks had a significant rank-order correlation 
of + .75 with the vector of G loadings for each of the tasks. The G factor 
correlated —.45 with the presence of any brain lesion— a higher correlation than 
was found for any single test. In brief, there was a strong relation between a 
task’s G loading and its degree of sensitivity to the effects of brain damage in 
general. The authors suggest that “ where the investigator is interested in de­
tecting presence of any type of neuropsychological deficit, as opposed to damage 
that only affects a particular cognitive/neural system, g would be the most sen­
sitive measure”  (p. 243). The results of this study lend support to the theory 
that tests with higher g loadings involve proportionately more neural processes 
than tests with lower g loading, even when studied in nonhuman animals.

NOTES
1. The rationale of this methodology is more fully explicated in Jensen, 1980b and 

in Jensen & Sinha, 1993.
2. The absolute value disregards the sign (+ or —) of the value, hence it is also 

called an unsigned value. Thus r = +.35 and r = -.35 have the same absolute value, 
namely 1.351. The absolute value of x  is signified by vertical braces, i.e., Ixl.
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3. The definition of the true  value o f a correlation (symbolized by the Greek letter 

rho, p) is its value in some defined population. The value of p is usually unknown or is 
unknowable. It can only be estimated. A correlation coefficient based on a random sample 
of the population is an estimate of p. The standard error (SE) of this estimate is related 
to the size of the sample; the larger the sample, of course, the more accurate is the 
estimate. If p =  0 (i.e., the null hypothesis), the standard error (SE) o f the observed 
correlation in a sample of N  subjects is SE  =  1 l j(N  — 1). Under the null hypothesis, 
the frequency distribution of an infinite number of correlation coefficients, each based 
on a random sample o f N  subjects, will be normally distributed, with a mean =  0 and 
a standard deviation (SD) =  SE. When the sample-size is large (N  >  500), a correlation 
that differs from 0 by more than ±  1.96 SE  is said to be significant beyond the 5 percent 
level o f confidence (technically written as p  <  .05), meaning that the probability (p) o f 
finding a difference that large by chance (when p =  0) is less than 5 percent. (Chance, 
in this case, is technically termed sampling error.) Hence we reject the null hypothesis 
that p =  0. The 1 percent level o f confidence, or p  <  .01, is ± 2 .5 8  SE. (Note: Five 
percent of the area under the normal curve falls beyond the limits o f ±  1.96 SD  from 
the mean; 1 percent of the area falls beyond ±  2.58 SD.) In the technical literature, the 
correlation coefficient is usually accompanied by the probability that the obtained cor­
relation could have occurred merely by sampling error); for example, r =  .35 (p <  .01) 
would mean that a correlation as large as .35 would be expected to occur by random 
sampling (of sample size N) less than once in 100 samples if  the true correlation (p) is 
zero. Thus one can be at least 99 percent certain that the true correlation is not zero. In 
fact, given only these data, the best estimate o f the true correlation in this case is .35. 
(Note: For small samples, or if the hypothesized value of p is different from zero, some­
what more complicated formulas are needed for an accurate test of the significance of 
an obtained (sample) correlation or its difference from the hypothesized value (see Fisher, 
1970, pp. 194-206).

4. Meta-analysis consists of various mathematical-statistical methods that permit one 
to make statistical estimates o f population parameters (e.g., mean, variance, correlation 
coefficient, along with their significance level or confidence interval) from comparable 
statistics that were derived from a number of independent studies (i.e., studies based on 
different subject samples). The results o f a proper meta-analysis are generally more valid 
than the results of any of the single independent studies on which the meta-analysis was 
based.

5. It is unnecessarily laborious to compute the percentiles of the permutation distri­
bution needed to test the significance of rs when n >  10, or even for smaller values of 
n. Fortunately, there is a simple method for testing the significance of rs by means of 
Student’s t test, which gives a very close approximation to the exact p  values of the 
permutation distribution: t = {(n — 2 )rs2/( 1 — rs2)}V.z. For a full discussion of the per­
mutation distribution o f  rs, see Kendall & Stuart, 1973, Vol. 2, pp. 492-499.

6. The null hypothesis states that the true correlation is zero. The more that an em ­
pirically obtained value of r departs from zero, the greater is the probability that the null 
hypothesis is false and therefore should be rejected. A statistical test is specifically aimed 
at rejecting the null hypothesis with a specified level of confidence (e.g., 5 percent chance 
of being wrong by rejecting the null) when in fact the null hypothesis is false. But if the 
statistical test rejects the null hypothesis when in fact the null hypothesis is true, stat­
isticians call this a Type I error. If the statistical test does not reject the null hypothesis 
when in fact the null hypothesis is fa lse , it is called a Type II error.
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7. Jensen & Sinha. 1993. This 100-page chapter is probably the most comprehensive 

review of the world literature on the physical correlates o f mental ability, excluding 
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logical variables, most of which are only indirectly related to cognitive ability. For a
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Chapter 7
The Heritability of g

Individual differences in mental test scores have a substantial genetic 
component indexed by the coefficient of heritability (in the broad 
sense), that is, the proportion of the population variance in test 
scores attributable to all sources of genetic variability. The broad 
heritability of IQ is about .40 to .50 when measured in children, 
about .60 to .70 in adolescents and young adults, and approaches 
.80 in later maturity.

Environmental variance can be partitioned into two sources: (1) 
environmental influences that are shared  among children reared in 
the same family but that differ between families, and (2) nonshared 
environmental influences that are specific to each child in the same 
family and therefore differ within families. The shared environmen­
tal variance diminishes from about 35 percent of the total IQ vari­
ance in early childhood to near zero percent in late adolescence. The 
nonshared environmental variance remains nearly constant at around 
20 to 30 percent from childhood to maturity. That is, virtually all 
of the nongenetic variance in adult IQs is attributable to within- 
fam ily  causes, while virtually none is attributable to the kinds of 
environmental variables that differ between families. The specific 
sources of much of the within-family environmental variance are 
still not entirely identified, but a large part of the specific environ­
mental variance appears to be due to the additive effects of a large 
number of more or less random and largely physical events— de­
velopmental “ noise” — with small, but variable positive and nega­
tive influences on the neurophysiological substrate of mental growth.

More of the genetic variance in test scores is associated with g 
than with any other common factor. Hence the relative g loadings
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of various tests predict their relative heritability coefficients (the pro­
portion of genetic variance in the test scores).

Traits that show genetic dominance provide evidence that they 
have been subjected to natural selection as a Darwinian fitness char­
acter over the course of evolution. IQ, and particularly its g com­
ponent, manifest the theoretically predictable effects of genetic 
dominance— inbreeding depression in the offspring of con­
sanguineous parents, and the opposite effect, hybrid vigor (or het- 
erosis), that shows up in the offspring when each parent has a dif­
ferent racial ancestry. Tests’ relative g loadings significantly predict 
the degree to which various tests manifest both inbreeding depres­
sion and heterosis. These data support the hypothesis that the g fac­
tor o f psychometric tests has arisen through natural selection over 
the course of human evolution and therefore can be regarded as a 
fitness character in the Darwinian sense.

This chapter is not a detailed explanation of the methodology of behavioral 
genetics or a review of the extensive research on the genetics of mental ability.1 
Rather, this chapter highlights the developments of the last decade or so that 
are now well established and are especially important for understanding the 
biological basis of g.

IS g  ONE AND THE SAME FACTOR BETWEEN FAMILIES AND 
WITHIN FAMILIES?

As we shall see, the main factor in the heritability of IQ and other mental 
tests is g. Also, as we shall see, genetic analysis and the calculation of herita­
bility depend on a comparison of the trait variance between families (BF) and 
the variance within families (WF). (The separation of the total or population 
variance and correlation into BF and W F components was introduced in Chapter
6, pp. 141-42.) Therefore, before discussing the heritability of g, we must ask 
whether the g factor that emerges from a factor analysis of BF correlations is 
the very same g that emerges from a factor analysis of WF correlations. Recall 
that BF is the mean of all the full siblings (reared together) in each family in 
the population; WF is the differences among full siblings (reared together). In 
other words, some proportion of the total population variance (V',,) in a trait 
measured on individuals is variance between families (VBF) and some proportion 
is variance within families (VWF). Thus theoretically VP = VDr +  V ^f . Similarly, 
the population correlation between any two variables reliably measured on in­
dividuals can be apportioned to BF and WF. The method for doing this requires 
measuring the variables of interest in sets of full siblings who were reared to­
gether.

Why might one expect the correlations between different mental tests, say X 
and Y, to be any different BF than WF? If the genetic or environmental influ­
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ences that cause families to differ from one another on X or Y (or both) are of 
a different nature than the influences that cause differences on X or Y among 
siblings reared together in the same family, it would be surprising if the BF 
correlation of X and Y were the same as the W F correlation. And if there were 
a large number of diverse tests, the probability would be nil that all their inter­
correlations would have the same factor structure in both BF and W F if the tests 
did not reflect the same causal variables acting to the same degree in both cases.

BF differences can be genetic or environmental, or both. A typical source of 
BF variance is social class or socioeconomic status (SES). Families differ in 
SES, but siblings reared in the same family do not differ in SES; therefore SES 
is not a source of WF variance. The same is true of differences associated with 
race, cultural identification, ethnic cuisines, and other such variables. They differ 
between families (BF) but seldom differ between full siblings reared together 
in the same household.

Now consider two sets of tests: A and B, X and Y. If the scores on Tests A 
and B are both strongly influenced by SES and other variables on which families 
differ and on which siblings in the same family do not differ, and if scores on 
Test X and Test Y are very little influenced by these BF variables, we should 
expect two things: (1) the BF correlation of A and B (rAn) would be larger than 
the BF correlation of X and Y (rXY), and (2) the BF correlation of A and B 
(rAb) would be unrelated to the BF correlation of X and Y (rXY). The greater 
size of the correlation rAn reflects similarity in the greater effect of SES (or 
other BF variables) on the scores of these two tests. This could be shown further 
by the fact that the BF correlation is much larger than the WF correlation for 
tests A and B. The size of the correlation rXY, on the other hand, reflects some­
thing other than SES (or other variables) on which families differ. So if the BF 
rXY and the WF rXY are virtually equal (after correction for attenuation2) and if 
this is also true of the BF and WF correlations for many diverse tests, it suggests 
that the same causal factors are involved in both the BF and WF correlations 
for these tests (unlike Tests A and B).

We can examine the hypothesis that the genetic and environmental influences 
that produce BF differences in tests’ g loadings are the same as the genetic and 
environmental influences that produce W F differences in the tests’ g loadings. 
If we find that this hypothesis cannot be rejected, we can rule out the supposed 
direct BF environmental influences on g, such as SES, racial-cultural differences, 
and the like. The observed mean differences between different SES, racial, and 
cultural groups on highly g-loaded tests then must be attributed to the same 
influences that cause differences among the siblings within the same families. 
As will be explicated later, these sibling differences result from both genetic 
and environmental (better called nongenetic) effects.

Two large-scale studies have tested this hypothesis. In each study, a g factor 
was extracted from the BF correlations among a number of highly diverse tests 
and also from the WF correlations among the same tests.3 These two factors are 
referred to as g lih and gWF.



172 The g  Factor
Table 7.1
Congruence C oefficients between the g  Factor Derived from Between-Family 
(BF) and Within-Family (WF) Correlations among Seven Diverse Mental T ests in 
White (W) and Black (B) Samples

y Factor (2)White WF (3) Black BF (4) Black WF

(1) White BF .987 .993 .991
(2) White WF .986 .993
(3) Black BF .985

The first study141 was based on pairs of siblings (nearest in age, in grades 2 
to 6) from 1,495 white and 901 black families. They were all given seven highly 
diverse age-standardized tests (Memory, Figure Copying, Pictorial IQ, Nonver­
bal IQ, Verbal IQ, Vocabulary, and Reading Comprehension). Both BF and WF 
correlations among the tests were obtained separately for whites and blacks, and 
a g factor (first principal component) was extracted from each of the four cor­
relation matrices. The degree of similarity between factors is properly assessed 
by the coefficient of congruence, rc.5 Two factors with values of rc larger than 
.90 are generally interpreted as “ highly similar” ; values above .95 as having 
“ virtual identity.”  The values of rc are shown in Table 7.1. They are all very 
high and probably not significantly different from one another. The high con­
gruence of the gnF and gWF factors in each racial group indicates that g is clearly 
an intrinsic factor (as defined in Chapter 6, p. 139). Also, both gBF and gWh are 
virtually the same across racial groups. In this California school population, 
little, if any, of the variance in the g factor in these tests is attributable to the 
effects of SES or cultural differences. Whatever SES and cultural differences 
may exist in this population do not alter the character of the general factor that 
all these diverse tests have in common.

The second study161 is based on groups that probably have more distinct cul­
tural differences than black and white schoolchildren in California, namely, teen­
age Americans of Japanese ancestry (AJA) and Americans of European ancestry 
(AEA), all living in Hawaii. Each group was composed of full siblings from a 
large number of families. They were all given a battery of fifteen highly diverse 
cognitive tests representing such first-order factors as verbal, spatial, perceptual 
speed and accuracy, and visual memory. In this study, the g factor was extracted 
as a second-order factor in a confirmatory hierarchical factor analysis. The same 
type of factor analysis was performed separately on the BF and WF correlations 
in each racial sample. The congruence coefficient between gDF and gWF was 
+  .99 in both the AJA group and the AEA group, and the congruence across 
the AJA and AEA groups was +.99 for both g ])F and gWF. These results are 
essentially the same as those in the previous study, even though the populations,
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tests, and methods of extracting the general factor all differed. Moreover, the 
four first-order group factors showed almost as high congruence between BF 
and WF and between AJA and AEA as did the second-order g factor. The 
authors of the second study, behavioral geneticists Craig Nagoshi and Ronald 
Johnson161 concluded, “ Nearly all of the indices used in the present analyses 
thus support a high degree of similarity in the factor structures of cognitive 
ability test scores calculated between versus within families. In other words, 
they suggest that the genetic and environmental factors underlying cognitive 
abilities are intrinsic in nature. These indices also suggest that these BF and WF 
structures are similar across the AEA and AJA ethnic groups, despite some 
earlier findings that may have led one to expect especially strong between-family 
effects for the AJA group”  (p. 314).

TERMINOLOGY AND FUNDAMENTAL CONCEPTS OF BEHAVIOR- 
GENETIC ANALYSIS

A phenotype is any observable or measurable characteristic or trait. Many 
phenotypes, such as height and IQ, vary widely in the population. The total 
phenotypic variance in a metric trait can be analyzed by the methods of quan­
titative genetics into a number of components which are labeled according to 
the different main “ sources”  of variance that contribute to the total variance. 
Figure 7.1 shows how the total phenotypic variance is typically analyzed, or 
subdivided, in behavioral genetic research. While every entry in Figure 7.1 will 
not be explained (see Note 1), the figure provides a useful framework in which 
to locate the components of variance that enter into many of the summary con­
clusions that follow. One other subdivision not shown here, because it cuts 
across some of the others and would create an extremely confusing diagram if 
included, is the division of all the genetic variance into between-families and 
within-families, just as the total environmental variance is divided.

One of the purposes of quantitative genetics methodology is to determine, for 
any given phenotype, the proportions of the total phenotypic variance contrib­
uted by each of the sources of variance shown in Figure 7.1. This kind of 
“ biometrical analysis,”  as it is called, depends essentially on correlations be­
tween individuals who differ in degree of genetic kinship (e.g., monozygotic, 
or “ identical,”  twins, who have all of their genes in common; dizygotic twins 
or siblings, who have on average about one-half of their segregating genes in 
common; half-siblings, with one-fourth in common; first cousins, with one- 
eighth; a parent and offspring [one-half]; and unrelated persons, who have no 
genetic variance in common and whose genetic correlation therefore is zero).

The genetic correlation between relatives corresponds to the proportion of 
identical segregating genes they have inherited in common from their ancestors. 
Only segregating genes (i.e., genes that have two or more different alleles each 
with more than rare frequencies) contribute to genetic variance. Nonsegregating 
genes, having no variation in alleles (except for rare mutants), are uniformly
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Figure 7.1. Branch diagram partitioning the total phenotypic variance into the com­
ponents (i.e., sources of variance) that can be estimated by the methods of quantitative 
genetics. (Note: There is no relationship between the areas of the rectangles and the 
proportions of variance accounted for by the various components.) (From Jensen, 1997a. 
Used with permission of Cambridge University Press.)

characteristic of a particular species and are usually essential for the individual’s 
viability; hence they are the same for virtually everyone in the population and 
therefore are not reflected in its total genetic variance. Because these nonsegre­
gating genes are inherited by virtually everyone, they do not cause differences 
between individuals.

One other requirement, essential for distinguishing genetic from environmen­
tal sources of variance, is to have genetically related persons, such as those 
listed above, some of whom were reared together and others who were reared 
apart (ideally in uncorrelated family environments). There are two classes of 
persons that provide the most valuable data for biometrical analysis. The first 
is monozygotic (MZ) twins who were reared apart from infancy (identical genes
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in different environments). The second is genetically unrelated children who 
were adopted in infancy and reared together in the family environment of their 
adoptive parents (different genes in the same family environment). More elab­
orate analyses are possible if one also has data on the trait of interest in the 
adoptive parents and in one or both of the biological parents of the adopted 
children (assuming the biological parents are not involved in the adopted child’s 
social environment). If the adopted individual has siblings who were reared by 
the biological parents or by another adoptive family, they, too, can provide 
valuable data for genetic analysis.

MZ twins reared apart (MZA) are especially useful, because they are genet­
ically identical and have grown up in different environments. Therefore, the 
correlation between them is itself a direct estimate of the proportion of genetic 
variance. All of the phenotypic difference between MZ twins is due to either 
nongenetic influences or measurement error. On the other hand, persons who 
are genetically unrelated and grew up together in adoptive families have only 
their family environment in common, so the correlation between them is a direct 
estimate of the proportion of BF environmental variance.

From reasonably large samples of data on MZA twins and adoptees, it is 
possible to obtain estimates of the proportions of total variance contributed by 
genetic and between-family (BF) environmental factors. Estimation of the other 
components shown in Figure 7.1 requires data from various other kinships, such 
as MZ twins reared together and dizygotic (DZ) twins reared together, half­
siblings, parent-offspring correlations, the offspring of cousin matings (or other 
degrees of genetically related parents), and the correlation between the parents 
of the twins or siblings mentioned above. The mathematical procedures for these 
kinds of analysis are a complex subject with its own technical literature (it is 
in fact a major branch of genetics in which one can specialize for a Ph.D. 
degree). The methods of quantitative genetics are not explained in any detail 
here (see Note 1 for introductory references on the subject). I will only sum­
marize in almost telegraphic style some of the most secure facts about the bi­
ometrical analysis of IQ that have been discovered and replicated in many 
studies using these methods.

H eritab ility  D efined. Heritability (conventionally symbolized h 2) is roughly 
defined as the proportion of the phenotypic variance VP in a trait that is genetic 
variance VG; in brief, h 2 =  VG/V,,. Geneticists use the term heritability in two 
different senses, called heritability in the n a r r o w  sense (hN 2) and heritability in 
the b r o a d  sense (hH2). This is an important distinction. Narrow heritability is of 
interest mainly to animal breeders; broad heritability is of interest mainly to 
psychologists and behavioral geneticists.

N a r r o w  heritability includes only the additive genetic variance VA, that is, 
the part of the total genetic variance responsible for the resemblance between 
parent and offspring. The fixable  component of the additive variance is the only 
part of it that “ breeds true”  (hence it was referred to by R. A. Fisher as the 
essential genotype).  Therefore, it is only the fixable part of the additive genetic
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variance that affords the leverage for selective breeding, which can occur either 
by natural selection or by artificial selection by animal and plant breeders. The 
nonfixable part of the additive variance results from assortative mating (some 
degree of genetic correlation between parents on a specific trait).171 (The coef­
ficient of assortative mating [also called spousal correlation] for IQ in our pres­
ent population is between + .40 and +.50.)

Broad heritability includes all sources of genetic variance. Besides the ad­
ditive variance (which is the largest part of broad heritability), there is genotype 
X  environment (GE) interaction: Different genotypes may react differently to 
the same environmental factor; an environmental condition that is favorable to 
the-phenotypic development of a certain genotype is less effective or even un­
favorable for a different genotype. Also there is genotype-environment (GE) 
covariance, or the correlation between genetic and environmental factors that 
affect the development of the phenotype: Genotypes that are more favorable 
than average for the development of a trait are found with greater-than-chance 
frequency in environments that are also more favorable than average; likewise 
for genotypes and environments that are less favorable.

Then there is the nonadditive genetic variance. It results from two types of 
genetic interactions: (1) genetic dominance (e.g., a dominant and a recessive 
allele paired at the same locus on the chromosomes might have the same phe­
notypic effect as two dominant alleles at that locus), and (2) epistasis (a gene 
at one chromosomal locus affects the phenotypic expression of a gene at some 
other locus). Dominance and epistatis cause lower correlations between direct- 
line relatives (parents-offspring and full siblings) than would be the case if 
purely additive genetic effects were the only source of genetic variance.

D istin ction  betw een “ H ered itary”  and “ H eritab ility .”  These two distinct 
concepts should never be confused. Heritability (h2) has been defined above as 
the proportion of the phenotypic variance in a trait that is attributable to geno­
typic variance. Heritability never refers to the amount of the trait measurement 
per se that is attributable to genes. (It is a truism that any trait of an individual 
is necessarily a function of both genes and environment, as both are essential 
for the very existence of the individual, just as the area of a rectangle depends 
on its length and its width, and therefore a rectangle cannot even exist without 
having both dimensions.) Heritability refers only to the observed phenotypic 
trait variation (i.e., measured as the variance) among individuals in a defined 
population. It is also a function of the amount of environmental (i.e., nongenetic) 
variance among individuals.

The terms hereditary and inherited, on the other hand, simply mean that a 
given trait or characteristic of individuals depends on the presence of certain 
genes or that the gene or genes affecting the trait are transmitted from parents 
to offspring (whether or not the phenotypic trait appears in the parents). But the 
term “ heritability”  is inapplicable (and, in fact, formally meaningless) if applied 
to hereditary characteristics for which the population variance is zero (or very 
near zero in the case of variation due to a single rare or mutant gene). Virtually



The Heritability of g 177
all babies are born with one head, two hands, and ten fingers, for example. As 
these human characteristics are coded in the genes, they are hereditary charac­
teristics. But because these characteristics do not normally vary among individ­
uals, the concept of heritability is simply inapplicable to them.

EMPIRICAL EVIDENCE ON THE HERITABILITY OF IQ
Most behavioral geneticists today agree that the following concatenation of 

several overwhelmingly well-established facts in behavioral genetics is impos­
sible to explain or understand without invoking a substantial degree of broad 
heritability of IQ. These facts are: (1) MZ twins reared together (MZT) are 
much more similar in IQ than DZ twins reared together (DZT). (2) MZ twins 
reared apart (MZA) are more similar in IQ than DZ twins reared together. (3) 
The IQs of adopted persons who have never known their biological parents are 
more highly correlated with the IQs of their biological parents than with the 
IQs of their adoptive parents. (4) Unrelated persons who were reared together 
from infancy show a much lower IQ correlation with each other in early child­
hood than do biological siblings, and they show virtually zero IQ correlation in 
adolescence and adulthood.

Some typical correlation coefficients can be attached to these generalizations 
based on the average of the IQ correlations found in numerous studies.181 (These 
mean correlations are weighted by the number of twin pairs, Np, in each of the 
samples that were averaged.)

M Z twins reared together rMZT = + .86  (Np = 4,672)
DZ twins reared together rnzT = +.60  (Np = 5,546)

M Z twins reared apart rMZA =  + .75 (/V,, =  158)
Note that the correlation rMZA between MZ twins reared apart is a direct estimate 
of the broad heritability; the weighted mean value of rM7A obtained from all 
existing studies (with one exception191) is +.75. However, the accuracy of the 
estimate of broad heritability based on rMZA depends on the assumption that the 
MZ twins were reared in uncorrelated environments, otherwise the rM7A will 
reflect shared (BF) environmental variance, which would make rMZA a spuriously 
inflated estimate of the broad heritability, hn2. What cannot be ruled out in MZ 
twins reared apart is their common prenatal, perinatal, and preadoption environ­
ments. To the degree that these aspects of shared environment affect later mental 
development, the correlation between MZ twins reared apart reflects not only 
the heritability, but, in addition, whatever nongenetic variance may be attribut­
able to the shared component of the twins’ prenatal, perinatal, and preadoption 
environment. Such nongenetic effects are probably not large (most likely less 
than 10 percent of the total nongenetic variance), but neither would they be 
expected to be zero. The difference between the IQ correlation of DZ twins and 
of ordinary siblings (which are about .50 and .60, respectively) is probably
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attributable in part to prenatal factors (e.g., age, nutrition, and health of the 
mother, blood antigen incompatibilities, obstetrical procedures, etc.).

Also, due to “ placement bias”  by adoption agencies the environments of the 
separated MZ twins in these studies are not perfectly uncorrelated, so one could 
argue that the high correlation between MZAs is attributable to the similarity 
of the postadoptive environments in which they were reared. This problem was 
thoroughly investigated in the MZAs of the ongoing Minnesota twin study,1101 
which has a larger sample of MZAs than any other study to date. It is not enough 
simply to show that there is a correlation between the separated twin’s environ­
ments on such variables as father’s and mother’s level of education, their so­
cioeconomic status, their intellectual and achievement orientation, and various 
physical and cultural advantages in the home environment. One must also take 
account o f  the degree to which these placement variables are correlated with 
IQ. The placement variables’ contribution to the MZA IQ correlation, then, is 
the product of the MZA correlation on measures of the placement variables and 
the correlation of the placement variables with IQ. This product, it turns out, is 
exceedingly small and statistically nonsignificant, ranging from - .0 0 7  to +.032, 
with an average of +.0045, when calculated for nine different placement vari­
ables. In other words, similarities in the M ZA’s environments cannot possibly 
account for more than a minute fraction of the IQ correlation of +.75 between 
MZAs. If there were no genetic component at all in the correlation between the 
twins’ IQs, the correlation between their environments would not account for 
an IQ correlation of more than +.10.

Let us now look at the data on ordinary siblings and on genetically unrelated 
children reared together in adoptive homes. The average correlation of IQ be­
tween full siblings reared together is +  .49, based on over 27,000 sibling pairs.1111 
For full siblings reared apart, the correlation is .24 for preadolescents1121 and .47 
for adults.1131 The IQs of unrelated persons who were reared together correlate 
+  .25 in childhood and —.01 in adulthood.1121 What these figures suggest is that 
during the period between childhood and late adolescence there is a gradual 
decrease in the influence of the BF or shared environment on IQ and a corre­
sponding increase in the broad heritability of IQ. In other words, the effect of 
all the aspects of the home environment that are shared by persons reared to­
gether becomes a less and less important source of IQ variance as children grow 
up. By late adolescence these shared (or BF) environmental effects show no 
detectable contribution to the total variance in IQ. By adulthood, all of the IQ 
correlation between biologically related persons is genetic. In other words, to 
the extent that there is a correlation between the IQs of genetically related post- 
pubertal family members, the correlation is entirely due to genetic factors; the 
environmental contribution to the familial correlations is nil.

Figures 7.2a and 7.2b show the best available estimates of the changes with 
age in the proportions of the total IQ variance attributable to genetic factors and 
to the effects of the shared (or BF) and nonshared (or WF) environment.14 These
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AGE GROUP
Figure 7.2a. Estimated proportions of the total IQ variance attributable to genetic and 
environmental (shared and nonshared) effects. Note that only the nonshared (or within- 
family) environmental variance remains relatively constant across the entire age range. 
(From M cGue et al., 1993, p. 64, Copyright ® 1993 by the American Psychological 
Association. Reprinted with permission of the APA and M. McGue.)

surprising results arc among the most striking and strongly substantiated findings 
of behavioral genetics in recent years.15

The diminishing, or even vanishing, effect of differences in home environ­
ment revealed by adoption studies, at least within the wide range of typical, 
humane child-rearing environments in the population, can best be understood in 
terms of the changing aspects of the genotype-environment (GE) covariance 
from predominantly passive, to reactive, to active}l(A (See Figure 7.1, p. 174.)

The passive component of the GE covariance reflects all those things that 
happen to the phenotype, independent of its own characteristics. For example, 
ihe child of musician parents may have inherited genes for musical talent and 
is also exposed (through no effort of its own) to a rich musical environment.

The reactive component of the GE covariance results from the reaction of 
others to the individual’s phenotypic characteristics that have a genetic basis. 
For example, a child with some innate musicality shows an unusual sensitivity 
to music, so the parents give the child piano lessons; the teacher is impressed 
by the child’s evident musical talent and encourages the child to work toward 
a scholarship at Julliard. The phenotypic expression of the child’s genotypic
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11 to 12 60 to 88
Age Group

11 to 12 60 to 88
Age Group

Figure 7.2b. Upper panel: Proportion o f genetic variance in W echsler IQ and various 
subtest scores for two age groups. Lower panel: Shared (or between-families) environ­
mental variance for two age groups. (From M cGue et al., 1993, p. 72, Copyright ® 1993 
by the American Psychological Association. Reprinted with permission of the APA and 
M. McGue.)
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musical propensities causes others to treat this child differently from how they 
would treat a child without these particular propensities. Each expression of the 
propensity has consequences that lead to still other opportunities for its expres­
sion, thus propelling the individual along the path toward a musical career. This 
in fact is the abstracted biography of every world-famous musician.

The active component of the GE covariance results from the child’s actively 
seeking and creating environmental experiences that are most compatible with 
the child’s genotypic proclivities. The child’s enlarging world of potential ex­
periences is like a cafeteria in which the child’s choices are biased by genetic 
factors. The musical child uses his allowance to buy musical recordings and to 
attend concerts; the child spontaneously selects radio and TV programs that 
feature music instead of, say, cartoons or sports events; and while walking alone 
to school the child mentally rehearses a musical composition. The child’s mu­
sical environment is not imposed by others, but is selected and created by the 
child. (The same kind of examples could be given for a great many other in­
clinations and interests that are probably genetically conditioned, such as liter­
ary, mathematical, mechanical, scientific, artistic, histrionic, athletic, and social 
talents.) The child’s genotypic propensity can even run into conflict with the 
parents’ wishes and expectations.

From early childhood to late adolescence the predominant component of the 
GE covariance gradually shifts from passive to reactive to active, which makes 
for increasing phenotypic expression of individuals’ genotypically conditioned 
characteristics. In other words, as people approach maturity they seek out and 
even create their own experiential environment. With respect to mental abilities, 
a “ good”  environment, in general, is one that affords the greatest freedom and 
the widest variety of opportunities for reactive and active GE covariance, thereby 
allowing genotypic propensities their fullest phenotypic expression.

By adulthood, the shared or BF environmental variance has virtually vanished 
and the total IQ variance is made up of genetic variance (the broad heritability) 
and the nonshared or W F component of environmental variance, which consti­
tutes about 20 percent of the total adult IQ variance. The causes of the nonshared 
environmental variance are still somewhat obscure. I have presented analyses 
of MZ twin data elsewhere which suggest that the nonshared environmental 
variance is mainly the result of a great many small random effects that are 
largely of a biological nature.1'71 Such effects as childhood diseases, traumas, 
and the like, as well as prenatal effects such as mother-fetus incompatibility of 
blood antigens, maternal health, and perinatal effects of anoxia and other com­
plications in the birth process, could each have a small adverse effect on mental 
development. Such environmental effects could differ randomly among twins or 
ordinary siblings. Some individuals would have the good luck of being “ hit” 
by very few such adverse random effects, compared to the average, and others 
would have the bad luck of being “ hit”  by many more than the average.

Whatever their causes, it turns out that the form of the distribution of these 
random environmental effects on IQ indicates that the distribution is a composite
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of two distinct underlying distributions. The largest of these is the normal dis­
tribution that would be mathematically expected of any variable that results from 
the summation of many small random effects— a consequence known as the 
Central Limit Theorem in mathematical statistics. The smaller distribution, su­
perposed on the normal distribution, reflects the distribution of a few relatively 
large adverse effects. In the composite or total distribution of environmental 
effects, then, the feature of the distribution that reflects the large adverse effects, 
over and above what can be accounted for by the distribution of the many small 
random effects, probably affects only about 20 percent of the 180 pairs of MZT 
twins that were studied. Whether this percentage would be appreciably larger 
or smaller for singletons is unknown and would be very difficult (or probably 
impossible) to determine. The main point is this: To the extent that the non­
shared environment is essentially the same for twins and singletons, it appears 
to be largely the result of many small random effects, probably acting mostly 
on the biological substrate of mental ability. Because this is the largest (and, in 
adulthood, the only) source of nongenetic or environmental variance in IQ, it 
eludes psychological or educational means of manipulation. This could explain 
why psychological, educational, and other purely behavioral interventions in the 
many attempts to raise low IQs (relative to the mean IQ in the population) have 
had so little success, despite the fact that a fairly large proportion of the IQ 
variance is “ environmental”  in the sense of being nongenetic. These largely 
random environmental effects militate against manipulation of mental develop­
ment by behavioral means. (Evidence on the malleability of IQ and g through 
specific environmental interventions is discussed in Chapter 10, pp. 333-44.)

H eritab ility  o f S ch olastic A chievem ent. There is no better predictor of scho­
lastic achievement than psychometric g, even when the g factor is extracted 
from tests that have no scholastic content. In fact, the general factor of both 
scholastic achievement tests and teachers’ grades is highly correlated with the 
g extracted from cognitive tests that are not intended to measure scholastic 
achievement. It should not be surprising, then, that scholastic achievement has 
about the same broad heritability as IQ.

Three large-scale studies1181 of the heritability of scholastic attainments, based 
on twin, parent-child, and sibling correlations, have shown broad heritability 
coefficients that average about .70, which does not differ significantly from the 
heritability of IQ in the same samples. The heritability coefficients for various 
school subjects range from about .40 to .80. As will be seen in the following 
section, nearly all of the variance that measures of scholastic achievement have 
in common with nonscholastic cognitive tests consists of the genetic component 
of g itself.

GENETIC AND ENVIRONMENTAL COMPONENTS OF THE g  

FACTOR PER SE
Recent evidence shows that by far the most of the heritable component of 

IQ, as well as of many other mental tests, is carried by g. Even though the IQ
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derived from a battery o f tests (such as the Wechsler) is very highly g loaded, 
the g factor scores derived from the same battery have slightly higher heritability 
than the IQ. Several lines of evidence support the conclusion that g is the most 
heritable factor and accounts for more of the variation in the heritability of a 
wide variety of tests than any other common factor independent of g. This is 
especially remarkable because neither the psychometric tests nor the g factor 
was devised with any thought of heritability or of the kinship correlations that 
play a part in estimating heritability.

Wc can apply the method of correlated vectors to kinship data to answer the 
following question: Is the column vector V,, (composed of the g loadings of a 
set of diverse tests) positively correlated with the column vector Vk (composed 
of a specific kinship correlation on each of the diverse tests)? The correlation 
between Vs and Vk is a test of the hypothesis that kinship correlations differ 
from one mental test to another largely because of variation in the tests’ g 
loadings.

The spouse correlation is of interest here because it is the assortative mating 
coefficient, and assortative mating on a particular trait adds to the population 
variance of the genotypes for that trait in the offspring generation. The amount 
of increase in the population variance depends on the degree of assortative 
mating in the population, which for IQ is a spouse correlation of about +.40. 
It is worth noting that IQ has a higher spouse correlation than any other behav­
ioral trait and is higher than for most physical traits. (For instance, the spouse 
correlation is about + .30 for height; it is zero for fingerprint ridge-count.) If 
there were no assortative mating for whatever is measured by IQ, the population 
variance of IQ would be decreased by about 10 to 15 percent.

There are five large independent sets of data in which spouse correlations 
were obtained on a number of diverse tests and in which the tests’ g loadings 
are known.19 In each data set we can look at the correlation between (a) the 
vector of spouse correlations on each of the tests, and (b) the vector of the tests’ 
g loadings. For fifteen tests in three racial/ethnic groups, here are these vector 
correlations (with one-tailed probability values):

Americans of European ancestry (AEA): r = +.90 (p <  .001)
Americans of Japanese ancestry (AJA): r = +.32 (p < .07)

Koreans: r = + .66 (p <  .01)

For seven tests (WAIS subtests) in two British groups:
Cambridge: r = +.75 (p < .05)

Oxford: r = +.91 (p < .03)

It is exceedingly improbable (in fact, p  <  10~10) that five independent positive 
correlations of this size could all have occurred by chance if there were no true 
correlation between the vector of the tests’ g loadings and the vector of the tests’ 
spouse correlations.

K inship  C orrelations. Now we can look at the correlation between the vector
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of a specific kinship’s correlations Vk on a variety of tests and the vector of 
these tests’ g  loadings Vs. For fifteen cognitive tests in the AEA and AJA 
groups20 here are the Vk X  Vs correlations for specific kinships (with one-tailed 
p  values):

AEA AJA
Father-son + .55 (p <  .025) +  .14 (p <  .35)
Mother-son + .69 (p <  .005) + .57 (p <  .025)
Father-daughter +  .59 (p <  .025) + .67 ip <  .005)
M other-daughter + .76 (p <  .0005) + .74 ip <  .005)
Brother-brother + .33 (p <  .15) +  .35 ip <  .15)
Sister-sister +  .42 (p <  .10) +  .76 ip  <  .0005)
Brother-sister + .26 (p <  .20) + .41 ip <  .10)

Note that all of the correlations are positive and eight of the fourteen meet 
the conventional criterion o f significance, p  <  .05. The joint probability that 
this whole set of positive correlations could have arisen by chance if there were 
no true correlation between Vfi and Vk is less than one in a billion.

H eritab ility . Of course, any single kinship correlation (except MZ twins 
reared apart) does not prove that genetic factors are involved in it. The corre­
lation theoretically could be entirely environmental due to the kinships’ shared 
family environment. To determine whether it is the genetic component of mental 
tests’ variance that is mainly reflected by g we have to look at the heritability 
coefficients of various tests. Again, we can apply the method of correlated vec­
tors, using a number of diverse cognitive tests and looking at the relationship 
between the column vector of the tests’ g loadings (Vs) and the column vector 
of the tests’ heritability coefficients (Vh). Each test’s heritability coefficient in 
each of the following studies was determined by the twin method.21

Three independent studies1221 have used MZT and DZT twins to obtain the 
heritability coefficients of each of the eleven subtests of the Wechsler Adult 
Intelligence Scale. The correlations between Vg and V„ were +  .62 (p <  .05), 
+  .61 ip <  .05), and +.55 (p <  .10). A fourth independent study1231 was based 
on a model-fitting method applied to adult MZ twins reared apart in addition to 
MZT and DZT to estimate the heritability coefficients of thirteen diverse cog­
nitive tests used in studies of subjects in the Swedish National Twin Registry. 
The V g X  Vh correlation was + .77 (p <  .025). (In this study, the g factor scores 
[based on the first principal component] had a heritability coefficient of .81.) 
The joint probability24 that these Vs X  V,, correlations based on four independent 
studies could have occurred by chance if there were not a true relationship 
between tests’ g loadings and the tests’ heritability coefficients is less than one 
in a hundred (p <  .01).

M ental R etardation . Another relevant study1251 applied the method of cor­
related vectors to the data from over 4,000 mentally retarded persons who had
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taken the eleven subtests of the Wechsler Intelligence Scales. The column vector 
composed of the retarded persons’ mean scaled scores on each of the Wechsler 
subscales and the column vector of the subscales’ heritability coefficients (as 
determined by the twin method in three independent studies of normal samples) 
were rank-order correlated — .76 (one-tailed p  <  .01), —.46 (p <  .08), and —.50 
(p <  .06). In other words, the higher a subtest’s heritability, the lower is the 
mean score of the retarded subjects (relative to the mean of the standardization 
population of the WISC-R).

The study also tested the hypothesis that Wechsler subtests on which the 
retarded perform most poorly are the subtests with the larger g loadings; that 
is, there is an inverse relationship (i.e., negative correlation) between the vector 
of mean scaled scores and the corresponding vector of their g loadings. This 
hypothesis was examined in four different versions of the Wechsler Intelligence 
Scales (WAIS, WAIS-R, WISC, WISC-R). Each version was given to a different 
group of retarded persons. On each of these versions of the Wechsler test the 
vector of the mean scaled scores and the vector of their g loadings were rank- 
order correlated, giving the following correlation coefficients:

The WAIS is clearly an outlier and appears to be based on an atypical group 
of retarded persons. The vectors of g loadings on all four of the Wechsler 
versions are all highly congruent (the six congruence coefficients range from 
.993 to .998), so it is only the vector of scaled scores of the group that took the 
WAIS that is anomalous. It is the only group whose vector of scaled scores is 
not significantly correlated with the corresponding vectors in the other three 
groups, all of which are highly concordant in their vectors of scaled scores. In 
general, these data show:

1. There is a genetic component in mental retardation.
2. This genetic component reflects the same genetic component that accounts 

for individual differences in the nonretarded population.
3. The genetic component in mental retardation is expressed in the same g 

factor that is a major source of variance in mental test scores in the nonretarded 
population.

D ecom position  o f  P sychom etric g  into G enetic and E nvironm ental C om ­
ponents. The obtained phenotypic correlation between two tests is a composite 
of genetic and environmental components. Just as it is possible, using MZ and 
DZ twins, to decompose the total phenotypic variance of scores on a given test 
into separate genetic and environmental components, it is possible to decompose 
the phenotypic correlation between any two tests into genetic and environmental 
components.26 That is to say, the scores on two tests may be correlated in part

W A IS
W A IS -R - .6 7  (p <  .05) 

- .6 3  (p <  .05) 
- .6 0  (p <  .05)

.0

WISC
WISC-R
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because both tests reflect the same genetic factors common to twins and in part 
because both tests reflect the same environmental influences that are shared by 
twins who were reared together. Therefore, with a battery of n diverse tests, we 
can decompose the n X  n square matrix of all their phenotypic intercorrelations 
(the P matrix) into a matrix of the tests’ genetic intercorrelations (the G matrix) 
and a matrix o f the tests’ environmental intercorrelations (the E  matrix). Each 
of these matrices can then be factor analyzed to reveal the separate contributions 
of genes and environment to the phenotypic factor structure o f the given set of 
tests.

Several studies have been performed using essentially this kind of analysis. I 
say “ essentially”  because the analytic methods of the various studies differ 
depending on the specific mathematical procedures and computer routines used, 
although their essential logic is as described above. These studies provide the 
most sophisticated and rigorous analysis of the genetic and environmental com­
position of g and of some of the well-established group factors independent 
of g.

Thompson et al. (1991) compared large samples of MZ and DZ twin data on 
sets of tests specifically devised to measure Verbal, Spatial, Speed (perceptual- 
clerical), and Memory abilities, as well as tests of achievement levels in Reading, 
Math, and Language. They then obtained ordinary M Z and DZ twin correlations 
and MZ and DZ cross-twin correlations. From these they formed separate 7 X 
7 matrices of G and E correlations. Three of their findings are especially relevant 
to g theory:

1. The phenotypic correlations of the four ability tests with the three achieve­
ment tests is largely due to their genetic correlations, which ranged from .61 
to .80.

2. The environmental (shared and nonshared) correlations between the ability 
tests and achievement tests were all extremely low except for the test of per­
ceptual-clerical speed, which showed very high shared environmental correla­
tions with the three achievement tests.

3. The 7 X 7  matrix of genetic correlations has only one significant factor, 
which can be called genetic g , that accounts for 77 percent of the total genetic 
variance in the seven variables. (The genetic g loadings of the seven variables 
range from .62 to .99.) Obviously the remainder of the genetic variance is con­
tained in other factors independent of g. The authors of the study concluded, 
“ Ability-achievement associations are almost exclusively genetic in origin”  (p. 
164). This does not mean that the environment does not affect the level of 
specific abilities and achievements, but only that the correlations between them 
are largely mediated by the genetic factors they have in common, most of which 
is genetic g , that is, the general factor of the genetic correlations among all of 
the tests.

Separate hierarchical (Schmid-Leiman) factor analyses of two batteries of tests 
(eight subtests of the Specific Cognitive Abilities test and eleven subtests of the 
WISC-R) were decomposed by Luo et al. (1994) into genetic and environmental
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components using large samples of MZT and DZT twins in a model-fitting 
procedure. Factor loadings derived from the matrix of phenotypic correlations 
and the matrix o f genetic correlations were compared.

The phenotypic g  and genetic g  found by Luo et al. are highly similar. The 
correlation between the vector of phenotypic g  loadings and the vector of genetic 
g  loadings was + .88 (p <  .01) for the Specific Cognitive Abilities (SCA) tests 
and +.85 (p  <  .01) for the WISC-R.

A general factor which can be called e n v i r o n m e n t a l  g  was extracted from the 
environmental correlations among the variables. Only the environmental corre­
lations based on the twins’ s h a r e d  e n v i r o n m e n t  are discussed here. (The test 
intercorrelations that arose from the nonsharcd environment yielded a negligible 
and nonsignificant “ general”  factor in both the SCA and WISC-R, with factor 
loadings ranging from - .0 1  to + .35 and averaging +.08.) The correlation be­
tween the vector of phenotypic g  loadings and the vector of (shared) environ­
mental g  loadings was + .28 for the SCA tests and + .09 for the WISC-R. In 
brief, p h e n o t y p i c  g  closely reflects the genetic g, but bears hardly any resem­
blance to the (shared) e n v i r o n m e n t a l  g.

A similar study of thirteen diverse cognitive tests taken by MZ and DZ twins 
was conducted in Sweden by Pedersen et al. (1994), but focused on the non-g 
gcnctic variance in the battery of 13 tests. They found that although genetic g  
accounts for most of the genetic variance in the battery of tests, it does not 
account for all o f it. When the genetic g  is wholly removed from the tests’ total 
variances, some 12 to 23 percent of the remaining variance is genetic. This 
finding accords with the previous study (Luo et al., 1994), which also found 
that 23 percent of the genetic variance resides in factors other than g. Pedersen 
et al. (1994) concluded that “ phenotypic g-loadings can be used as an initial 
screening device to identify tests that are likely to show greater or less genetic 
overlap with g  . . .  if one were to pick a single dimension to focus the search 
for genes, g  would be it”  (p. 141).

Another study1271 focused on genetic influence on the first-order group factors, 
independent of g, in a Schmid-Leiman hierarchical factor analysis, using con­
firmatory factor analysis. The phenotypic factor analysis, based on eight diverse 
tests, yielded four first-order factors (Verbal, Spatial, Perceptual Speed, and 
Memory) plus the second-order factor, g. Using data on large samples of adopted 
and nonadopted children, and natural and unrelated siblings, the phenotypic 
factors were decomposed into the following variance components: genetic, 
shared environment, and unique (nonshared) environment. The variance of phe­
notypic g  was .72 genetic and .28 nonshared environmental effects. Although g  
carries more of the genetic variance than any of the first-order factors, three of 
the first-order factors (Verbal, Spatial, and Memory) have distinct genetic com­
ponents independent of genetic g. (There is no genetic Perceptual Speed factor 
independent of genetic g.) Very little of the environmental variance gets into 
even the first-order factors, much less the second-order g  factor. The environ­
mental variance resides mostly in the tests’ specificities, that is, the residual part



188 The g  Factor
Table 7.2
Phenotypic Correlations (above diagonal) Among Achievem ent Tests, Their Ge­
netic Com ponents (below diagonal), and the First Principal Component (PF1) 
of Each Matrix

Test Eng Math Soc St Nat Sc PF1

English — .65 .71 .70 .83
Mathematics .48 — .62 .67 .76
Social Studies .57 .54 — .76 .85
Natural Science .59 .53 .71 — .87

PF 1 .71 . 65 .83 .84

of the tests’ true-score variance that is not included in the common factors. It 
is especially noteworthy that nearly all of the environmental variance is due to 
nonshared  environmental effects. Shared environmental influences among chil­
dren reared together contribute negligibly to the variance and covariance of the 
test scores.28 In this study of children who all were beyond Grade 1 in school 
and averaged 7.4 years of age, g and the group factors reflect virtually no effects 
of shared environment.

G enetic  g  o f S ch olastic A chievem ent. As noted previously, psychometric g 
is highly correlated with scholastic achievement and both variables have sub­
stantial heritability. It was also noted that it is the genetic component of g that 
largely accounts for the correlation between scores on nonscholastic ability tests 
and scores on scholastic achievement tests. The phenotypic correlations among 
different content areas of scholastic achievement have been analyzed into their 
genetic and shared and nonshared environmental components in one of the larg­
est twin studies ever conducted.1291 The American College Testing (ACT) Pro­
gram provided 3,427 twin pairs, both MZ and DZ, for the study, which 
decomposed the phenotypic correlations among the four subtests of the ACT 
college admissions examination. The four subtests of the ACT examination are 
English, Mathematics, Social Studies, and Natural Sciences.

Table 7.2 shows the phenotypic correlations and their genetic components. 
Table 7.3 shows the shared and nonshared components of the correlations. In­
cluded in the tables is the general factor of each matrix, represented by the first 
principal factor (PF1). Note that most of the phenotypic correlation among the 
achievement variables exists in the genetic components, and the rank order of 
the PF1 loadings for the phenotypic correlations is the same as for their genetic 
components. The components due to both the shared and the nonshared envi­
ronmental effects are relatively small and their first principal factors bear little 
resemblance to the PF1 of the phenotypic correlation matrix. The general factor
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Table 7 .3
Com ponents o f Shared (above diagonal) and Nonshared (below diagonal) Envi­
ronmental Influences Among Achievem ent Tests and the First Principal Com­
ponent (PF1) o f Each Matrix

Test Eng Math Soc St Nat Sc PF1

English -- . 12 .09 .07 .36
Mathematics .05 -- .03 .04 .36
Social Studies .05 .03 — .04 . 17
Natural Science .04 .04 .05 — .21

PF1 .23 .19 .21 .21

of this battery of scholastic achievement tests clearly reflects genetic covariance 
much more than covariance due to the shared, or between-families, environ­
mental influences that many educators and sociologists have long claimed to be 
the main source of variance in overall scholastic achievement.

INBREEDING DEPRESSION AND PSYCHOMETRIC g
Inbreeding depression is an especially interesting phenomenon. Its cause is 

entirely genetic, but it is conceptually distinct from heritability per se, and it is 
predictable from the most basic and universal genetic principles, which are man­
ifested in all sexually reproducing organisms. It is impossible to explain the 
observed consequences of inbreeding in other than genetic terms.1301 It is im­
portant also because it is the most direct indicator of genetic dominance in a 
trait.

The genetic cause of inbreeding depression is dominance. The presence of 
dominance also implies recessiveness. Every gene locus on the chromosome is 
occupied by two alleles, which may have different effects on whatever trait is 
influenced by the gene at the given locus. At every locus, one of the alleles was 
inherited from the individual’s mother, the other from the father. In a polygenic 
trait, some alleles enhance the trait, or have a positive effect, and some detract 
from the trait, or have a negative effect, relative to the average value of the trait 
in the population.

Alleles (whether they have positive or negative effects) may be additive in 
their effects (i.e., their joint effect is simply the sum of the separate effects of 
each allele) or one allele may be dominant over the other (which is recessive), 
such that their joint effect is not additive but rather has the same effect as two 
dominant alleles (this is known as complete dominance). For example, say that 
allele A has a positive effect equal to +1 on the development of a person’s 
height and allele a has a negative effect equal to — 1. If these alleles are additive,
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then all the possible combinations (and their genetic values and relative fre­
quencies) that offspring could inherit from parents who both have the genotype 
A a is as follows:

Additive Dominance

Genotype Genetic Value Relative Frequency Gen. Val. Rel. Freq.
AA + 2  1/4 + 2  1/4
Aa 0 1/2 + 2  1/2
aa  - 2  1/4 - 2  1/4
If, however, there is complete dominance of allele A, then the genetic values of 
the three genotypes would be A A =  +2, A a =  +2, and aa =  —2. In this case, 
three-fourths of the possible genotypes would have a genetic value of + 2  and 
one-fourth would have a genetic value of —2. The genetic value of 0 would not 
occur at all.

The allelic combinations AA and aa are called homozygous; Aa is hetero­
zygous. Notice that dominance only affects the genetic value in the heterozygous 
condition. The difference in genetic values between the heterozygous condition 
under dominance and under additivity (i.e., + 2  — 0 =  +2, in the example) is 
known as dominance deviation, and its effect is to increase the total genetic 
variance.

In our example, the total variance of all the genetic values under additivity 
is 2. Under complete dominance the total variance is 3. The difference between 
these two variances is called the dominance variance, which here equals 1. The 
additive variance (i.e., what remains after dominance variance is accounted for) 
equals 2. Note that even though there is complete dominance of gene action, 
only one-third of the total genetic variance is due to dominance in this example. 
Even when all of the A alleles are dominant and all of the a alleles are recessive 
in the population, as long as both types of alleles exist in the population, there 
will always be some amount of additive genetic variance as well as some dom­
inance variance.

But that is only half of the story of genetic dominance. New and different 
alleles are constantly being created by natural mutations (changes in the molec­
ular structure of DNA in the existing alleles). The effects of the mutated alleles 
are highly random and unpredictable. They act as “ noise”  in the genetic system. 
Their effects range widely on a continuum of their degree of survival advantage 
to the individual organism in competition with other individuals who do not 
possess the particular mutant allele. Every mutant allele must either stand the 
test of survival or be driven to extinction.

Some mutant alleles have lethal effects; the zygote does not develop normally 
and is spontaneously aborted, usually at a very early stage of development. 
(Spontaneous abortions occur in about 25 percent of conceptions in normal, 
healthy women.) Some mutant genes result in birth defects, physical and mental, 
which may reduce the infant’s chances of surviving to maturity or of eventually
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reproducing and passing on the mutant allele to his or her progeny. Most of 
these disadvantageous alleles, therefore, are either eliminated or kept to a very 
low frequency in the population’s gene pool.

If a disadvantageous mutant allele is dominant, it is always expressed in the 
phenotype and will eventually be eliminated, provided it is expressed before 
individuals have reached sexual maturity and reproductive capacity. But if the 
mutant allele is recessive, it will be hidden by dominant alleles in the hetero­
zygous individuals. It will be expressed in the phenotype, and thereby possibly 
be eliminated, only for homozygotes.

The likelihood is very small that (in random mating) both the father and 
mother will carry the same rare mutated recessive allele, but if by chance they 
both are carriers, their progeny will have a one-in-four risk of inheriting a dou­
ble-recessive. This is why we find that most disadvantageous mutants in the 
gene pool turn out to be recessive. They are carried in the heterozygous genes 
and thereby escape phenotypic detection and possible elimination by natural 
selection.

On the other hand, most alleles that confer some degree of phenotypic ad­
vantage tend to be dominant. If the phenotypic advantage of a particular mutant 
allele is great and its disadvantages, if any, are comparatively small, it will 
competitively replace any less advantageous alternate alleles, and in a number 
of generations the trait will rise to complete homozygosity. That is, in our earlier 
example all the genes eventually will be AA. Many of our genes that have 
survived the “ sieve” of natural selection in the course of human evolution thus 
are homozygous in virtually all biologically normal individuals and therefore do 
not contribute to individual differences; they are the basic “ housekeeping” 
genes necessary for viability.

Some genes, however, have phenotypic effects that would be disadvantageous 
to the individual and to the survival of the species, but only if their effects were 
carried to the extreme of complete homozygosity. A middling position on the 
continuum of the trait’s variation is generally more advantageous than either 
extreme. Height is an example. For such traits, there is balanced rather than 
directional selection. Balanced selection favors the perpetuation of heterozy­
gosity and maintains genetic variance in the trait.

In some cases, the heterozygous condition has advantaging effects not seen 
in either homozygous extreme. The recessive sickle cell allele (a) is a classic 
example: The common heterozygous condition (Aa) confers a degree of im­
munity to malaria, but the rare homozygous condition (aa) results in the serious 
and often fatal disease known as sickle cell anemia. The recessive allele is 
therefore maintained in those parts of the world where malaria is prevalent. 
When malaria is abolished, the heterozygous form of the sickle cell gene no 
longer confers any advantage to survival and the frequency of the recessive 
allele gradually diminishes to zero (or to the spontaneous mutation rate).

Genetic dominance of certain traits is itself a product of the evolutionary 
process. A newly mutated allele that suppresses the phenotypic expression of
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all other alleles that are disadvantageous to the trait thereby becomes an advan­
tageous dominant allele. It is therefore positively selected and its frequency 
increases over the course of evolution. Consequently, it is found that traits that 
are advantageous to survival and reproduction in successive generations (known 
as “ fitness”  in the Darwinian sense) show more genetic dominance. That is, 
more of the trait-enhancing genes become dominant and more of the genes with 
neutral or disadvantageous effects on the trait become recessive. Artificial se­
lective breeding to enhance a certain trait in the progeny, for example, results 
in a decrease in the proportion of additive genetic variance (indexed by the 
narrow heritability) and an increase in the proportion of dominance variance. 
Additive gene effects show up in the phenotype and thus can be selected for in 
an artificial breeding program, making it possible to increase the frequency of 
the trait-enhancing genes and to eliminate the genes with neutral or negative 
effects.

With complete additivity, the A A  and aa genes can be easily separated and 
(for the purposes of our example) the less desirable aa genes can be eliminated 
from the strain. The additive genetic variance, therefore, quickly reduces to zero. 
With complete dominance, however, the homozygous A A  and the heterozygous 
A a are phenotypically indistinguishable. In heterozygous individuals, therefore, 
there is no basis for phenotypical selection against a; only the phenotypic effect 
of aa is an infallible guide for culling out the individuals in each generation 
who carry the recessive a allele. The a alleles in the heterozygotes escape the 
grim reaper’s scythe.

Thus, as additive genetic variance decreases with selection (because the rel­
ative frequency of AA  increases while aa decreases), the dominance variance 
increases. Considerable dominance variance in a trait is therefore an indication 
that the trait has undergone genetic selection for a number of generations, either 
artificial selection or natural selection. If the agent is natural selection, it implies 
that the trait is (or has been in the past) a “ fitness character.”  That is to say, a 
certain genetic value (whether it be low, medium, or high) of the allele as 
expressed phenotypically has been advantageous to survival in the particular 
environment in which the phenotype developed.

Inbreeding depression is the weakening or diminution of a phenotypic trait 
in the offspring of parents who are genetically related. The coefficient of in- 
breeding is equal to one-half the genetic correlation between the mated parents, 
assuming the parents are not themselves inbred. A zero coefficient between 
unrelated mates is assumed in the general mating population, although in most 
racially homogeneous mating populations the average inbreeding coefficient is 
slightly greater than zero, because much of the population is descended, over 
many generations, from common stock. Most inbreeding studies are based on 
marriages of first cousins or second cousins; a few are based on incestuous 
matings between a parent and its offspring or between full siblings.

All persons carry many recessive alleles and nearly all of the seriously del­
eterious alleles that all normal persons carry are recessive. The negative effects
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of the overwhelming majority of these unfavorable recessive alleles are sup­
pressed by the corresponding dominant alleles at the same locus. That is, the 
deleterious effects of the recessives are hidden by the dominant alleles in the 
heterozygous condition. In any two genetically unrelated persons, it is unlikely 
that the same deleterious recessive allele will be carried at the same chromo­
somal locus by both persons, so if they mate and have offspring there is a very 
small probability of the double (homozygous) recessive that results in a phe­
notypic disadvantage.

However, if a person mates with a close relative, they both have many of the 
same genes inherited from a common ancestor. (For example, first cousins have 
one pair of grandparents in common.) Consequently, in persons who are related, 
the “ bad”  recessives are much more likely to occur at the same loci than in 
unrelated persons. As a result, the offspring of related persons have a greatly 
increased probability of receiving a double-recessive gene (with the consequent 
deleterious effect). This is known as inbreeding depression.

Inbreeding can adversely affect any genetic trait that is controlled by both 
dominant and recessive alleles, where the dominant allele is the more generally 
advantageous, as is usually the case. Note that inbreeding depression could not 
occur without genetic dominance, because without dominance the many reces­
sive alleles could not remain hidden in the offspring of unrelated mates, only 
to later appear as a double dose in the offspring of genetically related mates.

The presence of dominance variance in heritable traits can be detected with 
biometrical methods that compare the parent-child correlation with the full- 
sibling correlation and half-sibling correlation. Without dominance the expected 
parent-child genetic correlation and the full-sibling genetic correlation are ex­
actly the same ( +  .50), and the half-sibling correlation is exactly half the sibling 
correlation ( +  .25). Differences from these expected values indicate dominance 
and the magnitude can be used to estimate its amount. Only traits in which some 
of the total genetic variance includes dominance variance are subject to inbreed­
ing depression in the offspring of genetically related mates.

The inbreeding effect on a given trait is measured by the difference between 
the mean of a group of inbred offspring and the mean of a group of noninbred 
offspring, with the two groups matched on age and relevant parental character­
istics. Inbred offspring have a somewhat lower mean (when the trait-enhancing 
allele is dominant) than noninbred offspring.

One other theoretically predictable effect of inbreeding is an increase in var­
iance of the trait in the inbred group. Studies of such inbred offspring have 
consistently shown the theoretically expected effects of inbreeding on many 
metric physical traits, such as fetal and infant viability, birth weight, height, 
head circumference, chest girth, muscular strength, resistance to infectious dis­
ease and dental caries, vital capacity, visual and auditory acuity, and rate of 
physical maturation. Inbreeding depression is also seen in visual and auditory 
reaction times.13" When inbreeding is between first cousins, as in most studies, 
the effect on physical traits is generally quite small, typically averaging about
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.050 to ,10c. Interestingly, the average effect size (. 18o) of inbreeding on re­
action times is somewhat greater than for most purely physical traits. The Gal­
tonian notion that visual and auditory reaction times were Darwinian fitness 
characters in the evolution of behavioral capacity in humans is apparently not 
so far-fetched.

Considering the genetic and evolutionary “ fitness”  implications of inbreeding 
depression and the fact that it is manifested in a number of physical traits, it 
would seem especially interesting to know if inbreeding depression is also man­
ifested in the realm of mental abilities. Do IQ tests and other indices of cognitive 
ability also show inbreeding depression in the offspring of consanguineous par­
ents?

Certainly psychometric tests were never constructed with the intention of 
measuring inbreeding depression. Yet they most certainly do. At least fourteen 
studies of the effects of inbreeding on mental ability test scores— mostly IQ— 
have been reported in the literature.132' Without exception, all of the studies show 
inbreeding depression both of IQ and of IQ-correlated variables such as scho­
lastic achievement. As predicted by genetic theory, the IQ variance of the inbred 
is greater than that of the noninbred samples. Moreover, the degree to which 
IQ is depressed is an increasing monotonic function of the coefficient of in- 
breeding. The severest effects are seen in the offspring of first-degree incestuous 
matings (e.g., father-daughter, brother-sister); the effect is much less for first- 
cousin matings and still less for second-cousin matings. The degree of IQ de­
pression for first cousins is about half a standard deviation (seven or eight IQ 
points).

In most of these studies, social class and other environmental factors are well 
controlled. Studies in Muslim populations in the Middle East and India are 
especially pertinent. Cousin marriages there are more prevalent in the higher 
social classes, as a means of keeping wealth in family lines, so inbreeding and 
high SES would tend to have opposite and canceling effects. The observed effect 
of inbreeding depression on IQ in the studies conducted in these groups, 
therefore, cannot be attributed to the environmental effects of SES that are often 
claimed to explain IQ differences between socioeconomically advantaged and 
disadvantaged groups.

These studies unquestionably show inbreeding depression for IQ and other 
single measures of mental ability. The next question, then, concerns the extent 
to which g itself is affected by inbreeding. Inbreeding depression could be 
mainly manifested in factors other than g, possibly even in each test’s specificity. 
To answer this question, we can apply the method of correlated vectors to in- 
breeding data based on a suitable battery of diverse tests from which g can be 
extracted in a hierarchical factor analysis. I performed these analyses1331 for the 
several large samples of children born to first-and second-cousin matings in 
Japan, for whom the effects of inbreeding were intensively studied by geneticists 
William Schull and James Neel (1965). All of the inbred children and compa­
rable control groups of noninbred children were tested on the Japanese version
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of the W echsler Intelligence Scale for Children (WISC). The correlations among 
the eleven subtests of the WISC were subjected to a hierarchical factor analysis, 
separately for boys and girls, and for different age groups, and the overall av­
erage g loadings were obtained as the most reliable estimates of g for each 
subtest. The analysis revealed the typical factor structure of the WISC— a large 
g factor and two significant group factors: Verbal and Spatial (Performance). 
(The Memory factor could not emerge because the Digit Span subtest was not 
used.) Schull and Neel had determined an index of inbreeding depression on 
each of the subtests. In each subject sample, the column vector of the eleven 
subtests’ g loadings was correlated with the column vector of the subtests’ index 
of inbreeding depression (ID). (Subtest reliabilities were partialed out of these 
correlations.) The resulting rank-order correlation between subtests’ g loadings 
and their degree of inbreeding depression was +  .79 (p  <  .025). The correlation 
of ID with the Verbal factor loadings (independent of g) was + .50 and with the 
Spatial (or Performance) factor the correlation was —.46. (The latter two cor­
relations are nonsignificant, each with p  <  .05.) Although this negative corre­
lation of ID with the spatial factor (independent of g) falls short of significance, 
the negative correlation was found in all four independent samples. Moreover, 
it is consistent with the hypothesis that spatial visualization ability is affected 
by an X-linked recessive allele.34 Therefore, it is probably not a fluke.

A more recent study1351 of inbreeding depression, performed in India, was 
based entirely on the male offspring of first-cousin parents and a control group 
of the male offspring of genetically unrelated parents. Because no children of 
second-cousin marriages were included, the degree of inbreeding depression was 
considerably greater than in the previous study, which included offspring of 
second-cousin marriages. The average inbreeding effect on the WISC-R Full 
Scale IQ was about ten points, or about two-third of a standard deviation.1361 
The inbreeding index was reported for the ten subtests of the WISC-R used in 
this study. To apply the method of correlated vectors, however, the correlations 
among the subtests for this sample are needed to calculate their g loadings. 
Because these correlations were not reported, I have used the g loadings obtained 
from a hierarchical factor analysis of the 1,868 white subjects in the WISC-R 
standardization sample.1371 The column vector of these g loadings and the column 
vector of the ID index have a rank-order correlation (with the tests’ reliability 
coefficients partialed out) of + .83 (p <  .01), which is only slightly larger than 
the corresponding correlation between the g and ID vectors in the Japanese 
study.

In sum, then, the g factor significantly predicts the degree to which perform­
ance on various mental tests is affected by inbreeding depression, a theoretically 
predictable effect for traits that manifest genetic dominance. The larger a test’s 
g loading, the greater is the depression of the test scores of the inbred offspring 
of consanguineous parents, as compared with the scores of noninbred persons. 
The evidence in these studies of inbreeding rules out environmental variables 
as contributing to the observed depression of test scores. Environmental differ­



196 The g  Factor

ences were controlled statistically, or by matching the inbred and noninbred 
groups on relevant indices of environmental advantage.

H ybrid  V igor and g. Hybrid vigor (also known as heterosis) results from 
“ outbreeding”  and has the opposite effect of inbreeding. The same genetic 
mechanism— dominance— that is responsible for inbreeding depression can 
work in the opposite direction to cause heterosis. When the alleles that enhance 
the trait are genetically dominant, the level of the phenotypic trait is raised in 
outbred individuals. Outbreeding is defined as mating between individuals who 
are genetically more distant from one another than the average genetic distance 
between persons picked at random from the mating population. Genetic distance 
is an inverse function of the number of genes that two persons have in common 
from the same ancestors. Heterosis results from the creation of more heterozy­
gous genes (e.g., A a), which allows the phenotypic expression of advantageous 
dominant alleles; and there is a corresponding reduction in the number of phe- 
notypically disadvantageous double-recessive alleles (e.g., aa).

Cross-racial mating is an obvious example of outbreeding. However, in hu­
mans the possible range of outbreeding effects is not symmetrical with the pos­
sible range of inbreeding effects, because the major human races already have 
such a low average coefficient of inbreeding that cross-racial mating cannot 
possibly lower the inbreeding coefficient nearly as much as mating between 
close relatives (i.e., inbreeding) can raise it. Nevertheless, heterosis has been 
found at statistically significant levels in the offspring of interracial mating. The 
heterotic effect is strongest, of course, when neither of the outbreeding mates 
has any similarly outbred ancestors in the historic past.

Because the effects of outbreeding are opposite to those of inbreeding on all 
the same traits, one should theoretically expect to find the positive effect of 
heterosis on psychometric g, even though the effect may be relatively small 
compared to the opposite effect, inbreeding depression. This theoretical predic­
tion was tested in a study conducted in Hawaii,1381 where there are many inter­
racial marriages between Americans of European ancestry (AEA) and Americans 
of Japanese ancestry (AJA). A group of interracial married couples with children 
and a group of intraracial couples were recruited; the two groups were nearly 
identical in educational and occupational levels. The children from both groups 
of parents were given a battery of fifteen highly diverse mental tests. Heterosis 
was measured by the standardized difference between the mean scores of the 
interracial (outbred) children and the intraracial (nonoutbred) children. Thirteen 
of the fifteen tests showed the predicted heterotic effect (i.e., higher scores in 
the interracial children). (The two tests that showed no heterotic effect were 
mazes and verbal fluency.) A test well known for its high g loading, Raven’s 
Progressive Matrices, showed a heterotic effect of + .30o , as compared with the 
average of + .1 2o  on the other fourteen tests. Factor scores based on the first 
principal component of the fifteen tests (an estimate of the g factor of this 
battery) showed a heterotic effect of + .26o  (p  <  .001).

The method of correlated vectors applied to these data tests whether the dif-
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fereni hetcrotic effects on the various tests are specifically related to the tests’ 
g loadings. The column vector of the heterosis index on each of the fifteen tests 
and the column vector of the tests’ g loadings show a rank-order correlation 
(with tests’ reliability coefficients partialed out) of + .52 (p <  .05). This finding 
for heterosis, along with the findings for inbreeding depression, leaves little 
doubt that a significant part of the genetic basis of psychometric g is attributable 
to dominance of the alleles that to some degree enhance phenotypic mental 
abilities.

NOTES
1. I have found that many people outside the field of differential psychology (in­

cluding a majority o f psychologists and other social scientists) are very little aware of 
the presently vast methodological and empirical research literature directly related to the 
genetics of human mental ability, not to mention many other behavioral traits. Since its 
inception in 1970, the Behavior Genetics Association has published it own research 
journal (Behavior Genetics), but much o f the research in this field also appears in many 
other psychology and genetics journals (mostly in Intelligence and in Personality and 
Individual D ifferences). It is an almost full-time job  just to keep up with the research 
literature in one specialized area of the whole field o f behavior genetics, such as the 
genetics of mental ability. For those who have not devoted their career to this field, there 
are fortunately many excellent summaries that describe the essential logic of quantitative 
genetics methodology and report the main empirical findings derived from these methods 
in the study o f human mental abilities. Various summaries can be recommended accord­
ing to the am ount of specialized background the reader may bring to them.

My own (Jensen, 1981a, Chapter 3, pp. 74-127) attempt to explain the genetics of 
mental ability as clearly and simply as possible for readers with no technical background 
whatsoever in this field begins with the earliest study by Galton, introduces the basic 
concepts of Mendelian and quantitative genetics, and succinctly reviews the main findings 
regarding the various sources o f genetic and environmental variance in IQ. For those 
who have no prior knowledge of how behavioral genetics “ works,”  this chapter may 
serve as an essential prerequisite for any of the other items listed below. Another good 
introduction to behavior genetics methodology, briefer but slightly more technical than 
Jensen’s (1981a), is by Eysenck (1984a). Plomin (1990) offers a more extended elemen­
tary treatment. The reading level in Plomin (1994) presents no real technical difficulty 
for the uninitiated, but its main theme is somewhat specialized and would probably be 
more appreciated by readers who have some familiarity with the standard material pre­
sented in the previously mentioned references. Plomin, DeFries, & McCIearn (1990) 
provide one of the standard introductory textbooks of behavioral genetics. There are also 
several fairly com prehensive reviews of genetic research on human abilities that assume 
some knowledge of the terminology and methodology of quantitative genetics (but do 
not make them absolutely essential for understanding the main conclusions): Bouchard, 
1993; Bouchard et al., 1996; Plomin, 1988; Scarr & Carter-Saltzman, 1982; and Van- 
denberg & Vogler, 1985. A book edited by Plomin & McCIearn (1993) presents ele­
mentary accounts of specialized topics in human behavioral genetics, although the first 
two chapters introduce the most basic general principles of quantitative genetics. Ac­
counts of the historical and controversial aspects of the so-called “ nature-nurture’’ debate
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in modern times are well dealt with by Bouchard, 1987; Plomin, 1987; Loehlin, 1984; 
and Snyderman & Rothman (1988), who also provide good explanations of the key 
concepts in behavior genetics. The most recent (but highly technical) text on the statistical 
methodology o f quantitative genetic research using twin and family data is by Neale and 
Cardon, 1992. The many citations found in all of the above-listed references probably 
include virtually the entire literature on the genetics of mental ability since about 1970.

2. Because a WF correlation is based on differences between siblings, it could, for 
that reason alone, be sm aller than the BF correlation, which is based on the mean of the 
siblings. This is because a difference between two positively correlated variables, say X
-  Y, always has a lower reliability coefficient than the reliability of either X or Y. The 
sum or mean o f two positively correlated variables, X +  Y, always has higher reliability 
than that of either variable alone. Only if X and Y are measured with perfect reliability 
will the values X - Y  and X + Y  both have perfect reliability. The correlation between 
sibling differences and the correlation between sibling sums (or means) can be corrected 
for attenuation (unreliability) by methods explicated in Jensen, 1980b, p. 158.

3. The BF correlation o f X and Y is the correlation between the sums of the siblings 
in each family on variable X and on variable Y. The W F correlation of X and Y is the 
correlation between the signed difference between pairs of siblings on variable X and on 
variable Y. (For further discussion, see Chapter 6, p. 141.)

4. Jensen, 1980b.
5. According to Gorsuch (1983), “ In the case of orthogonal components [i.e., prin­

cipal components] where factor scores have means of zero and variances of one, the 
result o f calculating coefficients of congruence on the factor patterns is identical to cor­
relating the exact factor scores and is, indeed, a simplified formula for that correlation” 
(p. 285).

6. Nagoshi & Johnson, 1987.
7. Jensen (1978) provides a comprehensive review of the effects of assortative mating 

(and inbreeding) on behavioral traits, with detailed explication of the genetic mechanisms 
through which these effects occur.

8. Bouchard et al.(1990) summarizes the findings of the Minnesota study of MZ 
twins reared apart. Bouchard & McGue (1981) is a summary of all every kind of kinship 
correlation for IQ and similar cognitive measures reported in the world literature, com ­
prising over 100 studies and some 40,000 kinship pairs. Estimates of IQ heritability based 
on all of these kindship correlations, using the latest methods in modeling techniques, 
place the broad heritability between about .50 and .60, the narrow heritability between 
about .30 and .40 (Loehlin, 1989; Plomin & Rende, 1991). It should be noted that the 
world literature on kinship correlations is based largely on mental measurements obtained 
from samples of children and adolescents, and it is known that heritability increases from 
early childhood to later maturity. Therefore, if adult kinships were equally represented 
in this meta-analysis, the overall heritabilities would be slightly higher.

9. The fifty-three twin pairs (MZA) reported by Cyril Burt (1966) five years before 
his death in 1971 have routinely been omitted from all meta-analyses of twin data ever 
since their accuracy and authenticity were first brought into question (see Jensen, 1974a). 
Jensen (1992b) has reviewed virtually the entire literature on the so-called Burt scandal, 
and an authoritative analysis of the main substantive elements of the Burt affair can be 
found in a book by several experts, edited by M ackintosh (1995). Although there is no 
reputable evidence that Burt’s data on MZA were falsified, errors and ambiguities in 
Burt’s reports o f these data make it unwise to include them in summaries of research on
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MZA. However, Burt’s results 0 MZA =  + .771) are so closely in line with those of other 
studies, inclusion o f his data would make little difference. Whereas the W-weighted mean 
rM/A based on all studies but excluding Burt’s data is + .749, the ^-w eighted mean rMZA 
based on all studies including Burt’s data is + .755— a difference of .006.

10. Bouchard et al. (1990); Bouchard (1993), pp. 40-43.
11. P au l, 1980.
12. McGue et al., 1993, pp. 60-67; Scarr, 1989, pp. 103-105; Segal, 1997; Teasdale 

& Owen, 1984.
13. McGue et al., 1993, pp. 60-67; Scarr, 1989, pp. 103-105; Segal, 1997.
14. It is important to be clear about what is meant by the shared and the nonshared 

environment. (Other paired terms with exactly the same meaning are: between-family 
(BF) and within-family (WF), common and specific, systematic and random.) The shared 
environment is whatever aspects of the environment that cause individuals (of a given 
degree of genetic kinship) who are reared together to be more alike, on average, than 
individuals (of the same degree of kinship) who were not reared together. The nonshared  
environment are those aspects of the environment that cause differences between indi­
viduals who are reared together. To say that the effect of the shared environment is nil 
is not to say that there are no environmental differences between families, but rather that 
these family differences in environment, whatever they may be, are not reflected in 
phenotypic differences in the trait in question, e.g., g. Nonshared environmental influ­
ences that cause differences between persons who are reared together in the same family 
are unique to each individual in the family.

15. There is now a considerable literature on this phenomenon of the vanishing effect 
o f the shared environment on IQ. Nearly all of it is referenced in the following major 
reviews o f this subject: Jensen, 1997a; McGue at al., 1993; Plomin, 1994; Plomin & 
Daniels, 1987: Plomin & Bergeman, 1991: Rowe, 1994; Scarr, 1989, 1996, 1997; Scarr 
& McCartney, 1983. Since virtually all of the studies of the effect o f shared environment 
on IQ are based on adopted children, and since adoptive parents certainly do not provide 
an environment that is at all typical of the poorest or underclass segment in our society, 
it is questionable whether the present evidence on the disappearing effect of shared 
environment would generalize to the total population if its underclass were included. 
Aspects o f the biological environment, prenatal and postnatal, that are unfavorable for 
normal brain development, such as poor maternal nutrition, alcohol or drug abuse, and 
physical or psychological child neglect, are likely to be common to all of the offspring 
of a given mother and would therefore constitute a between-families source of environ­
mental influence on mental development. These conditions are considered in more detail 
in Chapter 12, pp. 500-509.

16. These concepts were introduced in a now classic paper by Plomin, DeFries, & 
Loehlin, 1977.

17. Jensen. 1997a. This article is mainly an analysis of the form of the distribution 
of the IQ differences found within pairs of MZ twins reared together (MZT). MZT 
provide the only data from which nonshared environmental effects can be directly meas­
ured, as this is the only part of the total variance in which they differ (except for random 
error of measurement, which can be determined by knowing the measurem ent’s reliability 
coefficient). The IQ correlation between MZ twins reared together reflects all of the 
genetic variance and all of the shared environmental variance; the difference between 
MZ twins reflects only nonshared environmental effects.

18. Gill, et al., 1985; Heath et al., 1985; Martin, 1975.
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19. These are found in two studies: (1) the Nagoshi & Johnson (1986) study, based 

on fifteen tests given to large samples (1,816 pairs) of spouses in three racial/ethnic 
groups: Americans of European ancestry (AEA), Americans of Japanese ancestry (AJA), 
and Koreans; (2) the study by M ascie-Taylor (1989), based on spouse correlations on 
seven subtests o f the W echsler Adult Intelligence Scale in two British samples totaling 
about 343 pairs.

20. From Nagoshi & Johnson, 1986, p. 205. Koreans were omitted because o f incom­
plete kinship data for siblings; however, the Vk X Ve correlations for the parent-offspring 
kinship averaged +.45.

21. The twin method of estimating heritability consists essentially of either obtaining 
the correlation between MZ twins reared apart (MZA), which is a direct estimate of 
broad .heritability, or using the correlations of MZ twins reared together (MZT) and of 
DZ twins reared together (DZT). The simplest formula for heritability (h2) is known as 
the Falconer formula (after Desmond S. Falconer, Professor of Genetics in Edinburgh 
University and author of a classic textbook on quantitative genetics [Falconer, 1981, p. 
185]): h2 =  2(rMZT — rDZX). This formula does not take account o f assortative mating 
and slightly underestim ates h2 when the tw ins’ parents are assortatively mated on the 
trait in question. Assortative mating has no effect on the MZ twin correlation but in­
creases the DZ correlation. W hen the degree of assortative mating is known, the theo­
retical genetic correlation (p) between DZ twins (or any full siblings) can be estimated 
and used in the following formula to obtain a more accurate value of the heritability:

=  O 'm z t  — 'd z t V O  ~  P )-

(This formula and the formula for obtaining p are fully explicated in Jensen, 1967, 1976.) 
These formulas for h2 are now seldom used, since confirmatory or statistical hypothesis 
testing methods for fitting models based on LISREL programs are used for estimating 
the components (and subcomponents) of genetic and environmental variance from twin 
and other family data. (See textbook on these methods by Neale & Cardon, 1992.) The 
modern model-fitting procedures mainly have statistical hypothesis-testing advantages 
over the simple heritability formulas mentioned above, although the estimates o f the 
heritability coefficient per se obtained by the different methods (assuming all of the same 
data are taken into account) scarcely differ.

22. Block (1968); Segal (1985); Tambs et al. (1984).
23. Pedersen et al, 1992, 1994. An important sequel to this paper with reference to g 

is by Plomin, Pedersen, Lichtenstein, & McCIearn, 1994.
24. The method for calculating the joint probability of obtaining by chance (i.e., as­

suming the null hypothesis is true) the set of N p values obtained in N independent 
studies is given by R. A. Fisher (1970, pp. 99-101).

25. Spitz, 1988.
26. The genetic correlation between variables X and Y can be obtained from the cross- 

M in  correlation (rMXxy) of M Z twins reared apart, in which case the average cross-twin 
correlation estimates the genetic covariance between X and Y, and the genetic correlation 
(rG), therefore, is the genetic covariance divided by the total genetic variance in the two 
variables, which is the geometric mean of the heritability coefficients of the two variables, 
i.e., rG = rMXxy /Jhx2-hY2. More frequently the genetic correlation is determined from the 
cross-twin correlations of MZ and DZ twins. Say the two members of a pair of twins 
are called 1 and 2, and the scores o f twin 1 on variables X and Y are X, and Y, and of 
twin 2 are X2 and Y2. The cross-twin correlation between variables X and Y is obtained
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separately for MZ and DZ twins. For each twin type, the average (via the geometric 
mean) of the two cross-twin correlations, X, X Y2 and X X2 X Y ,, is the best estimate 
of the cross-twin correlation between X and Y. Given the average cross-twin correlations 
(rM/ and rn7)  for M Z and DZ twins and the heritability coefficients (hx2 and hw2) of X 
and Y, the genetic correlation of X and Y (r0) is: ra =  2(rMZ — rDZ)/ Jhx -hY2. The 
environmental correlation, rE, can be obtained from the phenotypic correlation (rP) of X 
and Y, their genetic correlation (r0), the heritability coefficients of X and Y, and the 
environmental variances of X and Y, i.e., (rxx -  1) and (rYY -  1), where rxx and rYY 
are the reliability coefficients o f X and Y. The environmental correlation of X and Y, 
then, is:

'V. = ('V “ j(hx2-hy2)ra/j(rxx -  ltx2) (rYY -  Y2).

These are the two simplest methods for determining the genetic and environmental 
correlations between two variables. When MZA in addition to M ZT and DZT or other 
kinships or adoptees are included in the data set, they all can be analyzed simultaneously 
to estimate some o f the specific subcomponents of the genetic and environmental cor­
relations. The methodology for doing this makes use of highly complex computer rou­
tines which today are o f major interest to experts and advanced students in quantitative 
genetics. They are described in the textbook by Neale & Cardon (1992).

27. Cardon et al., 1992.
28. Amount of total phenotypic variance accounted for by common factor variance 

(i.e., g + group factors) =  47%. Phenotypic common factor variance accounted for by 
g = 52%. Phenotypic common factor variance accounted for by all group factors (in­
dependent o f g) =  48%. Phenotypic common factor variance due to genetic influences 
=  85%; due to nonshared environmental influences =  15%; due to shared environmental 
influences =  0%. Common factor genetic variance contained in phenotypic g = 44%. 
Common factor genetic variance contained in all phenotypic group factors (independent 
of g) =  56% (Verbal =19% , Spatial =  19%, Memory =  17%, Perceptual S p e ed s  0). 
Variance in phenotypic g due to genetic influences = 72%; due to nonshared environ­
mental influences =  28%; due to shared environmental influences =  0. From the analyses 
given in Cardon et al. (1992), it is possible to calculate a rough estimate of the congru­
ence coefficient between the vector of phenotypic g loadings and the vector of genetic 
g loadings; it is + .955 , which implies that the phenotypic g factor closely reflects the 
genetic g factor— not surprising when the heritability of the phenotypic g is .72. The 
correlation between phenotype and genotype is the square root of the heritability, which 
in this case is J?12 =  .85.

29. Page & Jarjoura, 1979.
30. A detailed explanation of the genetic mechanism that causes inbreeding depression 

and a review o f some of the most striking empirical studies o f it, particularly the effect 
of incestuous mating on the offspring, can be found in Jensen, 1978. Some of the evo­
lutionary implications o f genetic dominance, which is reflected in inbreeding depression, 
are discussed in Jensen, 1983.

31. Much o f the evidence on inbreeding depression has been reviewed by Daniels et 
al., 1982. Gibbons (1993) reviews a recent conference on the incidence of inbreeding in 
different parts of the world.

32. Adams & Neel, 1967; Afzal, 1988; Afzal & Sinha, 1984; Agrawal et al., 1984; 
Badaruddoza & Afzil, 1993; Bashi, 1977; Book, 1957; Carter, 1967; Cohen et al., 1963;
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Inbaraj & Rao, 1978; Neel, et al., 1970; Schull & Neel, 1965; Seemanova, 1971; Slatis 
& Hoene, 1961.

33. Jensen, 1983.
34. Bock & Kolakowski, 1973. The hypothesis that spatial ability is affected to some 

degree by an X-linked recessive allele is consistent with the well-established finding of 
a large sex difference (favoring males) in spatial visualization ability. (Only about one- 
fourth o f females exceed the male median in tests of spatial ability.) The hypothesis of 
X-linkage, however, also predicts different parent-offspring correlations in spatial ability 
depending on the sex o f each member o f the correlated pair, and the X-linkage hypothesis 
for spatial ability has not consistently met this test in several studies. It now appears that 
hormonal factors, particularly testosterone, may affect spatial ability. It is also possible 
that X-linkage plays a part but acts as a threshold variable, with its expression depending 
on the individual’s testosterone level. This is still an unsettled issue in behavioral genetic 
research; a more definitive answer must await further research.

35. Badaruddoza & Afzal, 1993.
36. Another study of all-male adolescent offspring of first-cousins in Rajasthan, India, 

using the highly g-ioaded Standard Raven Matrices test, showed a noninbred-inbred 
difference o f 0 .55c, equivalent to about eight IQ points (Agrawal, Sinha, & Jensen, 
1984). There were 86 inbred and 100 noninbred subjects.

37. A Schmid-Leiman hierarchical factor analysis o f the WISC-R, separately for 
whites and blacks, is given in Jensen & Reynolds, 1982, Table 3.

38. Nagoshi & Johnson, 1986.



Information Processing and g
Chapter 8

Psychometric g can be studied more analytically by means of ele­
mentary cognitive tasks (ECTs) than is possible with the conven­
tional IQ tests with items based on past acquired knowledge, 
reasoning, and problem solving requiring the concerted action of a 
number of relatively complex cognitive processes. A particular ECT 
is intended to measure a few relatively simple cognitive processes, 
independently of specific knowledge or information content. Each 
ECT is devised to tap a somewhat different set of cognitive proc­
esses, and performance on two or more different ECTs yields data 
from which individual differences in distinct processes can be meas­
ured, such as stimulus apprehension, discrimination, choice, visual 
search, scanning of short-term memory (STM), and retrieval of in­
formation from long-term memory (LTM).

ECTs typically involve no past-learned information content, and 
in those that do, the content is so familiar and overlearned as to be 
common to all persons taking the ECT, as can be shown on a non­
speeded version of the ECT. Most ECTs are so simple that every 
person in the study can perform them easily, and individual differ­
ences in performance must be measured in terms of response time 
(RT). The theoretically most interesting ECTs are those with RTs 
of less than one second and with response error rates close to zero. 
The subject’s median RT (over n number of trials) and the subject’s 
intraindividual variability of RTs (measured as the standard devia­
tion of RT, or RTSD, over n trials) are of particular interest. Another 
type of ECT, known as Inspection Time (IT), measures sheer speed 
of perceptual discrimination (visual or auditory) independently 
of RT.

Measures of RT, RTSD, and IT derived from the various ECTs
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are correlated with IQ. For single ECTs, the correlations average 
about - .3 5 , ranging from about —.10 to —.50, depending on the 
complexity or number of distinct processes involved in the ECT. 
Some processes are more strongly correlated with IQ than others. 
ECTs that strain the capacity of working memory generally have 
larger correlations with IQ. A composite score based on the RTs 
and RTSDs from several different ECTs, thereby sampling a greater 
number of different processes, typically correlates between —.50 and
— .70 with IQ. (Recall that the average correlation between various 
standard IQ tests is about .80.) Factor analysis and the method of 
correlated vectors show that it is the g component of IQ (or of any 
other kind of cognitive test) that is almost entirely responsible for 
the correlations between ECTs and conventional psychometric tests. 
RT and RTSD show only negligible loadings on group factors in­
dependent of g.

The RT X  g correlation is not explained by speed-accuracy trade­
off, use of strategies, or motivation. Nor can the correlation be at­
tributed to correlating RT with speeded psychometric tests. Most 
studies of the RT X  g correlation are based on untimed or non­
speeded IQ tests. Moreover, the RTs of ECTs have near-zero load­
ings on the speed-of-test-taking factor that emerges from some factor 
analyses of test batteries that include speeded tests.

The RT X g correlation reflects individual differences in the speed 
and efficiency (i.e., trial-to-trial consistency of RT, as measured by 
RTSD) of information processing. As there is a general factor of 
speed of processing common to virtually all ECTs, and as this gen­
eral speed-of-information-processing factor is highly loaded on psy­
chometric g, it is hypothesized that g is explainable, at least in part, 
in terms of the speed and efficiency of information processing.

The physiological properties of the brain that might account for 
the speed-of-processing aspect of g are not yet known completely, 
but it seems safe to say that they would have to be properties that 
are common to all regions and modules of the brain that subserve 
cognitive functions in which there are reliable individual differences 
in the neurologically normal population. One obvious candidate is 
individual differences in nerve conduction velocity (NCV). Brain 
NCV increases along with measurements of mental growth from 
childhood to maturity and decreases along with mental decline in 
old age. NCV is also significantly correlated with IQ (Raven matri­
ces) in college students. (The great theoretical importance of this 
finding, based on a single study, absolutely demands its replication.) 
Periodic oscillation of the synchronized action potentials of groups 
of neurons has been hypothesized to account for intraindividual var­
iability (RTSD) in ECTs. It is also hypothesized that random bio-
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logical “ noise”  in the neural transmission of information in the 
brain causes slower and less efficient information processing, indi­
vidual differences in which constitute some part of g. NCV and 
“ noise”  in neural transmission are related to the degree of myeli- 
nation of nerve fibers, which may be the major physiological vari­
able underlying g. Considerable empirical evidence indicates a 
relationship between myelin and other physiological and behavioral 
phenomena that are correlated with g. Structural, neural-net, or “ de­
sign”  features of the brain have scarcely been investigated in rela­
tion to g in normal persons and cannot be evaluated in this respect 
at present.

At the level of complex psychometric tests the g factor is unitary.
But it now appears most unlikely that g is unitary at the level of its 
causal underpinnings, as indicated by the timed measurements of 
performance on various ECTs and by neurophysiological measure­
ments of variables such as NCV, rate of glucose metabolism (PET 
scan), and degree of myelination (MRI) of nerve fibers.

The well-established fact that there is a large genetic component in individual 
differences in mental ability, especially concentrated in the g factor, is itself 
sufficient proof that the observed population variance in scores on highly g- 
loaded tests, such as IQ, reflects something other than the acquired bits of knowl­
edge, skills, and strategies called for by such tests. It is most implausible that 
these specific aspects of mental test items would be encoded in the DNA. Bi­
ological “ information” transmitted in the genetic code of DNA is a prerequisite 
condition for the heritability of any characteristic, including mental test scores. 
The human characteristics coded in the DNA arc products of the evolutionary 
process. They existed aeons before the specific information content of conven­
tional mental tests came into existence. Obviously, the genetically established 
brain mechanisms involved cannot be described simply in terms of the infor­
mation content and other obvious features of psychometric tests. Further, the g 
factor itself, which accounts for most of the genetic variance in mental abilities, 
manifests itself in such a wide variety of tests, differing greatly in the kinds of 
knowledge and skills required for successful performance, as to be inexplicable 
in strictly psychometric or psychological terms.

INFORMATION PROCESSING
To get at least one step closer to understanding the biological substrate of 

individual differences in mental ability (particularly its general factor, g), we 
can investigate information processes. Information processes are essentially hy­
pothetical constructs used by cognitive theorists to describe how persons appre­
hend, discriminate, select, and attend to certain aspects of the vast welter of 
stimuli that impinge on the sensorium to form internal representations that can
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be mentally manipulated, transformed, related to previous internal representa­
tions, stored in memory (short-term or long-term memory), and later retrieved 
from storage to govern the person’s decisions and behavior in a particular sit­
uation.

The term “ information”  in this context has a more specialized and generic 
meaning than the word “ information”  usually connotes in common usage. “ In­
formation”  here does not refer to any specific fact or a particular item of ac­
quired knowledge. It refers generally to any stimulus that reduces uncertainty 
in a given situation. Information is measured in bits (for binary digiVs). A bit is 
the amount o f information that reduces uncertainty by one-half. For instance, I 
am thinking of a number from 1 to 16 and ask you to arrive at this number in 
the most efficient way possible, by asking me a series of questions to which I 
can give a binary answer (e.g., “ Yes”  or “ N o” ). You ask, “ Is it a number 
from 1 to 8?”  I reply “ Yes”  (or “ N o” ) and thereby give you one bit of 
information, which reduces your uncertainty by one-half. Because there are three 
more such questions to which the binary answers will each reduce your uncer­
tainty by one-half, we can say that the total uncertainty posed by this task is 
reduced to zero by four bits of information. Note that the number of bits of 
information called for by the task in order to reduce its uncertainty to zero is 
the binary logarithm (log2) of the number of initial choices or alternatives (i.e., 
log2 16 =  4).

Although it is possible to devise simple tests with known amounts of infor­
mation measured in bits, typical cognitive tests are too complex to allow us to 
quantify the amount of information precisely. But this limitation does not alter 
the utility of the concept of information as that which reduces uncertainty. We 
use the term “ information processing”  here to describe the hypothetical proc­
esses that depend, presumably, on the structural and physiological properties of 
the brain that are activated whenever uncertainty is perceived and we work to 
reduce it.

The many theories (or models) of information processing proposed in recent 
years are all fairly similar. Investigating them has become the most prolific 
branch of experimental psychology. The various models all have two tenets in 
common: (1) the idea that information processing occurs in stages, most often 
serially but also at times simultaneously in parallel, and (2) information proc­
essing occurs in real time, with each step in the process taking a certain amount 
of time. Time itself therefore is the natural scale of measurement for the study 
of information processes. Time is also the scale used to measure individual 
differences in the speed or efficiency of these information processes. Because 
time is measured on an absolute, or ratio, scale1 with international standard units, 
it has certain theoretical and scientific advantages over ordinary test scores. Test 
scores are based on the number of items answered correctly on a particular test 
and therefore must be interpreted in relation to the corresponding performance 
in some defined “ normative”  population or reference group.

Psychologists interested in the nature of the general factor common to psy­
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chometric tests of ability have therefore recently and increasingly turned to the­
ories of information processing for research paradigms and their associated 
methodology. Hardly anyone disputes the idea that performance on IQ tests and 
the like depends on information processing. The problem is that the typical item 
in these kinds o f tests is much too complex to allow one to measure their 
component information processes. Too many cognitive processes are involved 
in the subject’s arriving at a response to a test item to permit any kind of analysis 
of just how the subject did so. All we know is whether the person passed the 
item or failed, which gives no clue as to the nature of the difference between 
those who pass and those who fail the item. A person could have failed the item 
because of a lack of some specific knowledge, or because a particular skill called 
for by the item had never been acquired, or because the knowledge or skill, 
though it had been acquired, couldn’t be recalled, or because of a failure to 
process the information given in the item or retrieved from long-term memory. 
Trying to determine why a given test item is hard for one person but easy for 
another is unfeasible when so many possible variables can affect performance.

ELEMENTARY COGNITIVE TASKS
What we need are tests that are so simple and so lacking in any specific skill 

or knowledge content as to greatly limit the possibilities of exactly what the 
subject must do to perform successfully. Yet, despite the test’s extreme sim­
plicity, if it is to be a useful analytic tool it must reveal individual differences 
in performance. Such a simple task is called an elementary cognitive task, or 
ECT. In experimental work with ECTs it is important that the ECT be so simple 
that every subject included in the study can perform the required responses very 
easily, with few, if any, errors. An error should not result from the subject’s not 
understanding the task requirements. Nor should errors result from the subject’s 
lacking some particular knowledge that would have had to be learned prior to 
performing the ECT.

The main source of individual differences on such ECTs, then, is not the 
correctness of response (since everyone “ gets it”  eventually), but response 
time— the amount of time taken to complete the ECT performance. (The recip­
rocal of the time taken indicates the subject's speed of performance.) The 
technology of measuring response times in performance on ECTs to infer the 
time-course of information processing in the human nervous system is called 
mental chronometry. It has a venerable history, beginning about 1860, when the 
Dutch physiologist F. C. Donders first used a person’s reaction time (RT) to a 
visual stimulus to measure the time taken for such simple mental processes as 
stimulus apprehension, discrimination, decision, and response execution.

Not long after Donders, Sir Francis Galton began measuring individual dif­
ferences in visual and auditory RT, along with various measures of sensory 
discrimination, in hopes of deriving a composite “ score”  that would reflect the 
biological aspect of general ability. While Donders (and later Wilhelm Wundt,
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the father of experimental psychology) used RT to discover the general princi­
ples of mental chronometry that would characterize all human beings, Galton 
was interested in RT mainly as a possible indicator of individual differences in 
human mental capacity. But Galton’s effort was largely unsuccessful, for reasons 
unknown to him and his immediate followers. They found so little apparent 
correlation between their measurements of RT and “ real life”  indicators of 
mental ability, such as educational attainments and occupational status, that 
shortly after the turn of the century the whole effort was abandoned. What was 
considered an especially crucial study at the time used students at Columbia 
University.-As there were no “ intelligence” tests at that time, general mental 
ability was assessed only by course grades in classics and mathematics.

We now know why these early attempts failed: (1) the RT measurements had 
exceedingly low reliability, with test-retest correlations around .20; (2) subjects 
were selected from groups (e.g., university students) with a very restricted range 
of ability; and (3) investigators lacked the modern statistical methods that could 
determine whether or not the results were statistically significant.

In fact, it has turned out that Galton’s own massive data (over 1,000 persons), 
when subjected to statistical methods that had not yet been invented in his time, 
have proved to be highly significant.121 A number of studies following in the 
wake of Galton’s seemingly unimpressive results were considerably more suc­
cessful. But they were so overshadowed by the failure of the then most presti­
gious laboratories to demonstrate important relationships between RT and 
commonsense criteria of intelligence that the few promising successes were al­
most completely ignored and never made their way into the most influential 
textbooks.3 The prevailing conclusion was that reaction time is not related to 
“ intelligence.”

Then, too, the practical success of Binet’s famous test, after 1905, turned the 
study of mental ability in a quite different direction. The Binet test, based on 
the summation of pass-or-fail scores on a number of relatively complex mental 
tasks, had readily demonstrable practical utility. But the tasks’ complexity pre­
cluded analytic investigation of the nature of the general ability represented by 
success or failure on this collection of tasks. The terms used by Binet to describe 
what his test measured, such as “ judgm ent,”  “ plan of action,”  “ following 
directions,”  “ problem solving,”  and the like, spark few theoretical insights and 
afford scant analytic clues to the nature of individual differences in test per­
formance. The ensuing emphasis on psychometrics per se, though highly worth­
while for practical purposes, did little to advance understanding of the causal 
nature of variance in mental abilities.

Only within the last twenty years or so have more than a few behavioral 
scientists pursued a theory-driven search for the elementary processes that un­
derlie g. The new models of information processing and techniques of mental 
chronometry are clearly descended from those early attempts by Donders and 
Galton more than a century ago.4 Before reviewing the main findings from these 
recent studies as they relate to g, it will be helpful to give brief descriptions of
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some of the most frequently used ECTs and the variables typically derived from 
(hem.5

G eneral F eatures o f  E C T s. ECTs are made especially simple so that every 
subject in the study can easily understand and perform the task requirements. If 
any particular knowledge content is required to perform the task, such as un­
derstanding alphanumeric symbols, it is first determined that this knowledge is 
possessed by all subjects. Preliminary practice trials are given to ensure that 
subjects can do the task. Nothing in the instructions to the subject is intended 
to disguise the purpose of the task, which is always represented as a test to 
determine how quickly and accurately the subject can respond. Subjects are 
explicitly asked to respond as fast as they can, consistent with accuracy of 
response. In some tests, inaccurate responses are eliminated and the trial is 
“ recycled,”  so that all subjects in the study have the same number of “ good” 
trials. Subjects are given repeated trials on any ECT to ensure high reliability 
of the composite measurement of RT.6 (Subjects typically perform six to ten 
trials per minute.)

“ Outlier”  trials are usually eliminated. Response times less than about 150 
milliseconds are considered outliers. Such outliers are excluded from analysis 
because they are faster than humans’ “ physiological limit”  for the time required 
for the transduction of the stimulus by the sense organs, through the sensory 
nerves to the brain, then through the efferent nerves to the arm and hand mus­
cles, These fast outliers most often result from “ anticipatory errors,”  that is, 
the subject’s initiating the response just before the onset of the reaction stimulus. 
At the other extreme, slow response times that are more than three standard 
deviations slower than the subject’s median response time are also considered 
outliers. They usually result from a momentary distraction or lapse of attention. 
As outliers are essentially flukes that contribute to error variance, omitting them 
from the subject’s total score improves the reliability of measurement.

Subjects are tested individually in a sound-protected room free of distractions. 
The subject typically responds to an ECT by either releasing or depressing a 
key or push button with the index finger of the preferred hand. Usually, each 
trial begins with a warning signal (or preparatory stimulus), such as a high- 
pitched “ beep,”  to alert the subject that the reaction stimulus is about to occur 
(within a random interval of, say, one to four seconds after the beep). Subjects 
are prescreened for any sensorimotor handicaps that could affect performance, 
and all stimulus and response materials are sufficiently large and clear as to be 
easily perceived by all persons who do not have a major visual, auditory, or 
motor disability. The motor response requires only minimal physical strength 
and small hand movements.

V ariab les D erived  from  E C T s. Many ECTs are subject-paced. A trial cycle 
begins by the subject’s pressing down a “ home” button. After a delay of about 
one second, a preparatory stimulus (“ beep” ) occurs, and after a brief (one to 
four seconds) random interval the reaction stimulus, or task, appears on a screen 
or computer monitor. The subject then releases the home button and touches the
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response button called for by the reaction stimulus. Three variables are recorded 
(usually automatically by computer) on each trial: (1) reaction time (RT)— the 
time interval between the onset of the reaction stimulus and the subject’s re­
leasing the home button, (2) movement time (MT)— the time interval between 
releasing the home button and touching the response button, and (3) error 
score— whether the response was correct or incorrect (1 or 0). The RT and MT 
are measured in milliseconds. These three measures— RT, MT, and errors— are 
obtained on each set of n trials. From these n X 3 basic measurements, five 
individual difference variables are derived for each subject: (1) median7 RT, (2) 
the standard deviation of the subject’s RTs over n trials (RTSD, a measure of 
intraindividual variability in RT), (3) median MT, (4) the standard deviation of 
the subject’s MTs over n trials (MTSD, a measure of intraindividual variability 
in MT), and (5) total number of error responses in n trials. The timed measure­
ments are the variables of primary interest in ECTs. The error responses usually 
are of least interest, as their total number is usually small and generally has low 
test-retest reliability.

SOME SPECIFIC ECTs AND THEIR TYPICAL RESULTS
Sim ple and C hoice RT. These are the first ECTs ever used in psychological 

research. Donders used them to measure the time needed for certain mental
processes.

In simple RT (SRT), the subject depresses a telegraph key with the index 
finger; then a preparatory stimulus is given to alert the subject to the imminent 
appearance of the reaction stimulus. The reaction stimulus may be visual (e.g., 
a light going “ on”  or “ off” ) or auditory (a tone, loud click, or bell). When it 
occurs, the subject releases the key as quickly as possible. RT is the time be­
tween the appearance of the stimulus and the time the subject releases the key. 
Since RT is measured on a large number of trials, the subject’s median RT will 
be highly reliable. (This is where Galton and his immediate followers went 
wrong; they gave too few trials to achieve reliable measurement.)

SRT consists of three main components of processing time— two distinct 
peripheral components and a central component. The peripheral components 
are: (1) sensory lag and stimulus transduction from sense organ through the 
afferent nerve fibers to the brain, and (2) effector time, comprising the efferent 
nerve impulses from brain to the muscles and muscle lag. The central component 
is the brain processing time taken for apprehension of the stimulus and mediating 
between the two peripheral systems. Note that in SRT the subject does not have 
to make any discrimination between different stimuli or any choice between 
different response alternatives. Only a single possible response to the apprehen­
sion of the expected occurrence of a single stimulus is all that is called for in 
SRT. In normal young adults, the average SRT under these conditions is about 
one-fifth of a second, or 200 milliseconds (msec). RT is slightly shorter to an 
auditory than to a visual stimulus, because the sensory lag is less in the auditory
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receptor (a mechanical reaction) than in the retina (a chemical reaction). RT is 
affected by a number of specific features of the procedure, such as the length 
of the preparatory interval, the modality and intensity of the reaction stimulus, 
and other experimentally manipulable conditions.8

In pure discrimination RT (DRT), the subject is confronted with the possible 
occurrence of either of two (or more) different reaction stimuli— for example, 
either a yellow light or a blue light goes on. One or the other colored light 
appears on each trial in a purely random order. The subject is instructed to 
respond to only one of the stimuli, say, the yellow light. Responding to the blue 
light here would constitute an error. The DRT consists of all of the processing 
components of the SRT plus the additional time required to discriminate the 
yellow and blue light— a central process. Donders (and many others following 
him) found that DRT is greater than SRT. He argued that by subtracting SRT 
from DRT one could measure the time required for discrimination per se, over 
and above the time needed for simple apprehension of a stimulus. This proce­
dure has become known as Donder’s subtraction method. It has been widely 
used in studying the time required for various cognitive processes, such as dis­
crimination, choice or decision, and retrieval of information from memory. Dis­
crimination time (the DRT-SRT difference) varies, on average, from about 30 
msec to over 100 msec, depending on the difficulty of the discrimination. There 
is a wider range of individual differences in DRT than in SRT, which implies 
that people differ more in the central information-processing component of per­
formance on ECTs than on the sensorimotor component.

Choice reaction time (CRT) includes both stimulus discrimination (as in 
DRT) and making a choice between two (or more) different response alterna­
tives, each keyed to a different reaction stimulus. Either stimulus A or stimulus 
B appears (at random) and the subject must release (or press) button A (on the 
left) or button B (on the right) accordingly. Having to make a choice (or any 
decision) in responding to the reaction stimulus is another cognitive process that 
adds to the total time over and above pure discrimination. So by subtracting 
DRT from CRT, Donders could measure the time taken for choosing between 
the possible response alternatives.

Later studies of individual differences in SRT, DRT, and CRT revealed that 
each is negatively correlated with IQ and also with scholastic achievement (neg­
atively because lower RTs go with higher IQs.) The correlations are generally 
quite small, but what is important is that they increase in size, going from SRT 
<  DRT <  CRT, with average correlations close to —.10, —.20, —.30, respec­
tively. As the ECT becomes more complex (that is, it requires more different 
cognitive processes so more time) individual differences become more highly 
correlated with IQ. As will be shown presently, the “ active ingredient" in these 
correlations is g.

The H ick P aradigm . In 1952, the British experimental psychologist John 
Hick formulated a precise relationship between two variables: (1) the amount 
of information (measured in bits) conveyed by the reaction stimulus of the ECT
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Figure 8 .1 . The subject's response console of the RT-MT apparatus. The panel is 13 
in. x  17 in., painted fiat black, and tilted at a 30° angle. At the lower center is the home 
button (black, 1 in. diameter), which the subject depresses with the index finger while 
waiting for the reaction stimulus. The semicircle of 8 small circles represent translucent 
push buttons (green, V2 in. diameter, each at a distance of 6 in. from the home button); 
each button can be lighted independently. Touching a lighted button turns off the light. 
Various plates can be placed over the console to cover some o f the buttons, leaving either 
1, 2, 4, or all 8 buttons exposed to view, making for four different ECTs, each with a 
different number of equally likely response alternatives. The binary logarithms of 1, 2,
4, and 8 exposed buttons are equivalent to 0, 1, 2, and 3 bits o f information, respectively. 
A trial begins with the subject depressing the home button; 1 sec. later a preparatory 
stimulus ( “ beep” ) of 1 sec. duration occurs; then, after a l-to-4-sec. random interval, 
one o f the buttons lights up, whereupon the subject’s index finger leaves the home button 
and touches the underlighted button. RT is the interval between a light button going 
■‘on”  and the subject's lifting the index finger from the home button; MT is the interval 
between releasing the home button and touching the underlighted button. On each trial 
only one of the buttons lights up, entirely at random from trial to trial.

and (2) the RT to the ECT. This relationship has since become known as H ick’s 
law.9 It states that RT increases linearly with the binary logarithm of the number 
(n) of equally likely response alternatives in the ECT. (That is, ART =  K  log2 
(n +  1), where K  is the slope constant, or proportional increase in RT as a 
function of the logarithmic increase in response alternatives.)

Hick’s law is most easily explained in connection with an apparatus I devised 
in 1976 to study individual differences. (It has been dubbed “ Jensen’s button 
box”  in some of the RT literature; it is more properly called the RT-MT ap­
paratus.) The subject’s console is shown in Figure 8.1. It is interfaced with a 
microcomputer, so the entire procedure can be programmed and run automati­
cally; the subject’s RT and MT on every trial are registered and stored in the 
computer, which also calculates and prints out the subject’s median RT and MT, 
the RTSD and MTSD, and the number of errors. The intercept and slope of the
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Hick function are also automatically calculated. Hence the testing procedure is 
uniform for all subjects.

The subject’s median RTs and MTs to 1 ,2 , 4, and 8 buttons (i.e., response 
alternatives corresponding to 0, 1, 2, and 3 bits of information) are obtained. 
When RT is plotted as a function of bits, the linear relation known as Hick’s 
law is clearly evident for the vast majority of subjects in the IQ range from 50 
to 150. A few subjects do not show it, for unknown reasons; they probably 
process the information in some idiosyncratic way or adopt a strategy that over­
rides H ick’s law. Severely retarded persons (IQs below 50) who are able to 
perform the task usually do not manifest Hick’s law beyond one or two bits of 
information, and their average RTs are very much slower than those of normal 
persons.1'01 The fact that chimpanzees obey Hick’s law[ll) as perfectly as most 
humans (with RTs comparable to normal eight-year-old children) suggests that 
severely retarded persons may fail to do so because of some brain pathology or 
abnormality. Most mildly retarded persons (IQs 50 to 75) conform to Hick’s 
law as well as persons of above-average IQ, although their RTs are much slower.

Figure 8.2 shows a plot of RT and MT. It illustrates Hick’s law for RT. MT 
does not show Hick’s law; that is, MT does not vary significantly as a function 
of the information in the reaction stimulus. It is also much shorter than RT. 
Most subjects apparently do not release the home button until information proc­
essing is virtually complete and the appropriate response has been “ pro­
gram med” ; the M T then is virtually independent of the information processing 
per se. MT thus appears to be more a motor function than a cognitive function.

More than thirty studies have shown correlations between the timed para­
meters of the Hick task and IQ. The largest correlations are for intraindividual 
variability in reaction time (RTSD); the lowest (and nonsignificant) correlation 
is for intraindividual variability in movement time (MTSD). RT correlations 
with IQ increase slightly, as information goes from 0 to 3 bits. But this task 
encompasses an extremely small range of task difficulty, as indicated by the 
range of RTs. The average RT in 27 studies comprising 1,850 subjects ranges 
from 335 msec at 0 bits to 439 msec at 3 bits, or approximately 35 msec of RT 
for processing one bit of information. The average rate of information process­
ing, therefore, is about 30 bits per second.

Theoretically, one might expect the slope of RT (which represents the increase 
in RT per bit of information) in the Hick function to have the largest negative 
correlation with IQ. This has not proved to be the case. The average correlation 
over all studies, after correction for attenuation, is highly significant (p <  .001), 
but small— about —.17, or about the same as the RT X IQ correlation for zero 
bits. There can be no doubt that the relationship is real, however, as various 
groups that differ in mean IQ always show significant differences in mean slope 
of the Hick function, the higher-IQ group always having the lesser slope. This 
means that higher IQ is associated with a faster rate of information processing. 
The multiple correlation between all of the timed Hick parameters and IQ is 
between .35 and .50.
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Figure 8 .2 . The median RT and MT obtained on the RT-M T apparatus (Figure 8.1) 
averaged over more than 1,500 individuals. Note the significant positive slope o f RT 
(RT =  336 +  34 BIT, r =  .998), demonstrating H ick’s law, which predicts a linear 
relationship of RT to the amount of information measured in BITs. In marked contrast 
is the nonsignificant slope of MT (MT =  245 +  4.3 BIT, r = .641). (Data from Jensen, 
1987d, Tables 3 and 7.)

O dd-M an-O ut Parad igm . This ECT was introduced by Frearson and 
Eysenck (1986) to increase the discrimination component over what it is in the 
Hick task, using the same RT-MT apparatus shown in Figure 8.1. They hy­
pothesized that the increase in the information-processing demand of the tasks 
should significantly increase the RT X  IQ correlation. The odd-man task uses 
all eight buttons and the procedure is identical to the Hick procedure described 
above, except that instead of a single light going “ on,”  three lights go “ on” 
simultaneously. Their locations are random and unpredictable on each trial, ex­
cept that two of the lights are always in closer proximity to one another than 
the third light— the odd-man-out. For example, if the buttons are numbered 1 
to 8 from left to right, an odd-man pattern could be lights 1, 2, and 5 on; or 2,
4, 8, or 3, 6, 8. (With 8 buttons, there are 45 such odd-man patterns.)

The discrimination demand of the odd-man task requires about 200 msec more 
processing time than the single-light (1 out of 8) Hick paradigm. The odd-man
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Figure 8 .3 . A binary response console (6 V2 in. X 10 in.) used in all ECTs that call 
for a binary response (Yes-No, True-False, Same-Different, etc.). The push buttons are 
all 1 in. in diameter. The lower one is the home button, which the subject depresses with 
the index finger until the reaction stimulus occurs. On each trial the subject responds by 
pressing either the left or right button, here labeled YES and NO. (The magnetized labels 
can be quickly and easily changed.) The programmed reaction stimuli appear on a com­
puter monitor directly behind the response console.

RT shows significantly larger (approximately doubled) correlations with IQ than 
the 3-bit condition in the Hick paradigm."21 Moreover, experimentally increasing 
the complexity o f the discrimination increases RT and also increases the cor­
relation of both RT and RTSD with IQ.1'31

M em ory-Scan  P arad igm . This ECT originated with Saul Sternberg, an ex­
perimental psychologist with the Bell Telephone Laboratories.1141 It measures 
the time taken to scan short-term memory for a particular item of information. 
The apparatus used for this in my chronometric laboratory includes a binary 
response console, shown in Figure 8.3, and a computer display, both interfaced 
with a microcomputer, which runs the trials automatically and records the sub­
jec t’s RT and MT and errors, just as in the Hick paradigm. A trial begins with 
the subject depressing the home button. Following shortly after the preparatory 
stimulus (“ beep” ), a set of from 1 to 7 digits (in a random order) appears 
simultaneously on the display for 3 seconds, during which the subject memorizes 
the set of digits. The screen then goes blank for 1 second and a single probe 
digit appears. The subject immediately responds (YES or NO on the response 
buttons) whether the probe was (YES) or was not (NO) present in the displayed 
set. (It is present on a random 50 percent of the trials.) The RT and MT are 
measured as described earlier.

Two striking results are found in virtually all subjects: (1) RT increases as a 
linear function of set size (i.e., the number of digits in the set), and (2) it takes 
some 30 to 50 msec longer to respond NO than to respond YES. Typical results
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Memory Set Size (S)
Figure 8 .4 . RT as a function o f set size in memory-scan paradigm, based on forty-eight 
university undergraduates. (From Jensen, 1987f. Used with permission of Ablex.)

are shown in Figure 8.4. For college students, the average slope of RT as a 
function of set size is 25 to 30 msec per digit, which is a short-term memory- 
scanning rate of about 35 digits per second. The median RT and intraindividual 
variability in RT on this task show correlations with IQ larger than —.30.1151

V isual-Scan  P aradigm . This is just the reverse of the memory-scan para­
digm. The same apparatus is used, but virtually no demand is made on memory. 
After the preparatory stimulus, a single target digit appears on the screen for 3 
seconds. The display screen goes blank for 1 second and then a set of anywhere 
from 1 to 7 digits appears. The subject responds (by pressing either the YES or 
the NO button) according to whether the target digit is present or absent in the 
displayed set. The results are identical in almost every feature to those for mem­
ory scan, as are the correlations between RT and IQ.

In a sample of university students, the disattenuated correlation between in­
dividual differences in median RT on memory scan and visual scan was + .998. 
This is an example of two ECTs that are perfectly correlated even though they 
involve different processing mechanisms: one ECT depends on the speed of 
mentally scanning a set of digits held in short-term memory; the other depends 
on the speed of visually scanning the set of digits as they are displayed. Although
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the mechanisms are different, the basic factor that determines the speed of both, 
and hence individual differences in both, is apparently the same. (A rough anal­
ogy would be two distinct mechanisms that perform different functions, but both 
mechanisms are powered by one and the same motor.) When median RTs and 
MTs from the memory scan and the visual scan are combined with those from 
the Hick paradigm, the multiple correlation with Raven’s matrices in a college 
sample is .40. The corresponding multiple correlation for RTSD and MTSD 
(intraindividual variability) is .50.15

C oinciden ce T im ing. This is one of the simplest ECTs. Throughout all the 
trials, a thin vertical line remains in the middle of a computer display screen, 
extending from top to bottom. A trial begins with a small square appearing at 
either the left or right side of the screen, halfway between the top and bottom 
of the screen. It moves horizontally at a constant speed (e.g., ten centimeters 
per second), crosses the vertical line, and goes to the opposite side of the screen. 
(In some conditions, the square may move at an angle or along a curved trajec­
tory.) The subject’s task on every trial is simply to press a key the moment the 
moving square meets the vertical line.

Coincidence timing measures something more than simple RT; information 
of the reaction stimulus (the coincidence of the moving square and the vertical 
line) is conveyed by the speed and path of the moving square. Two scores are 
obtained from the subject’s performance on all trials: (1) the mean absolute 
distance between the vertical line and the position of the square when the subject 
presses the key, and (2) the intrasubject standard deviation of the distances over 
trials. These combined measures correlate about —.40 with scores on the highly 
^-loaded Raven Standard Progressive M atrices.1'61

P osner P arad igm . This ECT, originated by Michael Posner,1' 71 measures the 
speed of accessing long-term memory for simple, highly learned items of in­
formation. It is based on contrasting the speed of response to a reaction stimulus 
that calls for retrieval of information from long-term memory (LTM) and the 
speed of response to a reaction stimulus that does not require memory retrieval.

The procedure uses a binary response console like that in Figure 8.3. RT is 
measured on two separate tasks, called physical identity (PI) and name iden­
tity (NI).

In the PI task, a pair of letters appears on the computer display; the subject 
responds on the binary console, pressing the button labeled SAME (if the two 
letters are physically identical) or pressing the button labeled DIFFERENT (if 
the two letters are not physically identical). For example, AA = SAME and Aa 
=  DIFFERENT, AB = DIFFERENT, and bB = DIFFERENT. RT is the in­
terval between the onset of the letter pair and the subject’s finger leaving the 
home button.

In the N I task, the same letter pairs occur, but now the subject is instructed 
to respond according to the name identity or nonidentity of the two letters, rather 
than to their physical identity. Thus AA = SAME and Aa = SAME; but AB 
=  DIFFERENT.
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The PI task does not call on memory; pairs of completely meaningless or 
novel symbols that are either the same or different could just as well be sub­
stituted for the letters. The NI task, however, requires that the name codes for 
the letters must be retrieved from long-term memory, where they have been 
stored since childhood, when the names of upper-case and lower-case printed 
letters were learned. The difference between the median RT to the NI task and 
the median RT to the PI task (NI-PI), therefore, measures the time required to 
access the letter names from LTM.

For college students, the NI-PI difference in RT is about 50 to 75 msec. There 
are reliable individual differences in the NI-PI difference, and the NI-PI differ­
ence in RT is correlated with IQ. The first study of this kind showed that college 
students with SAT-Verbal scores in the lower quartile had larger NI-PI differ­
ences than did students in the upper quartile.1181

In my lab we have used a version of this task, modified so as to increase the 
memory retrieval time and its correlation with IQ. Instead of letters, we have 
used highly familiar words. The PI condition is pairs of words that are physically 
the same or different, regardless of their meaning, e.g., DOG-DOG =  SAME, 
DOG-BOG =  DIFFERENT. The NI condition is word pairs that have similar 
or opposite meanings (synonyms or antonyms); that is, they are semantically 
“ same”  or “ different,”  a distinction that requires access to the words’ mean­
ings, stored in LTM. When these items are presented to college students as a 
nonspeeded paper-and-pencil test, they show error-free performance, indicating 
that the students possess the requisite information; it is only their speed of 
retrieving the information that matters. Many studies have been done with this 
paradigm, which consistently shows significant correlations with IQ, averaging 
about —.35.1191

Sem antic V erification  Test. The SVT uses the binary response console (Fig­
ure 8.3) and a computer display screen. Following the preparatory “ beep,”  a 
simple statement appears on the screen. The statement involves the relative 
positions of the three letters A, B, C as they may appear (equally spaced) in a 
horizontal array. Each trial uses one of the six possible permutations of these 
three letters chosen at random. The statement appears on the screen for three 
seconds, allowing more than enough time for the subject to read it. There are 
fourteen possible statements of the following types: “ A after B ,”  “ C before 
A ,”  “ A between B and C ,”  “ B first,”  “ B last,”  “ C before A and B ,”  “ C 
after B and A ” ; and the negative form of each of these statements, for instance, 
“ A not after B .” Following the three-second appearance of one of these state­
ments, the screen goes blank for one second and then one of the permutations 
of the letters A B C  appears. The subject responds by pressing either the TRUE 
or FALSE button, depending on whether the positions of the letters does or does 
not agree with the immediately previous statement.

Although the SVT is the most complex of the many ECTs that have been 
tried in my lab, the average RT for university students is still less than 1 second. 
The various “ problems” differ widely in difficulty, with average RTs ranging
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from 650 msec to 1,400 msec. Negative statements take about 200 msec longer 
than the corresponding positive statements. MT, on the other hand, is virtually 
constant across conditions, indicating that it represents something other than 
speed of information processing.

The overall median RT and RTSD as measured in the SVT each correlates 
about —.50 with scores on the Raven’s Advanced Progressive Matrices given 
without time limit. The average RT on the SVT also shows large differences 
between Navy recruits and university students,1201 and between academically 
gifted children and their less gifted siblings.1211 The fact that there is a within- 
families correlation between RT and IQ indicates that these variables are intrin­
sically and functionally related.

One study20 reveals that the average processing time for each of the fourteen 
types of SVT statements in university students predicts the difficulty level of 
the statements (in terms of error responses) in children (third-graders) who were 
given the SVT as a nonspeeded paper-and-pencil test. While the SVT is of such 
trivial difficulty for college students that individual differences are much more 
reliably reflected by RT rather than by errors, the SVT items are relatively 
difficult for young children. Even when they take the SVT as a nonspeeded 
paper-and-pencil test, young children make errors on about 20 percent of the 
trials. (The few university students who made even a single error under these 
conditions, given as a pretest, were screened out.) The fact that the rank order 
of the children’s error rates on the various types of SVT statements closely 
corresponds to the rank order of the college students’ average RTs on the same 
statements indicates that item difficulty is related to speed of processing, even 
when the test is nonspeeded.

It appears that if information exceeds a critical level of complexity for the in­
dividual, the individual’s speed of processing is too slow to handle the infor­
mation all at once; the system becomes overloaded and processing breaks 
down, with resulting errors, even for nonspeeded tests on which subjects are 
told to take all the time they need. There are some items in Raven’s Advanced 
Matrices, for example, that the majority of college students cannot solve with 
greater than chance success, even when given any amount of time, although the 
problems do not call for the retrieval of any particular knowledge. As already 
noted, the scores on such nonspeeded tests are correlated with the speed of in­
formation processing in simple ECTs that are easily performed by all subjects 
in the study.

D ual T ask s and W orking M em ory. As we have seen, the RT elicited by 
most single ECTs has a rather modest correlation with IQ, typically with r in 
the range of —.20 to —.40. It is experimentally possible, however, and theoret­
ically informative, to increase slightly an ECT’s correlation with IQ by making 
it a part of a dual task. In a dual task, two different ECTs are run in tandem 
and the RT is measured separately for each. The two important results are (1) 
the RT is longer for both tasks, and (2) the RT on each task has a higher 
correlation with IQ than either one has when given as a single task.



2 2 0 The g  Factor
To understand how a typical dual task works, we can combine two of the 

ECTs described earlier: memory scan and synonym-antonym  (S-A). Here is an 
example of the sequence of events the subject sees on the screen:

Preparatory signal ( “ beep” ) 1 sec.
Blank screen 1 sec.
7 2 5 1 3 [digit set appears] 3 sec.
HOT - COLD
Subject presses button A RT, and MT,
Blank screen 1 sec.
5 [probe digit appears]
Subject presses button YES RT2 and MT2

The subject must hold the digit set (72513) in memory while processing the 
synonym-antonym item (e.g., H O T -C O L D ), and, when the probe digit (e.g., 
5) appears, must scan the digit set in memory to determine if it was included 
in the digit set. Both RT, and RT2 are about 50 to 100 msec longer than the 
RT to either task presented singly. And their correlations with IQ are reliably 
increased by .05 to .10 correlation points. Apparently, the amount of strain on 
Working Memory slows RT, and the degradation of the memory trace of the 
digit set over time (during the interpolated synonym-antonym task) slows RT2.

The reason for the increased RT and its increased correlation with IQ seems 
to be that IQ reflects, among other things, not only the speed of information 
processing, but also the capacity of working memory (WM) for the short-term 
retention of information. WM is the active aspect of short-term memory (STM), 
the process that retains recently input information until it can be processed fur­
ther, by being mentally manipulated to arrive at a decision, codified and stored 
in long-term memory (LTM), or associated with related material retrieved from 
LTM.

Working memory has been likened to the central processing unit, or CPU, of 
a computer. It has also been called the “ mind’s scratch pad.”  It is short-term, 
because the neural traces of recently input information rapidly decay, with cor­
responding loss of the information, unless time is taken to get the information 
into LTM by immediate repetition or rehearsal. But WM is a single-channel 
processor, and while it is actively rehearsing the latest input, it cannot process 
new input. Thus when there is a quick succession of input, there is a trade-off 
between processing and storage, and a faster speed of information processing 
becomes a definite advantage. Because dual tasks put a somewhat greater burden 
on WM than single tasks and create more contention for the channel, they better 
reflect individual differences in g.

Digit span22 memory, for example, is moderately correlated with g, but in­
dividual differences are revealed only if all subjects are tested to the limits of
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their digit span. The functional relationship between digit span and RT is shown 
by the fact that immediate memory span for any given kind of items (digits, 
letters, words, nonsense syllables, colors, etc.) is highly related to the processing 
rate for such items, as measured in the memory scan paradigm described
above.23

Forward digit span (FDS) can be made into a dual task, in effect, by making 
it into backward digit span (BDS). In BDS the subject has to retain the input 
digits (task 1) while reversing them (task 2) before recall. The result of task 2 
is that WM is strained and some information is lost (always measured by number 
of digits here, not time, BDS <  FDS) and BDS shows a much higher correlation 
with IQ than FDS. The correlations of FDS and BDS with IQ are about .30 and 
.60, respectively.

The more information that has to be held in WM while other information is 
being processed, the greater is the ECT’s g loading. When information input 
exceeds the capacity of WM, even some of the information already held in WM 
is “ crowded out”  and lost. Most persons who can recall all 7 digits when 7 
digits are presented can’t recall 8 or even 7 digits when 8 are presented, but 
can recall only 5 or 6. We all have had this experience: You look up a telephone 
number in the directory, and just as you are about to dial it, someone asks you 
a simple question; if you answer it, you then have to look up the phone number 
again. WM has a very limited capacity and the information in WM rapidly fades 
beyond retrieval. So central is the role of WM capacity in individual differences 
in information processing that some cognitive theorists equate WM capacity with 
g itself. Some empirical evidence tends to support this idea.1241 A theory of the 
possible neural basis of individual differences in WM capacity is explained later 
in the section on theories of the RT-g connection.

Insp ection  T im e (IT). As mentioned earlier, RT has both peripheral and 
central processing components, and it is only the central component that is 
correlated with g. Variance associated with the peripheral components merely 
attenuates the RT-g correlation. The IT paradigm completely eliminates the 
efferent or motor part of the peripheral sensorimotor component, with the con­
sequence that although IT is less complex than most ECTs based on RT, it 
generally has higher correlations with g-loaded tests than does RT. IT meas­
ures the speed with which a simple sensory discrimination can be made. In 
the past decade or so, IT research has accrued a large and impressive litera­
ture.25

IT can be tested in both the visual and auditory modalities. Here is how visual 
IT is usually measured. The subject is told to fixate on a target point (small red 
dot) in the center of a display screen. After three seconds the red dot disappears 
and the test figure  (Figure a, following page) appears immediately in the center 
of the screen. After an interval of t msec, the masking figure (Figure b, following 
page) appears in exactly the same location as the test figure, completely covering
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it. The subject then indicates (by pressing one of the two thumb buttons held 
in each hand) whether the long leg of the test figure was on the left side (i.e., 
subject presses button held in left hand) or the right side. The subject can take 
as much time as necessary to make this decision. The time interval t between 
the appearance of the test figure and of the masking figure varies systematically 
from trial to trial, as the computer program is reactive, taking account of the 
subject’s correct and error responses on each trial and automatically making the 
interval between the test stimulus and the mask longer or shorter until it stabi­
lizes at the point where the subject responds correctly on 97.5% of the trials. 
(This high level of accuracy of the subject’s responses ensures that the subject 
is fully able to understand and perform the task.) The length of the t interval at 
the point o f 97.5% response accuracy is the subject’s inspection time, or IT.

Another method for measuring IT is exactly the same as the method described 
above, but the test figure consists of a hollow square with one side completely 
missing; the masking figure is a full square of exactly the same size as the test 
figure. The subject has to indicate whether the missing side of the test square 
was at the top, bottom, left side, or right side. It is important to note than in 
the IT tasks, the time taken by the subject to respond is irrelevant. The crucial 
variable is the IT itself, that is, the exposure time needed for the subject to 
perceive the test figure correctly on 97.5 percent of the trials. The IT for young 
adults is between 100 and 200 msec.

Auditory IT has been made even simpler in some ways than visual IT. Here 
is one version that has proved effective.1261 Prior to the test itself, subjects are 
first given a high-pitch tone followed by a low-pitch tone; the difference in pitch 
is easily discriminated by all subjects on 100 percent of the trials when each 
tone is presented singly. Subjects are also practiced in identifying a masking 
tone, with a pitch halfway between the low and high tones. The IT task, then, 
consists of the brief presentation of the test tone (high or low) followed after 
an interval t by the masking tone. The subject then reports, without time pres­
sure, whether the test tone was high or low. The auditory IT is very slightly 
shorter than the visual IT, just as auditory RT is slightly faster than visual RT. 
But this slight difference o f about 10 to 20 msec seems to be a peripheral effect, 
attributable to the visual receptor being a biochemical reaction, which is slower 
than the mechanical reaction of the auditory receptor.



Information Processing and g 223
Both kinds of IT show highly reliable individual differences, which are sub­

stantially correlated with IQ and other g-loaded tests throughout the full range 
of biologically normal mental ability. There are highly significant differences, 
for example, between university students from the upper and lower quartiles of 
SAT scores. A meta-analysis|27al of all studies up to 1988 shows an average 
correlation between IT and “ IQ ”  of —.54. This is a remarkably large correla­
tion, considering the extreme difference between the IT procedure and conven­
tional psychometric tests.

Is it the g factor of IT that is responsible for its correlation with IQ and other 
psychometric tests, or does the correlation reflect the loadings of IT on other, 
non-g factors that also constitute some part of the variance in most psychometric 
tests? The answer is found by a factor analysis of visual IT among a battery of 
eleven tests consisting of the Raven’s Advanced Progressive Matrices and the 
ten diverse subtests of the Multidimenional Aptitude Battery, administered to 
101 college students.|27hl The largest factor loading of IT shows up on the g 
factor of this psychometric battery by each of three methods for extracting a 
general factor. Independently of g, IT has a small loading on a spatial factor 
and a virtually zero loading on a verbal factor.

There are many other kinds of simple tasks that do not resemble the con­
tents of conventional psychometric tests but that have significant correlations 
with IQ. Many studies have confirmed Spearman’s finding that pitch discrim­
ination is g-loaded, and other musical discriminations, in duration, timbre, 
rhythmic pattern, pitch interval, and harmony, are correlated with IQ, indepen­
dently of musical training.28 The strength of certain optical illusions is also 
significantly related to IQ.1291 Surprisingly, higher-IQ subjects experience cer­
tain illusions more strongly than subjects with lower IQ, probably because 
seeing the illusion implies a greater amount of mental transformation of the 
stimulus, and tasks that involve transformation of information (e.g., backward 
digit span) are typically more g loaded than tasks involving less transforma­
tion of the input (e.g., forward digit span). The positive correlation between 
IQ and susceptibility to illusions is consistent with the fact that susceptibility 
to optical illusions also increases with age, from childhood to maturity, and 
then decreases in old age— the same trajectory we see for raw-score perform­
ance on IQ tests and for speed and intraindividual consistency of RT in ECTs. 
The speed and consistency of information processing generally show an in­
verted U curve across the life span.

SOME EMPIRICAL GENERALIZATIONS FROM RESEARCH ON
ECTS

A comprehensive review of the research literature on the relation between 
speed of information processing in ECTs and IQ would fill a book at least as 
large as the present one. I am forced, therefore, to select and summarize all too



224 The g  Factor

briefly a few of the major findings in ETC research that seem most germane to 
understanding the nature of their relation to g. The points mentioned here have 
important implications for a theory of the causal basis of g. Such a theory, in 
empirically testable form, is now taking shape, though it is still embryonic.

RT and S peeded  V ersus N onspeeded Psychom etric Tests. Early on, doubt­
ers of the RT-IQ correlation tried to explain it away by arguing that RT cor­
related with psychometric tests because the latter were themselves given to 
subjects under speeded conditions, and that one is simply measuring the same 
speed factor in both kinds of tests. This notion has died hard because true-blue 
psychometricians and paper-and-pencil testers have been reluctant to admit that 
general mental ability could be assessed by means other than conventional tests. 
Their superficial interpretation of the RT-IQ correlation, however, has been thor­
oughly refuted by experiments specifically designed to put it to a rigorous test.1301 
They show that speeding psychometric tests by imposing severe time limits 
slightly decreases the test’s correlation with RT as compared with the same test 
given without time limit.

In most RT-IQ studies, and always in those conducted in my lab, the psy­
chometric tests are given either without time limits or with very liberal time 
limits. W e have emphasized the “ power” nature of the test and always instruct 
subjects to take all the time they need to attempt every item in the test (usually 
Raven’s matrices). Also, subjects are tested alone in a quiet room so they cannot 
be influenced by observing the time taken by other subjects. Yet their test scores 
are correlated with RT in a wide variety of ECTs.

Some psychometricians have mistakenly believed that RT measures the same 
speed factor that is measured by highly speeded psychometric tests, such as 
clerical checking, number series comparisons, and simple arithmetic. In fact, 
such tests have lower correlations with RT than do nonspeeded power tests. The 
two most speeded subtests out of the ten subtests of the Armed Services Vo­
cational Aptitude Battery (ASVAB), for example, have repeatedly shown the 
lowest correlations with RT, yet these tests are typically identified with the speed 
factor that appears in factor analyses of various speeded and nonspeeded psy­
chometric tests.

The fact is that psychometric speed— better called test-taking speed— is some­
thing entirely different from the speed of information processing measured by 
RT or IT. RT and IT have their highest correlations with pure power tests. The 
explanation for this seeming paradox is that the speed of information processing 
is a large part of g, whereas test-taking speed is not— it is more a personality 
factor than a cognitive factor. One of my studies found that the time taken by 
university students to complete the Raven’s matrices, when instructed to take 
all the time they need and to attempt every item, was not significantly correlated 
with their Raven scores (number right), nor was test-taking time significantly 
correlated with RT, but it was significantly correlated (r =  - .4 5 )  with Extra­
version as measured by the Eysenck Personality Inventory, which was not sig­
nificantly correlated with RT. The personality trait of “ conscientiousness”  is
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probably also related to test-taking speed, but this has not yet been investigated. 
In all such correlations involving time, the variable of age must be controlled, 
as both test-taking speed and RT gradually change for the “ worse”  with in­
creasing age beyond early adulthood.13' 1 There is, of course, a wide range of 
individual differences in the rates of this change with aging, which has the effect 
of increasing the correlations between all speeded tests in elderly people.

RT and L atency o f C onscious A w areness. We have found that subjects 
cannot normally “ fake”  RT on simple ECTs such as the Hick or the Odd-Man- 
Out paradigm. Obviously, persons cannot fake faster responses than the fastest 
they are able to perform. But can they consistently fake slower RTs than their 
average RT when they are trying to respond as quickly as possible? Their con­
scious attempt to slow their RTs typically results in RTs that are so exceedingly 
slow as to fall outside the normal range of RTs, or even outside the range of 
RTs produced by the mentally retarded. Given a lot of practice with informative 
feedback following every trial, college students can gradually learn to produce 
RTs that are about as slow, on average, as those of mentally retarded persons.

We wondered why it should be so difficult to “ fake bad”  without producing 
RTs that are so far out from the mean as to be even outside the range of the 
mentally retarded. The apparent answer to this puzzle came to us in the re­
markable researches of the neurophysiologist Benjamin Libet,1321 who measured 
“ reaction tim es”  (i.e., neural reaction potentials) through electrodes placed di­
rectly inside the brain. He was able to determine that the time required for 
conscious awareness of a stimulus is, on average, about 500 msec. The subject 
claims to be consciously aware of the stimulus at the instance of its occurrence, 
but this is only the result of subjective referral of the sensory experience back­
ward in time. As William James (1894) noted much earlier, “ The whole suc­
cession [of the RT process] is so rapid that perception seems to be retrospective 
and the time order of events to be read off in memory rather than known at the 
moment”  (p. 88).

Clearly, subjects in our RT studies had to be responding before they were 
consciously aware of the reaction stimulus, because the RTs usually averaged 
less than 500 msec. In the Hick paradigm, for example, the median RTs for 
zero to three bits of information average between 300 and 400 msec. Apparently 
the reason that subjects without special training are unable to fake believable 
slow responses is that they do not have intentional or conscious control over 
their RTs. The response is triggered by the reaction stimulus and is completed 
before the subject is even consciously aware of the reaction stimulus. This shows 
how exceedingly little RTs in these simple ECTs involve anything that could 
be called thinking, cogitation, or problem solving in any meaningful sense of 
these terms. RTs appears to reflect activity at a basic neural level that occurs 
prior to the full activation of consciously guided processes.

Intraind iv idual V ariab ility  in R T  (R T SD ). This is the standard deviation 
of a subject’s RTs over n trials. It is a rare study in which RTSD does not have 
a larger (negative) correlation with IQ than does RT itself. In other words,
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higher-IQ persons have more consistent RTs from trial to trial when performing 
an ECT. Persons of varying levels of IQ, from the mildly retarded (with IQs 
around 70) to the brightest university students (with IQs above 130), differ 
surprisingly little in their shortest RTs, but differ markedly in their longer RTs. 
Retarded persons produce a small percentage o f RTs that are almost as fast as 
the fastest RTs of high-IQ subjects and faster than the median RT of high-IQ 
subjects. But high-IQ subjects virtually never produce RTs that are as slow as 
most of the RTs produced by retarded persons. Yet even in the highly restricted 
IQ range of university students, there is a significant negative correlation be­
tween RTSD and IQ, and the correlation is nearly always larger than the cor­
relation between RT and IQ.

Intraindividual variability per se is not a prima facie indicator of the “ good­
ness”  o f performance and can hardly be considered an ability. Yet it is corre­
lated with IQ and with g. Although RTSD is quite highly correlated with RT, 
RTSD is significantly correlated with g  independently of RT (as shown by par­
tial correlation). That is, RT and RTSD have both overlapping components and 
nonoverlapping components that are independently correlated with g, and RTSD 
has the larger g component.1331 These facts must be accounted for by a theory 
of the RT-g correlation.

Two studies1341 have revealed that it is the individual’s longer RTs that are 
most highly correlated with IQ. When subjects’ RTs obtained in n trials are 
rank-ordered from the fastest to the slowest and the RT X  IQ correlation is 
calculated within each of the n ranks, the n correlation coefficients show a steady 
rise from the speediest to the slowest rank. This was found both in Navy recruits 
and in university students.

RT and A b ility-G roup  D ifferences. Individual differences in RT and mean 
group differences in RT are perfectly consistent. By this I mean that ECTs that 
show a negative correlation between IQ and RT for individuals also show a 
negative correlation between the IQ means and the RT means of various groups 
that differ in IQ. In fact, the IT X  IQ correlation for group means is unity. Also, 
the negative correlation between RT and IQ (and RTSD and IQ) exists within 
groups at every level of IQ, from the severely retarded, to university students, 
to members of Mensa (the organization that requires a minimum IQ of 132 for 
membership). The correlations are slightly higher in low-IQ groups than in high- 
IQ groups, even when corrections have been made for restriction of range of 
IQ within groups.

There is some independent evidence that at lower levels of IQ, more of the 
test variance is attributable to g than to group factors, as compared with higher 
levels of IQ. This phenomenon, which Spearman dubbed the “ Law of Dimin­
ishing Returns,”  is more fully discussed in Appendix A. It would be of consid­
erable theoretical importance if it were firmly established as generalizable to all 
test batteries.

Large RT (and RTSD) differences and IT differences are seen between the 
severely retarded and the mildly retarded, and between mildly retarded and non­
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retarded groups.I35a'b'cl More important from a theoretical standpoint is the find­
ing of a fairly constant proportional RT difference between retarded and 
nonretarded groups on a wide variety of ECTs, which suggests that a single 
factor determines the group differences in RT on a variety of superficially dif­
ferent tasks. This phenomenon has been specifically investigated by Robert 
Kail,135111 with striking results. The mean RT of a retarded group (RTr ) on a 
great many types of timed performance can be expressed as RT,{ =  /lR Tn, where 
K is the constant of proportionality and RTN is the mean response time of a 
group with normal or average IQ. The value of K  varies from about 1.6 to 2.0, 
depending on the mean level of IQ of the retarded group (in the IQ range 50 
to 70). The main implication of this finding is that individual differences in 
some global mechanism, undoubtedly related to g, affect virtually every kind of 
ECT in the same way, despite the varied task demands of the different ECTs, 
which possibly lend themselves to different strategies.

Kail has also shown|35e) that RT differences between younger and older age 
groups behave in the same way and can be expressed in terms of a constant of 
proportionality that holds for a wide variety of ECTs. That is, children’s RTs 
can be expressed as a constant multiple of adults’ RTs regardless of the specific 
task demands of the ECT in which RT is measured. Kail draws the following 
apt analogy: “ If two computers have identical software, but one machine has a 
slower cycle time (i.e., the time for the central processor to execute a single 
instruction), that machine will execute all processes more slowly, by an amount 
that depends on the total number of instructions to be executed. . . . Speed of 
cognitive processing might be limited by the speed with which the human in­
formation processor can execute a fundamental cognitive instruction" (p. 179). 
Kail further argues: “ Just as the central processing unit of a microcomputer can 
run programs in different languages that accomplish an incredible variety of 
tasks, the fundamental processes of cognition are almost certainly the same for 
all humans, despite the fact that the organization of these fundamental processes 
to perform more complex acts is strongly culture-bound. A working assumption 
in my research is that the speed with which fundamental cognitive processes 
can be executed may well be one of those aspects of cognition that is universal 
rather than culture bound”  (p. 155).

The constant proportionality of RT also applies to mean RT differences be­
tween young and elderly adults.|3sn The same phenomenon also is strikingly 
evident in comparisons of mean RTs of average and of gifted children on a 
variety of ECTs.13,£ h i| Highly gifted youths averaging thirteen years of age who 
were enrolled in university courses in math and science were compared with 
typical junior-high-school age-mates and with regular university undergraduates 
on eight different ECTs. The profile of mean RTs on the eight ECTs was nearly 
identical for all three groups (average r =  +.96). However, the gifted group’s 
profile coincided with the university students’ profile, whereas the junior-high 
students’ profile, though closely resembling that of the other two groups, had 
mean RTs that were almost twice as long. University students and Navy recruits
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show highly similar (r =  + .97) profiles o f RT over the fourteen different forms 
of the Sentence Verification Test, but the groups differ about 300 msec in av­
erage RT (equivalent to a standardized mean difference of 0.67o).135jl

The consistency of all these findings makes it most implausible that these 
group differences in average RT could result from each group’s adopting a 
different strategy for approaching the various ECTs. Rather, the evidence is most 
consistent with Kail’s argument (quoted above) that individual and group dif­
ferences in RT on a wide variety of ECTs largely reflect some global mechanism 
that affects the speed of mental operations in all cognitive tasks. It is global in 
the sense that it cuts across the specific knowledge, skill, and task requirements 
of the great variety of ECTs, showing a constant proportionality of group dif­
ferences in processing speed. We may go a step further and suggest that this 
“ global”  mechanism, whatever its neurophysiological nature, is either wholly 
or partly the basis of g.

RT C orrelations across D ifferent T est C ontents. The late Robert L. Thorn­
dike and his co-workers expressly designed a study to examine whether corre­
lations between RT and psychometric test scores cut across different kinds of 
contents (verbal, quantitative, spatial) in both the conventional tests and the 
ECTs based on these contents.1361 The conventional tests were the Cognitive 
Abilities Tests (CogAT), a widely used set of paper-and-pencil tests composed 
of contents designed to yield separate measures of the three most well- 
established ability factors in addition to g\ verbal, quantitative, and visuospatial. 
The speed-of-processing tests consisted of six ECTs, in which the reaction stim­
uli consisted either of verbal, or o f quantitative, or o f spatial material. The 
separate RT scores therefore were based on responses to either verbal, quanti­
tative, or spatial stimuli.

The ECTs were quite simple; children in the fourth, seventh, and tenth grades 
had RTs averaging 1.7 sec; the fourth-graders’ mean RT was exactly double the 
mean RT of tenth graders. The RT X  CogAT correlations when the type of 
content was the same for both were compared with the RT X  CogAT correla­
tions when the type of content was different. The main finding was that the RT 
X  CogAT correlations hardly differed between same or different contents, al­
though the correlation was slightly larger for same content ( — .27 versus —.22). 
All of the correlations in this study mainly reflect the large general factor com­
mon to both the CogAT and RT measures.

The RTs on all six ECTs along with the CogAT Verbal, Quantitative, and 
Spatial scores were subjected to a hierarchical factor analysis. The second-order 
factor (i.e., the general or g factor of this matrix) loadings of the six RT variables 
(averaging —.40) are quite comparable in magnitude to the loadings of the three 
CogAT tests (averaging +.43). (The correlations have opposite signs, of course, 
because shorter RTs go with higher CogAT scores.) The factor analysis also 
revealed a large RT factor independent of g. As we shall see in a later section 
on the factor analysis of RT, this fact sets an inexorable ceiling on the size of
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the correlation that can be obtained between RT based on any single ECT and 
psychometric g.

T he C orrelation  betw een  C om posite R T M easures and IQ. Reaction time 
measures based on any single ECT are rarely more than moderately correlated 
with IQ. Correlations are typically in the range from — .20 to - .4 0 , sometimes 
less, but rarely more. It is important to understand why there should be this 
apparent correlational ceiling, and we will get to that point in the next section. 
But it is also important to understand the related issue of why it is possible to 
increase the correlation markedly by combining37 subjects’ median RTs from a 
number of different ECTs. This has been done in many studies, and the result 
has always been a significant rise in the RT-IQ correlation.

It is sufficient here to note that the combined RTs from a number of ECTs 
and IQ or other highly g-loaded measure approach the correlations typically 
found between various psychometric power tests, ranging up to correlations of 
about .70. A review1381 of several studies in which RTs (and RTSDs) from four 
or five different ECTs were combined shows multiple correlations (R ) ranging 
from .431 to .745, with an average R of .61 for RT, .60 for RTSD (i.e., intra­
individual variability in RT), and .67 for RT + RTSD.39 (All these values of R 
have been corrected for bias [i.e., “ shrunken” ] to take account of the number 
of independent variables.) These correlations, based on college students, have 
not been corrected for attenuation or for the restricted range of IQ in the college 
samples. If so corrected, they would be larger by at least .10. It should be noted 
that these correlations closely approach the average value of the heritability 
estimates of IQ in the adult population, the square root of which probably ap­
proaches the maximum possible correlation of IQ with any physiological vari­
ables. The combined RTs from a number of different ECTs therefore predict 
some 50 to 70 percent of the heritable part of the variance in IQ.40

Why should the composite RT from two or more different ECTs show higher 
correlations with IQ than the RT from any single ECT? A small part of the 
increase is merely a result of increased reliability of the RT measurement. An 
increased R would result even if one and the same ECT were given a number 
of times and their RTs were combined. But if the RT measures are quite reliable 
to begin with, this increase in correlation with IQ attributable only to improving 
the reliability of the RT measure by combining RTs from repeated testing on 
the same ECT is a relatively small gain, and the gains from repeated testing 
rapidly diminish. The observed effect we are concerned with here is much 
greater than can be accounted for by a simple increase in reliability, although 
it has an analogous basis.

Every ECT, besides reflecting a global speed of information processing, has 
a certain amount of uniqueness; that is, it also reflects other sources of variance 
in addition to the global speed of information processing. These sources of 
variance may arise in part from individual differences in the noncognitive or 
purely sensorimotor functions differentially called for by different ECTs and in 
part from different processes called for by different tasks. Individual differences
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in the distinct information processes called upon by a particular ECT are not 
perfectly correlated with individual differences in the distinct information proc­
esses called upon by other ECTs, although all of the different processes also 
share in each individual’s global or general speed of processing. Hence by sum­
ming (or averaging) the RTs of a number of different ECTs, the global speed 
is added in by every RT, while the specific processing speed unique to each 
ECT gets added in only once. So the more ECTs that are included in the com­
posite RT, the larger is the variance (individual differences) of the global speed 
component relative to the variance of any of the specific speed components. 
This is the same psychometric principle that explains why including a greater 
variety of items in a test increases the test’s correlations with other tests, even 
tests that have no specific contents in common.

In summary, no single ECT affords as good a measure of the global speed 
of information processing as a composite measure of speed from a variety of 
ECTs. But it should be emphasized that the composite RT is still based only on 
ECTs that bear no resemblance to conventional, complex psychometric tests. 
The important and theoretically interesting phenomenon is that even though 
none o f the ECTs calls for what one normally thinks of as cogitation or mental 
power (as each ECT can be performed in usually less than one second), their 
composite score is very substantially correlated with unspeeded psychometric 
tests designed to measure the level of a person’s mental power or complex 
reasoning ability. An explanation of the cause of this remarkable correlation 
would be a large step indeed toward understanding the nature of g. As yet we 
have only a few tentative but promising hypotheses of how this correlation 
comes about. But before looking at these, we should consider three other em­
pirical aspects of the RT-g correlation.

F actor A n alysis o f E C T s along w ith N onspeeded P sychom etric Tests. A 
Schmid-Leiman hierarchical factor analysis of a correlation matrix that includes 
both timed measures (RT, MT, and IT) from a number of ECTs and scores on 
a number of unspeeded psychometric power tests reveals four important fea­
tures.41 These are seen in the generalized didactic factor model in Table 8.1: (1) 
Both the psychometric power tests and the RTs of the ECTs are substantially 
loaded (indicated by + ) on the second-order general factor, g. (2) The MTs 
(movement times) of the ECTs generally are not significantly loaded on the g 
factor, but give rise to a separate factor whose major loadings are exclusively 
on the MT for various ECTs. (3) The non-g variance of the psychometric tests 
(PT) splits into the well-established independent group factors such as verbal 
and spatial. (4) Most important, the RT variance is divided between g and an 
independent group factor, which could be called the non-g component of RT.42

This latter observation is theoretically important for the interpretation of ECT 
X  psychometric test correlations. RT reflects at least two major components: a 
cognitive, or g component, which is information-processing speed and a non- 
cognitive, or non-g component, which is sensorimotor speed. But the non-g 
component of RT is not unique to each and every ECT in which RT is measured.
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T able 8.1
Generalized Hierarchical Factor Analysis o f a Matrix o f Psychom etric Tests (PT) 
and Elementary Cognitive Tasks (ECT)

F a c t o r s

Variables g P T - V e r b a l  P T - S p a t i a l E C T - R T  E C T - M T

PT-Verbal 1 + +
PT-Verbal 2 + +
PT-Verbal 3 + +

PT-Spatial 1 + +
PT-Spatial 2 + +
PT-Spatial 3 + +

ECT-RT 1 + +
ECT-RT 2 + +
ECT-RT 3

ECT-MT 1 
ECT-MT 2 
ECT-MT 3

+ +
+
+
+

N ote : Salient (large) factor loadings are indicated by + . Small or nonsignificant loadings are omitted. 
All o f the chronom etric variables (RT and MT) have been reflected (i.e., signs changed) so 
that “ goodness”  ( + )  o f perform ance on the ECTs and on the psychometric tests are positively 
correlated. The numbered boxes are keyed to explanations in the text.

Various ECTs have some part of the non-g component of RT in common, which 
creates a group factor in its own right. For this reason there is a ceiling consid­
erably below unity on the correlation that the composite RTs from any number 
of ECTs can have with g or any other psychometric variable. Inspection time 
(IT) has a higher ceiling than RT, most likely because it has no psychomotor 
component. These relationships are shown in the schematic factor model in 
Figure 8.5.

The sensorimotor component in simple RT (SRT), and hence its non-g com­
ponent, is relatively large compared to its g component. Choice RT (CRT) and 
the RTs of other more complex ECTs have a relatively larger cognitive com­
ponent. Therefore, by subtracting SRT from CRT (or other complex RT) it is 
possible to rid CRT of some of its sensorimotor component and thereby increase 
its g loading.43

G en etics o f the RT x  g  C orrelation . Response times in ECTs have not yet 
been subjected to extensive genetic analyses, although there are now several 
studies44 that clearly indicate significant heritability for a number of ECTs. The 
heritability coefficients for RT range widely for different ECTs, from close to
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PSYC H O M ETR IC  TE S T S

• • • Etc.

Figure 8 .5 . Representation of the factor structure of RTs on various ECTs. The cor­
relations of the RTs on various ECTs (T l, T2, etc.) with the g of psychometric tests is 
mediated by processes (P,, P2, P,) that are involved in different ECTs, and by a general 
speed of information-processing factor (IP) common to all RT tasks. The RT tasks and 
their common processes also have in common a non-g factor (labeled RT in the model), 
which is a sensorimotor speed factor that is distinct from the speed of information proc­
essing (IP). (The letter u stands for the square root of the uniqueness of each task.) (From 
Jensen, 1994c. Used with permission of Ablex.)
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zero to values approaching the heritability of standard psychometric tests. A first 
principal component RT factor score based on several ECTs showed a corre­
lation of .456 between MZ twins reared apart (MZA),(44al which can be taken 
as an estimate of broad heritability. The heritability of principal component RT 
scores (labeled “ basic speed”  by the authors) estimated from both MZA and 
DZA was ,54.|44h| In another study,|44cl using eleven ECTs (many of those pre­
viously described), the “ general speed”  factor scores (based on the RTs from 
all of the ECTs) showed a heritability coefficient [i.e., h2 =  2(rM7 -  rDZ)] of 
.57. Intraindividual variability of RT had a heritability of .70.

Two other findings are especially noteworthy in this context. First, just as the 
RTs on the more complex ECTs have higher correlations with IQ, they also 
show higher heritability. In view of the fact that mean RT of an ECT closely 
reflects subjective estimates of its complexity(4,, relative to other ECTs, it is 
interesting that the heritabilities of the various ECTs were correlated .676 with 
their mean RTs. Second, the degree to which the RTs of the various ECTs are 
correlated with the W echsler Full Scale IQ (a good proxy for g) predicts the 
ECTs’ heritability coefficients with a correlation of .603. When the same rela­
tionship was determined using g factor scores from the Multidimensional Ap­
titude Battery instead of Wechsler IQ, the resulting correlation was .604.

These studies leave little doubt that individual differences in RT, or speed 
and consistency of information processing, have a substantial genetic component 
and that the genetic component of RT is related to g. But more important, 
theoretically, than the heritability per se of RT is the degree of genetic corre­
lation46 between RT and g (or its proxies such as IQ or scores on the most 
highly g-loaded tests). Even though RT and IQ each may have a substantial 
genetic component, it is conceivable that all or most of their correlation results 
from nottgenetic factors that affect both variables.

Two independent quantitative genetic studies'471 based on MZ and DZ twins 
were designed to determine the relative roles of genetic and environmental ef­
fects in mediating the correlation between speed of information processing and 
IQ. In the first study,470 the genetic correlation between speed of processing and 
IQ was .84. Common (between-family) environmental effects contributed vir­
tually nothing to the phenotypic correlation. In the second study,47b the genetic 
correlation between RT and g was virtually unity. That is to say, whatever 
variance RT and IQ have in common is almost entirely genetic. The findings of 
these two studies are succinctly summarized by their authors:

Our results indicate that the phenotypic relationship between the measures of gen­
eral intelligence [g] and the measures of speed of processing [RT] employed are 
due largely to correlated genetic effects. While correlated specific environmental 
effects were less important, correlated common environmental effects were neg­
ligible. In general, the findings support the notion of some common biological 
mechanism(s) underlying both general intelligence and speed-of-processing meas­
ures.47" (p. 247)
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The common factor [between RTs and IQs] was influenced primarily by additive 
genetic effects, such that the observed relationships among the speed and IQ meas­
ures are mediated entirely by hereditary factors. There was additional specific 
genetic variance for Verbal IQ and specific shared-twin environmental variance 
for Performance IQ. However, twin similarity for general speed of processing was 
explained entirely by genetic factors related to intelligence. The results emphasize 
the importance of common, heritable, biological mechanisms underlying the speed- 
IQ association.4711 (p. 351)

P roof o f the R elationship  betw een S peed-of-P rocessing and g. Finally, we 
should be assured that the correlation between IQ tests (or other g-loaded psy­
chometric tests) and speed-of-processing as measured by RT in various ECTs 
actually reflects the tests’ g factor and not some non-g source of variance in the 
test scores with which RT may be correlated. An explicit demonstration that RT 
in fact reflects psychometric g is crucially important for theories that accord a 
prominent role to mental speed. Therefore, we must consider the studies that 
directly address this point.

First, it is important to note that mental processing speed (measured by RT) 
is correlated with crystallized intelligence (Gc) independently of fluid intelli­
gence (Gf), and RT is correlated with G f independently of Gc. As Gc and G f 
are highly correlated with each other, this means that RT is correlated with a 
higher-order factor that both G f and Gc have in common; that factor of course 
is g.[48a| This is also further evidence that in the hierarchy of psychometric ability 
factors, G f  and Gc are subordinate to g, the highest-order common factor. This 
arrangement is in fact necessary to comprehend the independent correlations of 
G f and Gc with RT.

Vernon[48b| summarized the results of five studies in each of which a g factor 
was extracted from a test battery (the Wechsler Intelligence Scale for Adults 
[WAIS] +  Raven Advanced Progressive Matrices [RAPM] or the Multidimen­
sional Aptitude Battery [MAB]), which he labeled IQg; and a general factor was 
extracted from the RTs of a battery of ECTs, labeled RTg. IQS factor scores 
were correlated with RTX factor scores. The results are summarized in Table 
8.2. The TV-weighted average IQg X RT^ correlation is —.52.

Vernon[48c| also found that when the g factor was partialed out of the WAIS 
+  RAPM, none of the twelve subtests was significantly correlated with RTg. 
Interestingly, the RAPM, a nontimed test that shares no face content in common 
with any of the RT tests, has the largest g loading of any of the psychometric 
tests and also has the largest correlation with RTS. In contrast, Digit Symbol, 
which is the least complex and the most speeded of all the WAIS subtests, has 
the smallest g loading and also the smallest correlation with RTS.

Another study,,48d' not included in Table 8.2, showed a correlation of .44 (.56 
after correction for restricted range of IQ in the university sample) between g 
factor scores (from the MAB + RAPM) and a composite unit-weighted measure 
of speed and efficiency of processing on six ECTs.



Tabic 8 .2
Correlations between !(),. and RT„ in Five S tu d ies141"’1

Study Sample N
Variance accounted for by:

IQ* RT*
IQ Test(s) (%) (%)

Correlation between 
IQ* and RTg

Vernon (1983) University
students

100 WAIS + RAPM 55.4 65.5 -0.406

Vemon and Jensen 
(1984)

Vocational
college
students

106 ASVAB 45.4 65.5 -0.260

Vemon, Nador and University 81 MAB (timed)* 42.4 71.4 -0.503
Kantor (1985) students MAB (untimed) 39.0 71.4 -0.357
Vemon and Kantor High school 58 MAB (timed)* 46.0 76.3 -0.446
(1986) students 55 MAB (untimed) 49.7 77.3 -0.462
Vemon (1989a) MZ twins 100 MAB 60.9 83.4 -0.673

DZ twins 104 MAB 49.6 68.5 -0.550
MZ and DZ 
twins and non­
twin siblings

274 MAB 55.5 76.9 -0.628

*See original references for the tim e/untim ed distinction.
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The mere size of the simple correlation between RTs and various psycho­

metric tests is much less important to theories of mental ability than establishing 
the fact that the correlations are dependent on the relationship of RT to g. 
Definitive evidence for this relationship is provided by the method of correlated 
vectors, whereby the column vector of various psychometric tests’ g loadings 
(V ) is correlated with the column vector of the tests’ correlations with RT (VRT). 
(See Appendix B for an example of this method.) The data from several studies49 
that report the g factor loadings of a number of diverse psychometric tests and 
the tests’ correlations with RT (or other chronometric variables derived from 
RT) permit the application of this method.

Smith and Stanley|49al correlated scores on eight psychometric tests separately 
with the RTs and RTSDs from the 2, 4, and 8 button conditions (1 ,2 , and 3 
bits, respectively) of the Hick paradigm. The correlation coefficients constitute 
the column vector VRT (or VRTSD). The g  loadings of the eight psychometric 
tests constitute the column vector V . For RT, the Vs X VRT correlations (7) for
I, 2, and 3 bits were —.765, - .1 6 0 , and —.966, respectively (the 2-bits con­
dition, with r = - .1 6 0 , is obviously anomalous; the rank-order correlation is 
only —.270). For RTSD, or intraindividual variability in RT, the Vs X VRTSD 
correlations for 1, 2, and 3 bits were —.687, —.410, and —.772, respectively 
(again, the 2-bits condition, with r  =  —.410, seems anomalous, but here Spear­
man’s rank-order correlation rs is —.714.) The authors concluded, “ It was 
clearly shown that the profile of the PT’s [psychometric tests’] g loadings could 
be well predicted from the RT-PT correlations for four of the RT measures. It 
can be concluded that RT tasks do measure general intelligence. Analysis of the 
errors in prediction suggested that the RTs may correlate more with fluid than 
crystallized intelligence”  (p. 291).

An important point in the authors’ Table 1, but not mentioned by them, is 
seen in the correlations of all the RT and RTSD variables with g (the first 
principal component) and also with the next largest psychometric component 
(the bipolar verbal vs. spatial second principal component), which is perfectly 
uncorrelated with g and could be called a non-g factor. The average of all the 
g X RT and g X RTSD correlations is —.24 (p <  .01), whereas the average of 
all the non-g X RT and non-g X RTSD correlations is +.02. This indicates that 
RT and RTSD are not correlated with any significant common factor in this 
psychometric battery other than g. In fact, I have not found an example of RT 
and RTSD being significantly correlated with any psychometric factor that is 
orthogonal to g.

Eleven ECTs (RTs and IT) given to seventy-three Navy recruits were used 
in a multiple correlation (R ) to predict scores on each of the ten subtests of the 
Armed Services Vocational Aptitude Battery (ASVAB), the Raven Matrices 
(Advanced), and g factor scores derived from the ASVAB.I49h| The individual 
Rs ranged from .61 (for g factor scores) to .29 (for both Numerical Operations 
and Coding, the two most speeded tests in the ASVAB battery). The thirty-six- 
item Raven Matrices, with a forty-minute time limit, had the second largest
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Mean Latency of Processing Task (msec)
(X )

Figure 8.6. Correlation (Pearson r and Spearman’s rank-order correlation p) of eight 
ECTs with ASVAB g factor scores as a function of task complexity as indicated by mean 
response latency (RT in msec) on each task. (The ECTs numbered 1 to 8 are described 
in the original article.|4,cl) Reprinted from Personality and Individual Differences, 5, P. A. 
Vernon & A. R. Jensen, Individual and group differences in intelligence and speed of 
information processing, 411-423, Copyright 1984, with kind permission from Elsevier 
Science Ltd. The Boulevard, Langford Lane, Kidlington 0X5 1GB, UK.

correlation (R =  .55). The correlation between the column vector of the twelve 
variables’ g loadings and the vector of the variables’ multiple Rs with the ECTs 
is r = .78.

The g loadings of RTs on various ECTs are clearly related to the complexity 
of the cognitive operations they call for. The mean RT of each of eight different 
ECTs in a sample of 106 vocational college students was used as an objective 
index of each ECT’s cognitive demand. The mean RTs of the eight ECTs ranged 
from 355 msec to 1,400 msec. The students also took the ASVAB, from which 
the g factor was extracted. The correlation between the eight RT means (on the 
ECTs) and the ECT’s correlations with g factor scores (from the ASVAB) is r 
=  —.98 (rs =  —.93), as shown in Figure 8.6.

A composite speed measure (based on RT, IT, and the Coding speed subtest 
of the WAIS) was obtained from 102 elderly persons (aged fifty-four to eighty- 
five).,49tl Partial correlations (with age partialed out) were obtained between this 
speed measure and each of eleven diverse psychometric tests. The vector of 
these correlations and the vector of the tests’ g loadings are correlated r = .95, 
r5 =  .72 (p <  .01).
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In the Hick paradigm (previously described), RT increases as a linear function 

of task complexity measured in bits of information. The rate of this increase in 
RT with increases in task complexity (that is, the slope of the linear regression 
of RT on bits) is negatively related to the speed of information processing. The 
increment in RT with each increase in task complexity is less for high-IQ than 
for low-IQ individuals.

RT in the Hick paradigm is itself a function of both the intercept and the 
slope of the regression of RT on bits. Slope has generally shown only weak and 
often nonsignificant (negative) correlations with IQ, especially in college sam­
ples. The reason for this is its usually low reliability, which makes slope a poor 
measure of individual differences. When Hick paradigm data are aggregated 
over many subjects, however, the slope of the mean RTs is much more reliable 
than the slope for any individual. Groups that differ in mean IQ also show highly 
significant differences in the mean slope of their RTs as a function of bits. The 
higher-IQ group always shows the lesser slope. So there can be little doubt that 
the slope of RT as a function of task complexity (measured as bits of infor­
mation) is related to IQ. A study of the Hick paradigm based on 59 school­
children (aged 6 to 11) obtained partial correlations (age partialed out) between 
RT slope and each of the 12 subtests of the Wechsler Intelligence Scale for 
Children-Revised (WISC-R). The vector of these 12 correlation coefficients and 
the vector of the 12 W ISC-R subtests’ g loadings are correlated r =  —.80, rs 
= - .8 3  (p <  ,01).|49el

These findings amply establish the relationship between psychometric g and 
speed of information processing. So now we can proceed to consider hypotheses 
that attempt to explain the causal basis of this relationship.

BLIND ALLEY EXPLANATIONS OF THE RT-g RELATIONSHIP
The term RT-g is used here in a generic sense to include the correlation of 

any speed-of-information processing measure with psychometric g. Before tak­
ing up the more promising leads for a theory of the RT-g correlation, it may be 
helpful to dismiss those hypotheses which evidence indicates are theoretical 
blind alleys. We have already examined the discredited notion that the RT-g 
correlation results from the speededness of psychometric tests. But there are 
several other, almost equally unfruitful, explanations that, when fully examined, 
are contradicted by a preponderance of evidence.

The fact that any particular explanatory element can be demonstrated to have 
an effect in some particular experiment does not establish it as a primary cause 
of the RT-g correlations seen across many experiments. No one has claimed 
that it is impossible to manipulate certain experimental conditions that are es­
sentially extrinsic to the RT-g correlation in ways that may affect RT or even 
the RT-g correlation, although, in fact, it is surprising how few experimental 
manipulations produce any significant effect. Although, for the extenuating rea­
sons already pointed out, the RT-g correlation may not be especially large, it is
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in fact remarkably robust across a wide variety of laboratory techniques and 
procedures and shows up within every age group from preschoolers to the eld­
erly and within subject samples selected from every segment of the distribution 
of IQ in the population, from the severely retarded to the exceptionally gifted. 
The RT-g correlation has proved to be one of the most dependable phenomena 
in the behavioral sciences. With that in mind, here are the failed explanations 
of the RT-g correlation.

S p eed -A ccu racy  T rade-O ff. While it is true that the degree to which either 
the speed or the accuracy of responding is emphasized in the preliminary in­
structions to subjects can affect the speed of response and the error rate (in 
opposite directions), it cannot really explain the RT-g correlation. The idea was 
that higher-IQ persons would opt for the strategy of maximizing their quickness 
of response at the expense of making more errors, while lower-IQ persons would 
sacrifice speed for accuracy of response. Hence the negative correlation between 
RT and IQ. But if this were the true explanation of the RT-g correlation, one 
should predict two things: (1) a positive correlation between errors and IQ; and 
(2) a negative correlation between RT and errors. W hat is typically found, how­
ever, is just the opposite of both predictions. Higher-IQ subjects are faster and 
more accurate than lower-IQ subjects, and fast responders make fewer errors 
than slow responders. Also, at any given level of accuracy, high-IQ subjects 
have faster RTs than low-IQ subjects. These facts are not explained by the 
speed-accuracy trade-off theory.

The S trategy D eficit H ypothesis. This is the idea that highcr-IQ persons are 
better at discovering more efficient strategies for solving particular problems 
and that even simple ECTs lend themselves to different strategies that are more 
or less efficient. Alderton and Larson[50al have defined strategy use as “ some 
goal-directed, purposeful use or allocation of intellectual resources . . . guided 
by the individual’s knowledge of the structure of the task or problem”  (p. 48). 
A simple analogy would be two cars each starting out at the same time, fueled 
with the same grade of gas; they drive from town A to town B at the same 
average speed, but the car whose driver discovers a shortcut (i.e., a more effi­
cient strategy) arrives at the destination half an hour before the other car. This 
is causally a quite different phenomenon from the case where both cars take the 
same route but arrive at different times because they average different speeds, 
perhaps because one is a racing car and the other is a jalopy.

It is likely that people differ in their “ strategic”  tendencies, with some per­
sons better able than others to discover, learn, or use acquired strategies in novel 
situations. The important question with respect to ECTs, however, is whether 
individual differences in RT and IT (and intraindividual variability in RT) sim­
ply reflect individual differences in the use of strategies that are more or less 
efficient (or individual differences in the number of trials needed to discover a 
more efficient strategy). If using a more efficient strategy is a general charac­
teristic of higher IQs, that would explain the RT-g correlation. An alternative 
possibility is that individual differences in IQ and in efficiency of strategies both
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reflect individual differences in a more basic physiological substrate that could 
be called something like “ neural efficiency.”

Several lines of evidence help in deciding between these alternatives. If highly 
reliable individual differences in the RTs to a particular ECT could be demon­
strated over a wide range, such that the number o f significant differences be­
tween subjects is almost as great as the number of subjects, it would seem 
improbable that all these differences could represent an equal number of unique 
strategies, all differing in efficiency. And if it were the case that all the subjects 
changed from less to more efficient strategies at different points in the course 
of practice, it would contradict the very high intertrial consistency of individual 
differences in RT and IT that it is in fact possible to attain on many ECTs. 
Also, various ECTs based on different task requirements would each evoke a 
different strategy, and one would have to conclude that all of these strategies 
have some variance in common, because all ECTs, like all psychometric tests, 
are positively correlated. So far, nothing that could be called a “ general strategy 
factor’ ’ has been discovered that is not just g in another guise. Despite its lack 
of compelling empirical support, the strategy hypothesis of the RT-g correlation 
appeals to some psychologists, I believe, because it accords with their ideology 
of explaining behavior in strictly behavioral terms and viewing individual dif­
ferences purely in terms of learning, without implying any “ hard-wired”  brain 
processes. Such Behaviorism with a capital “ B”  insists upon “ debiologizing”  
the RT-g correlation and denying individual differences in basic processes.

The research conducted to test the strategy hypothesis of the RT-g correlation 
is rather complex, but quite conclusive in its negative verdict. In perhaps the 
most clever study|50a| of this issue, fairly simple computerized ECTs, given to 
243 Navy recruits, were specially devised so as to elicit different strategies. At 
certain points in the sequence of trials, the stimulus features of the ECTs were 
altered in ways that would allow subjects to discover the possibility of a more 
efficient strategy. The ECTs were purposely much more liable to elicit different 
strategies than are most o f the previously described ECTs typically used in 
research on individual differences. This paradigm allowed the investigators to 
determine from the resulting RT data which particular strategy each subject had 
adopted, and if there was a change in strategy over the course of many trials, 
it was possible to determine the exact trial on which the subject adopted a 
different strategy.

Here is what was found. As usual, the RT-g correlation appeared, based on 
the g (or Gf) factor derived from nineteen diverse psychometric tests. As usual, 
the RTs were positively correlated across the different ECTs. However, individ­
ual differences in the strategy measures derived from these ECTs were unique 
to each ECT, that is, they were uncorrelated across the different ECTs. They 
were also uncorrelated with any of the psychometric test scores or the tests’ g 
factor. The study’s authors, U.S. Navy research psychologists Alderton and Lar­
son, concluded the following:
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[T]here was uniformly no evidence supporting cross-task consistency in strategy 
use, which conflicts with the theoretical conjecture that effective strategy use is 
general across tasks and an explanation for the statistical phenomenon of general 
intelligence. Admittedly, the current tasks were simple, require few cognitive op­
erations, and thus are restricted in terms of possible strategy variations. However, 
although there was no evidence for cross-task consistency in strategy use, global 
performance on these tasks was highly intercorrelated and broadly dependent upon 
aptitude, including general intelligence. Thus, although high intelligence individ­
uals did not consistently optimize strategy use across tasks, they certainly opti­
mized overall performance across tasks. This returns us to our central conclusion: 
Alternatives to strategy theories of g must be pursued if progress is to be made 
in explaining general intelligence, (p. 74)

Strategy use has also been examined in the inspection time (IT) paradigm, 
which is probably the least complex of all ECTs. IT has a quite large g com­
ponent in common with psychometric tests and with RTs from other ECTs. It 
also has a speed component, independent of psychometric g, which is also com­
mon to RT in certain ECTs that reflect quickness of visual perception, such as 
the Visual Scan test (described on p. 216).|50hl

There is one possible strategy (if it can even be called a strategy) that is used 
by some subjects in one form of the IT task, in which the tachistoscopically 
presented test stimulus consists of two vertical lines side-by-side, one line only 
half as long as the other; the subject has to decide whether the longer line 
appeared on the right or the left side of the display. Some subjects, for reasons 
that are still unclear, report being able to see an illusion of “ apparent move­
ment”  of the shorter line after the backward mask has covered the test stimulus. 
This apparent movement often cues the correct answer and subjects try to use 
it in hopes of improving their IT performance.

In several studies'5001 subjects were questioned after the IT test to find out 
whether or not they had used the apparent movement cue. When all the tested 
subjects were included, the IT-IQ correlations were in the range of —.30 to 
- .4 0 . After excluding the subjects who reported using the apparent movement 
strategy, the IT-IQ correlations increased in magnitude to —.60 to —.70. In other 
words, individual differences in strategy use actually decreased the correlation 
of IT with IQ. Subjects who were able to use the strategy were compared with 
those who did not, and there was no significant difference between the two 
groups either in mean IT or in mean IQ.

M otivation , E ffort, D rive, and A rousal. Some psychologists have invoked 
this class of variables to explain the RT-g correlation and even g itself. The idea 
is that individual differences in performance on both psychometric tests and 
ECTs reflect mostly individual differences in subjects’ motivation and effort 
expended in the test situation. According to this theory, higher-scoring subjects 
are simply those who are more highly motivated to perform well. This expla­
nation, though plausible, is contradicted by the evidence.

First, much is known empirically about the effects of these variables on cog­
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nitive performance, and the general principles derived from all this evidence 
appear to make this class of motivational variables an exceedingly weak prospect 
as an explanation of either g or the RT-g correlation. The Yerkes-Dodson law 
is most pertinent here. This is the well-established empirical generalization that 
the optimal level of motivation or drive (D) for learning or performance of a 
task is inversely related to the degree of complexity of the task; that is, a lower 
level of D is more advantageous for the performance of more complex tasks. 
In this respect, D is just the opposite of g. The g loading of tasks increases with 
task complexity, and persons who score highest in the most g-loaded tests are 
more successful in dealing with complexity. This is inconsistent with what is 
known about the effects of D on the performance of simple and complex tasks.

If individual differences in g were primarily the result of individual differ­
ences in D, we should expect, in accord with the Yerkes-Dodson law, that simple 
RT should be more correlated with g than two-choice RT, which should be 
more correlated with g than Odd-Man-Out RT. But in fact the correlations go 
in the opposite direction. Another point: The very low correlation between in­
dividual differences in RT and MT (movement time), and the fact that in factor 
analyses RT and MT have their salient loadings on different factors, would be 
impossible to explain by the motivational hypothesis without invoking the ad­
ditional implausible ad hoc hypothesis that individual differences in motivation 
differentially affect RT and MT. As noted previously, RT is highly sensitive to 
differences in the complexity or information load of the reaction stimulus, while 
MT scarcely varies with task complexity. Despite this, subjects perceive RT and 
MT not as separately measured acts, but as a single ballistic response. It is most 
unlikely that a motivational effect would shift during the brief unperceived RT- 
M T interval.

The assessment of drive level and its attendant effort is not a function of 
subjective reports or of the experimenter’s merely assuming the effectiveness of 
manipulating subjects’ level of motivation by instructions or incentives. Drive 
level is reflected in objectively measurable physiological variables mediated by 
the autonomic nervous system. One such autonomic indicator of increased drive 
or arousal is pupillary dilation.

Pupillary diameter can be continuously and precisely measured and recorded 
by a television pupillometer while the subject is attending to a task displayed 
on a screen. This technique was used to investigate changes in effort as subjects 
were given relatively simple tasks (mental multiplication problems) that differed 
in complexity and difficulty.|51a) The subjects were two groups of university 
students; they had been selected for either relatively high or relatively low SAT 
scores, and the score distributions of the two groups were nonoverlapping on 
an independent IQ test. The whole ETC procedure was conducted automatically 
by computer; subjects responded on a microswitch keyboard. Here are the main 
findings: (1) pupillary dilation was directly related to level of problem difficulty 
(indexed both by the objective complexity of the problem and by the percentage 
of subjects giving the correct answer), and (2) subjects with higher scores on
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the psychometric tests showed less pupillary dilation at any given level of dif­
ficulty. The UCLA investigators, Sylvia Ahern and Jackson Beatty, concluded: 
“ These results help to clarify the biological basis of psychometrically-defined 
intelligence. They suggest that more intelligent individuals do not solve a trac­
table cognitive problem by bringing increased activation, ‘mental energy’ or 
‘mental effort’ to bear. On the contrary, these individuals show less task-induced 
activation in solving a problem of a given level of difficulty. This suggests that 
individuals differing in intelligence must also differ in the efficiency of those 
brain processes which mediate the particular cognitive task”  (p. 1292).

Another studyl5lb! in this vein, based on 109 university students, measured 
two autonomic effects of increased motivation (heart rate and skin conductance) 
as well as a self-report questionnaire about the student’s subjective level of 
motivation and effort. The purpose was to determine if increasing motivation 
by a monetary incentive ($20) would improve performance on three comput­
erized ECTs or affect the ECTs’ correlations with a composite score based on 
two highly g-loaded tests (Raven and Otis-Lennon IQ). Subjects were randomly 
assigned to either the incentive or the no-incentive conditions. Each subject was 
tested in two sessions; only those in the incentive group were offered $20 if 
they could improve their performance from the first to the second session. The 
incentive group reported a significantly (p <  .01) higher level of motivation and 
effort than was reported by the no-incentive group. But the physiological indices 
of arousal recorded during the testing showed no significant effect of the incen­
tive motivation. Processing speed (RT or IT) was not significantly affected by 
the incentive condition on any of the ECTs, although on a composite measure 
based on all three ECTs, the incentive group showed a small, but significant (p 
<  .05) improvement from the first to the second session, as compared to the 
no-incentive group. The correlation of the combined ECTs with the composite 
IQ averaged .345 for the no-incentive condition and .305 for the incentive con­
dition (a nonsignificant difference). Although both groups showed a significant 
practice effect (improvement) from the first to the second session on each ECT, 
the average ECT X IQ correlation was not affected. The authors concluded, “ In 
no case . . . did incentives affect the overall IQ-performance correlation for the 
tests used in the battery. These results support the view that correlations between 
information processing scores and intelligence reflect common mental capacities, 
rather than some affective variable such as motivation” 5lb (p. 25).

R T as a L earn ed  S k ill. This hypothesis holds that individual differences in 
learning ability are related to g (which is certainly true) and that the faster 
learners, who have a higher level of g , learn more quickly how to cope with 
various ECTs and to improve their RTs than do slower learners. High-g persons 
even begin the task with faster RTs, supposedly because they have a better 
immediate mental representation of the nature and requirements of the RT task. 
There is little doubt that learning ability, RT, and g are all related to one another. 
But they are related because they all depend on the basic speed and efficiency
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of information processing, not because individual differences in learning ability 
are the essential cause of individual differences in RT on various ECTs.

Systematic improvement of performance over the course of practice is evi­
dence of learning. The learning hypothesis of the RT-g correlation is contra­
dicted by evidence that shows that the RTs in certain ECTs are correlated with 
g, yet show either no improvement with practice, or so slight a degree of im­
provement as to acccount for only a fraction of the individual differences var­
iance. After prolonged practice, improvement in ECT performance still shows 
reliable individual differences between subjects at the asymptotic level of per­
formance (that is, at the point beyond which the effects of practice have nearly 
leveled off and will show little further improvement for a given individual).52

It has been suggested that when all subjects have been allowed sufficient 
practice to reach their asymptotic level on the RT task, the RT-g correlation 
would be reduced almost to zero. A study53 expressly designed to investigate 
the effects of prolonged practice on the RT-IQ correlation measured two kinds 
of RT on a sentence-picture verification test in sixty university students over 
the course of more than 2,500 trials and nine hours of practice. The RTs showed 
significant declines in RT-IQ correlations early in practice, but during approx­
imately the last 1,200 trials the RT-IQ correlations stabilized at an asymptotic 
level. Initially the RT-IQ correlation was —.46. After more than 2,500 trials and 
nine hours of practice, the sentence verification RT correlated - .3 9  with IQ. 
The authors concluded, “ If RTs in an ECT still correlate with psychometric 
intelligence after more than 2000 trials of training (as was demonstrated), then 
top-down explanations of this relationship on the basis of metaprocesses . . .  or 
controlled vs. automatic processing . .  . seem largely implausible. Instead, from 
our findings we infer a strong support for the biologically based bottom-up 
explanations of the ‘mental speed’ theory of intelligence”  (p. 214). Some of the 
terms in this quote, though highly familiar to specialists, are so important for 
understanding the argument here as to warrant some explanation for the general 
reader.

Top-down versus bottom-up distinguishes between two theoretical possibili­
ties: (1) Top-down means that the causal direction of the RT-g correlation arises 
from individual differences in “ higher,”  or more complex, mental processes, 
which are deemed responsible for individual differences in the “ lower,”  or less 
complex, speed of processing reflected in RT. (2) Bottom-up means that indi­
vidual differences in the speed of processing, reflected in RT, are the causal 
basis of individual differences in the higher, more complex mental processes of 
the kind involved in abstract reasoning, problem solving, and knowledge ac­
quisition.

The top-down theory holds that higher mental functions, such as the subject’s 
ability fully to grasp the task requirements, to discover and use more effective 
strategies, to transfer past learning and allocate the most appropriate “ cognitive 
resources”  to the particular task, and the like, all determine the person’s RT in 
any ECT. As these kinds of complex mental functions are what are assessed by
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IQ and the most highly g-loaded tests, and, as these higher mental processes 
supposedly influence RT, it is little wonder that we should find a correlation 
between RT and g.

The bottom-up theory, on the other hand, holds that individual differences in 
performance of these higher mental functions are themselves a manifestation of 
individual differences at a simpler, more basic, and more general level of brain 
activity, namely, neural and synaptic attributes that determine the speed and 
efficiency of information processing. (There is an operational distinction be­
tween speed and efficiency; efficiency refers to the moment-to-moment consis­
tency of speed of processing information, as reflected by the amount of 
variability [measured by the standard deviation] of a person’s RTs over a number 
of trials.)

The fact that RTs and evoked brain potentials to a reaction stimulus can occur 
within a lesser time interval than it takes for the neural effects of the stimulus 
to reach the higher brain centers or conscious awareness of the stimulus would 
seem to be much more in accord with the bottom-up than with the top-down 
theory. Besides, it is hard to imagine how a person’s complex, higher-level 
capabilities typically displayed in IQ tests (e.g., defining words, solving analo­
gies, copying block designs, doing mental arithmetic, and the like) would give 
the person any advantage in producing faster RTs in the comparatively simple 
ECTs that show correlations with IQ or g. On the other hand, it is easy to 
conceive how greater speed and efficiency of information processing could be 
an advantage in the performance of complex cognitive tasks such as those that 
constitute IQ tests. This is described in greater detail below in the section titled 
“ Makings of a Theory of the RT-g Correlation.”

Why does RT in most ECTs show so little improvement with practice and 
only a slight shrinkage o f its correlation with g? Other evidence indicates that 
some other tasks lose much, or nearly all, of their g loading after prolonged 
practice. Why not ECTs? The answer seems to be that very few features of most 
ECTs lend themselves to automatization of responses; they are explicitly de­
signed to demand controlled processing. For a task to become automatized over 
the course of prolonged practice, all of the task’s stimulus-response elements 
(S' — R 1, S2 — R2, etc.) and chained responses (R 1 — R2) must be highly 
consistent throughout practice.

Automatization consists of the overlearning of these consistent aspects of the 
task through practice long beyond the point of initial mastery of the task, until 
the routine is thoroughly “ entrenched,”  to use Robert Sternberg’s apt term. 
Automatization of the key aspects of RT tasks, however, is usually intentionally 
prevented by randomization of the S-R conditions, which constantly maintains 
the subject’s uncertainty of the moment of occurrence, or the location, or the 
properties of the reaction stimulus throughout the course of practice. RT tasks 
in which the reaction stimuli occur in a purely randomized or unpredictable 
order are essentially nonautomatizable; they depend almost entirely on con­
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trolled processing. The distinction between controlled and automatic processing 
has become an important concept in cognitive psychology.

C ontrolled  Processing. The distinguishing characteristics of controlled proc­
essing of information are that it demands the individual’s focused attention, 
requires conscious mental effort, is relatively slow as compared to automatic 
processing, deals with information input sequentially, and therefore is able to 
deal with only very limited amounts of information at one time, and is unable 
to execute different mental operations simultaneously. These characteristics are, 
of course, those associated with working memory. In some circumstances the 
input demand on controlled processing may approach the maximum capacity of 
working memory; any faster rate of input overloads the system and results in 
“ breakdown” or “ turn-off.”  Solving novel problems, learning new knowledge 
or skills, and consciously monitoring an unpredictably changing situation that 
calls for varied responses all involve controlled processing.

Not surprisingly, tasks that demand controlled processing are g loaded, the 
more so the greater the demands made on working memory. If everything we 
did mentally had to depend entirely on controlled processing, life would be 
intolerably burdensome indeed, and our efficiency would be greatly impaired. 
Fortunately, the evolution of the brain has provided us with the means for escape 
from such a fate, namely, the development of automatic processing. It is the 
mechanism for what might be called “ the conservation of g .”

A u tom atic P rocessing. Practice, if sufficiently long-term, can automatize cer­
tain information-processing routines, which frees up working memory to be used 
for the controlled processing of other information. In contrast to controlled proc­
essing, automatic processing does not demand one’s entire attention; it is rela­
tively effortless and can deal with large amounts of information and perform 
different operations on it simultaneously.

The degree to which task performance can become automatized depends on 
how consistent, predictable, or routine the information-processing demands of 
the task are. Automatization is easier the more consistent the required sequence 
of operations between input and output. In learning to send Morse code, for 
example, there is an invariant one-to-one relationship between letters of the 
alphabet and their corresponding dot-and-dash codes. The act of sending and 
receiving messages becomes completely automatized for expert telegraphers.

Most skills, however, involve both controlled and automatic processing. Driv­
ing a car is a good example. In the early stage of learning to drive, controlled 
processing predominates. To minimize external distractions, the learner must 
practice in a quiet street. The learner’s full and undivided attention is required 
to execute smoothly the simultaneous operations of the clutch, the gear shift, 
the gas pedal, the steering wheel, and the brake, and also remember to make 
the appropriate hand signals at the right times. While doing all this the learner 
finds it impossible to converse, listen to the radio, or think about other things, 
without risk of grinding gears, killing the engine, running off the road, or worse.

With more and more practice, driving skill becomes increasingly automatic.
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The seasoned driver performs all these operations without having to think about 
them at all. Controlled processing is still necessary, however, to deal with con­
stantly changing traffic conditions. We have to relinquish conversation or other 
attention-demanding activity momentarily when traffic conditions change sud­
denly or look complicated and unpredictable. The working memory is then 
briefly occupied to full capacity. That is controlled processing. If all of the 
driver’s operational skills were not fully automatic, they would encroach on the 
capacity of working memory and thereby impair the efficiency of the controlled 
processing needed to get through the traffic crisis without a mishap.

A perfect example of the combined roles of controlled and automatic proc­
essing is sight-reading an unfamiliar piece of music— an essential requirement 
of professional orchestra players. The controlled processing aspect of this feat 
occupies a considerable part of the capacity of working memory, especially if 
the performer must play up-to-tempo and at the same time be highly responsive 
to the conductor’s expressive signals. Yet it would be utterly impossible for 
controlled processing to accomplish this kind of performance were it not for the 
fact that for professional musicians both the reading of musical notation and its 
execution on their instruments are about 99 percent automatized. Scarcely any 
thought at all need be given to those aspects of the musical notation per se that 
normally demand so much of the novice’s attention, or to the incredibly complex 
combinations of perfectly coordinated muscular movements required to produce 
the correct sequences of notes on a musical instrument. The sequence of notes 
on the printed score is automatically translated into the sequence of muscular 
movements that produce the required sounds on the player’s instrument.

Indeed, many complex skills can never be mastered at all without a high 
degree of automatization of many of their components, because just the abso­
lutely irreducible demand on controlled processing alone takes up the full ca­
pacity of the working memory, making it necessary that other components of 
the skill occur automatically. A high degree of automatic processing is not just 
a greatly speeded-up form of controlled processing. It is most characterized by 
simultaneity of different processes and “ pattern thinking.”  Duffers at chess, for 
example, think only one move ahead, at most. Excellent chess players often 
think several moves ahead. But world-class chess masters work quite differently.

Research on the nature of the skill of chess masters has discovered that they 
instantly perceive a whole pattern on the chessboard, and the properties of the 
pattern largely dictate the optimal move in light of the player's particular strat­
egy. The greatest difference between duffers and masters is not how many 
moves ahead they plan, but the patterns of possible combinations they perceive 
on the board at any given move and the relative advantages and disadvantages 
of any particular change in the pattern. All this depends of course upon the 
master’s vast store of information gained from years of practice. Chess masters 
easily memorize entire chess games in terms of such patterns, much as we can 
recall a sentence we have just read, without any conscious attention to the se­
quence of all the individual letters it contains. Yet studies have shown that chess
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masters do not have an exceptional memory in general. Given various memory 
tests unrelated to chess, they perform on a par with most college students. The 
difference is that the chess master’s long-term memory is extraordinarily well 
stocked with chess rules, strategies, positions, combinations, and the like, which 
are automatically accessed the moment the chess master looks at a particular 
configuration of pieces on the chessboard. The phenomenon is akin to literacy 
in one’s native language. A similar phenomenon is seen in experts in many 
other fields.1541

The speed of controlled processing and the capacity of working memory are 
of great importance because of their heavy contribution to variance in g. Recent 
research on persons who show truly exceptional performance in any field, how­
ever, indicates that the critical difference between them and the average person 
is not raw g but depends essentially on a much greater than ordinary amount of 
automatization of certain knowledge and skills in their field of achievement.

The road to automatization— apparently the only road— is practice, and plenty 
of it, accompanied by conscious effort to improve performance. Few people 
realize the exceeding amount and consistency of practice that recent studies have 
revealed to be the indispensable precursors of surpassing skill or expertise in 
any field. Paderewski, who routinely practiced the piano ten hours a day in his 
youth, when later acclaimed a genius, remarked, “ Yes, and before I was a genius 
I was a drudge.”

MAKINGS OF A THEORY OF THE RT-g CORRELATION
At present, any theory of the neural basis of g has to be tentative and incom­

plete. Enough is already known, however, to permit some inkling of what a 
proper theory might look like, or at least to indicate some of the main phenom­
ena it must encompass. Much is already known about the workings of neurons 
and synapses and about the brain localization of sensory and motor functions 
and certain cognitive functions.1551 However, we are still far from knowing pre­
cisely what goes on in the brain’s neural circuits when we “ think”  or execute 
a g-Ioaded task. Our incomplete knowledge of these design features of the neural 
circuitry has made it necessary for psychologists to invent purely cognitive the­
ories which make no reference to the specific physiological mechanisms in­
volved.

Cognitive theorists posit hypothetical processes, such as apprehension, dis­
crimination, working memory, short-and long-term memory, and the like, that 
are inferred from the experimental analysis and mental chronometry of people’s 
responses to specially contrived tasks. A given stimulus sets off a sequence of 
unspecified neural activity in the brain and the end results are interpreted in 
terms of the hypothetical cognitive constructs. The information gained from this 
approach is most valuable for determining the phenomena that we hope can 
eventually be explained in terms of what actually goes on in the brain.

In recent years we have seen increasing rapprochement between cognitive and
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neurological theorizing. Some cognitive theorists aim for theories that are ex­
plicitly compatible with neurological knowledge and even couch their cognitive 
theories as much as possible in neurological terms. And some neuroscientists 
have turned their attention to cognitive processes.56

It is useful in this respect to distinguish between general properties of the 
nervous system that affect nearly every aspect of its functioning and specific or 
localized brain mechanisms that subserve specialized functions. Whatever else 
a neurological theory of g might entail, it would have to include those aspects 
of neural activity that are common to all parts of the central nervous system 
involved in cognition per se. This general property of the nervous system’s 
cognitive functions would also have to show individual differences, as g reflects 
individual differences.

The notion of a general property of the nervous system has been expressed 
by theorists in terms such as neural adaptability, cortical conductivity, neural 
connectivity (or dendritic arborization), neural efficiency, and neural conduction 
velocity. Some of these terms represent hypothetical constructs inferred from 
behavior while others are directly measurable phenomena. But the need for some 
generality of neural function to account for correlated individual differences in 
various functions seems inescapable. For example, even though the neural mech­
anisms that subserve verbal and spatial abilities are localized in different parts 
of the brain, these parts presumably have some property in common that ac­
counts for the correlation between individual differences in verbal and spatial 
abilities. Another possibility is that the normal operation of both the verbal and 
the spatial areas depends on their communicating with the same central proc­
essing unit— the working memory— which provides the correlational link be­
tween them. All cognitive tasks that involve working memory show individual 
differences and are g loaded.

Partly because of the ubiquitous correlations of reaction time and inspection 
time with g , the most often hypothesized common neural source of individual 
differences is the speed  of neural activity, or neural conduction velocity (NCV), 
including both synaptic transmission and propagation of the action potential 
along the axon. Individual differences in the speed of neural transmission could 
be either a general property throughout the brain or could be concentrated only 
in the area involving working memory, which seems to be located in Area 46 
and other parts of the prefrontal cortex.57 Even relatively simple information 
processing involves considerable communication between widely separated 
regions of the brain, so nervous impulses involved in any cognitive activity 
travel considerable distances between the brain’s sensory projection areas and 
the efferent or motor system. With a finite nerve conduction velocity, of course, 
all this neuronal communication between different areas of the brain takes time, 
with individual differences measurable in milliseconds.58 However, other neural 
properties in addition to conduction velocity are needed for even the simplest 
theory of the RT-g correlation, as will be noted shortly.

But before taking up that part of the story, it should be noted that direct
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temporal connections have been demonstrated between RT in ECTs and brain 
activity measured by the EEG. The brain activity that accompanies a person’s 
RT is wholly involuntary and unconscious. For example, with the identical “ but­
ton box”  apparatus used in my lab for measuring RT in the Hick paradigm, 
measurements of the subjects’ evoked potentials were obtained while they were 
doing the RT task for 1, 4, and 8 light buttons (corresponding to 0, 2, and 3 
bits of information). The latencies of the average evoked potentials (AEP) were 
measured from the onset of the reaction stimulus (i.e., one of the lighted buttons 
going “ on” ). Just like the RTs, the latencies of the AEPs displayed Hick’s law, 
increasing linearly as a function of bits. Rank-order correlations between RTs 
and AEPs ranged between .58 and .65.|59a|

Also, differences between correct and erroneous RTs in binary-choice RT 
tasks of differing complexity were recorded at the physiological level in a study 
of the trial-by-trial correlation between the subjects’ overt RTs and the latencies 
of the P300 cortical potential evoked by the reaction stimulus (RS) on the same 
trial.[59t>1 Three binary-choice RT tasks varying in the complexity of the hypoth­
esized processes involved in the evaluation of the RS were administered under 
two conditions of speed/accuracy instructions. Correlations between the latencies 
of the P300 wave of the EP and the RTs on correct responses ranged from +.48 
to + .66, but the correlations based on both correct and incorrect RTs were 
considerably lower ( +  .26 to +.61). More important for understanding the nature 
of error responses in RT tasks, however, is the finding that not only are the 
correct RTs relatively more closely coupled with their corresponding P300 la­
tencies than are the incorrect RTs, but with remarkably few exceptions, the 
correct RTs are longer than their corresponding EP latencies, while the incorrect 
RTs are almost invariably much shorter. This indicates that on the incorrect RT 
trials the overt reaction process was initiated long before the process associated 
with P300 was terminated.

This research provides clear evidence of the dual nature of RT, which consists 
of a stimulus evaluation process (reflected by the P300 evoked potential) and 
the efferent process involved in executing the overt response. As there is in­
dependent evidence that P300 reflects completion of the most central evaluative 
discrimination or decision aspect of information processing, it appears that RT 
response errors occur when the depth of information processing of the reaction 
stimulus required for a correct response is incomplete. Hence the more complex 
the reaction stimulus, as indexed by bits of information or by the mean RT of 
correct responses, the greater is the probability of erroneous response. From 
such studies, it is evident that RT and IT are probably closer to the interface of 
brain and behavior than any other purely behavioral g-loaded measure in ex­
perimental psychology’s armamentarium.

B asic E lem ents o f  the In form ation-P rocessing System . As working mem­
ory (WM) is so central to understanding the RT-g correlation, its relation to 
other elements of the information-processing system should be mentioned. Many 
models and flow diagrams of the processing system have been proposed. They
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Figure 8.7. Hypothetical model of information-processing components, with arrows in­
dicating the direction o f information flow. (From Jensen, 1993a. Used with permission 
of Kluwer Academic Publishers.)

are all quite similar. Because they have many elements in common, and because 
no particular model has yet been generally adopted as the preferred one, I have 
made up the simplest generic model that incorporates the common elements of 
most of the others, as shown in Figure 8.7. It should be remembered that all 
such cognitive processing models are really analogical rather than physiological, 
although the various hypothesized cognitive processes presumably have struc­
tural and physiological counterparts in the brain. Each of the boxes represents 
a cognitive process; the arrows indicate the direction of information flow be­
tween the elements of the processing system.

The Sensory Buffer protects the processing system from being overloaded by 
the welter of sensory stimulation that impinges on the total sensorium at any 
given moment. It acts as a gatekeeper or filter, allowing only certain stimuli to 
be salient to consciousness at any given time. This is an essential condition for 
the mental state known as attention, or focused awareness, without which no 
particular aspect of the total stimulus input could be salient.

Stimulus Apprehension is the perception of a change in a salient stimulus.
Discrimination is objectively indicated by consistently differential responses 

to different stimuli. Encoding may or may not accompany discrimination; it is 
the assignment of a name or label or some tag of recognition or identification 
to the particular stimulus. The perception of familiar stimuli (e.g., the letter A,
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a cat, a chair, a man) usually involves both discrimination and automatic en­
coding. Unfamiliar stimuli (e.g., IS If £ If If >'") may be discriminated but 
not encoded, although repeated exposures usually result in idiosyncratic encod­
ing.

Short-Term Memory (STM) comprises Primary Memory (PM) and Working 
Memory (WM). STM is characterized by limited capacity and rapid decay of 
the information input. In the absence of rehearsal of the information held in 
STM, the memory trace fades, typically in a few seconds, to the point that it is 
no longer accessible to awareness or retrieval (with the exception of certain 
episodic memories, noted below). PM is a short-term passive holding station. 
PM does not rehearse, transform, manipulate, or otherwise act on the information 
input, which, however, may be transferred to WM, which may perform all of 
these active functions. Some of these processing functions of WM can be by­
passed in performing certain complex tasks through extensive practice, which 
leads to automatization of the invariant aspects of the task, as pointed out pre­
viously (p. 246). WM is also the temporary stage from which information is 
transferred into long-term Semantic Memory. This filing and storage function 
of WM consumes some of its available capacity, thus reducing its capacity for 
processing incoming information.60

Long-Term Memory (LTM) comprises Episodic Memory and Semantic M em­
ory, both of which are accessible to WM. LTM has practically unlimited storage 
capacity. Episodic Memory is a nonabstracted or nonsymbolic contextualized 
representation of spatial-temporal experiences and is generally less accessible to 
recall than to recognition, such as recognizing some previously encountered 
person, a particular place or scene, a particular strain of music, a scent, or an 
emotional experience. Especially vivid or emotional experiences enter directly 
into Episodic Memory without the intervention of WM.

In contrast, Semantic Memory is the repository of abstracted and symbolically 
encoded information, including past-learned meanings, relationships, rules, and 
strategies for operating on certain classes of information (such as words, syntax, 
numbers, arithmetic operations, musical notation, chess combinations, and the 
like). The information in Semantic Memory is usually decontextualized; that is, 
unlike Episodic Memory, there is not necessarily recollection of a specific oc­
casion or experience that accompanied the acquisition of the particular infor­
mation recalled from Semantic Memory.

Each stage of processing takes a finite amount of time, which accumulates 
between Stimulus Input and Response Output and can be inferred from measures 
of RT or IT. Cognitive tasks differ in the extent of their demands on the various 
processing elements and therefore take different amounts of time. The Inspection 
Time test makes minimal demands on memory retrieval and maximal demands 
on speed of apprehension and discrimination. Simple RT reflects Stimulus Ap­
prehension more than Discrimination; the opposite is true for choice or discrim­
ination RT. Backward digit span involves Working Memory more than forward 
digit span does. RT in the S. Sternberg memory scan task involves Short-Term
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Memory more than Long-Term Memory; the reverse is true for the Posner name 
identity task. The fact that timed measurements from all of these tasks are pos­
itively correlated indicates, of course, that they all have something in common, 
namely speed o f operation. This common factor is also correlated with the g 
factor of nonspeeded psychometric tests involving complex reasoning and prob­
lem solving. A reasonable prima facie case can therefore be made for individual 
differences in mental speed (and, by inference, neural conduction velocity) as a 
causal basis of g.

The Im portan ce o f  P rocessin g  Speed in W orking M em ory. RT on the
kinds of ECTs that involve the functions that cognitive theorists ascribe to WM 
are always g loaded, usually more so than tasks that make less demand on WM. 
Hence an important part of the connection between RT on ECTs and perform­
ance on untimed psychometric tests in which item responses are scored as cor­
rect or incorrect seems to center on the functions ascribed to WM. The 
connection can be accounted for theoretically in terms of individual differences 
in the processing capacity of WM, which is a function of the speed of its 
information-processing operations, in addition to another variable to be dis­
cussed shortly.

Two properties of WM make speed of operation crucial: (1) its limited ca­
pacity (i.e., the amount of information WM can hold at one time), and (2) the 
short duration of information in WM (i.e., the rapid rate of loss of information 
in WM). The operations performed on incoming information by WM must occur 
before the information is lost. Otherwise it has to be entered again. Hence we 
need to jo t down long phone numbers and work most arithmetic problems with 
paper and pencil. If the amount of newly input information exceeds the capacity 
of WM, it has to be transferred to LTM in successive stages, so all of it can be 
retrieved in WM for answering the question or solving the problem that was 
posed. The transfer from WM to LTM itself occupies some of the WM capacity, 
so there is a necessary trade-off between processing and storage of incoming 
information.

If the amount of information that must be processed overloads the W M ’s 
capacity for performing these functions, there is a breakdown of processing and 
some essential information is lost. Incomplete processing of the incoming in­
formation results in erroneous output, or response. Speedier processing, 
therefore, is advantageous because more information can be processed or stored 
before it decays beyond retrieval.

RT is more highly correlated with g when WM capacity is strained to or near 
the point of breakdown. In very easy tasks response errors are few and are 
largely flukes, hardly correlated with g. As a task becomes more complex and 
demands more information processing, RTs increase and the rate of response 
errors increases and becomes more g loaded. As the ratio of errors to RT in­
creases, the ratio of the errors’ g loading to the RT’s g loading also increases. 
In other words, in easy tasks that do not “ threaten”  the capacity of WM, the 
RT X g correlation is large relative to the error X g correlation; the opposite
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is true for more complex tasks that strain the capacity of WM to the point of 
breakdown.[6I]

Computerized testing can zero-in on the particular test items that a given 
person has a slightly better than chance probability of answering correctly under 
nonspeeded conditions; these are generally the items that best discriminate in­
dividual differences in g. Their difficulty level is very near the threshold o f the 
person’s information-processing capacity. Much easier items, which elicit few 
if any errors, are correlated with g only via their response latencies, or RT. Task 
or test complexity is positively related to g loading not because g per se is an 
exclusive property only of the higher mental processes engaged in complex tasks 
involving reasoning and problem solving, but because complex tasks involve 
more elements of the whole processing system and so strain the capacity of 
WM. The efficiency of the whole information-processing system is more fully 
sampled by more complex tasks, thereby cumulatively yielding a more reliable 
indicator of individual differences in the totality of neural processes that make 
for g.

T he C apacity o f W M . Scientists Lehrl and Fischer at Erlangen University, 
Germany, have formulated capacity (C) in terms of the speed (S) and duration 
(D) of neural traces:

C bits = S bits/sec X D sec.
Using chronometric methods for measuring S and D, Lehrl and Fischer62a have 
operationalized and tested this formulation. Each of the variables in the formula 
is substantially correlated with an untimed vocabulary test (which is highly g 
loaded), but C had the largest correlation: +  .67 in a study of 672 subjects and 
+  .88 in a study of 66 subjects. A team of British psychologists headed by the 
psychometrician Paul Kline62b has replicated the Erlangen scientists’ essential 
finding, though with smaller correlations on individual tests in a restricted col­
lege sample. Kline’s group used the Erlangen techniques for measuring C, S, 
and D, but using the Raven Matrices (“ fluid intelligence”  or Gf) and the Mill 
Hill Vocabulary Test ( “ crystallized intelligence”  or Gc) as the measures of g. 
When all the chronometric and psychometric tests were factor analyzed together 
and g (first principal factor) was extracted, the result was quite impressive, 
causing the authors to comment, “ Factor I [g] would have to be interpreted as 
biological intelligence with its huge loading on S [also C] and high loadings on 
the Mill Hill [vocabulary] and Raven’s matrices scores. This is striking confir­
mation of the claims made by Lehrl and Fischer”  (pp. 534-535).62c It is note­
worthy that C, S, and D are correlated at least as high or higher with Gc 
(vocabulary) as with G f  (Raven).62d

T he H yp othesis o f  N eural “ N o ise”  in Inform ation  Processing. Elsewhere 
I have made a distinction between the speed and the efficiency of information 
processing.16’1 High-g and low-g persons differ not only in their speed of infor­
mation processing (as indicated by median RT), but also in their consistency,
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as indicated by intraindividual variability of RT (measured as the standard de­
viation of RT [RTSD] over many trials). RTSD hypothetically reflects (nega­
tively) the efficiency of processing, because it is probably manifested in the 
course of information processing at many points in the system prior to making 
the overt response from which RT is measured. There is a periodicity or rhythm 
in the excitatory potential of neurons. (The synchrony of this rhythm in large 
groups of neurons is registered by the EEG as brain waves.) The speed of 
transmission of neurally encoded information is assumed to depend not only on 
the speed of axonal and synaptic conduction, but also on the probability that 
impulses are delayed by oscillation of neurons’ excitatory potentials. As the 
phase of excitatory potential, oscillating below and above the threshold of ex­
citation by a given stimulus intensity, is random with respect to the onset of the 
stimulus, the probability that the stimulus will be immediately propagated varies 
depending on whether the potential is above or below the threshold of excita­
bility. The faster the oscillation, the shorter is the average difference in time 
between the quickest and slowest reactions to a stimulus. We know in the case 
of RT, for example, that high-g persons show much less difference than low-g 
persons between their slowest and quickest RTs and that the high and low groups 
differ only slightly in their fastest RTs but differ greatly in their slowest RTs.64

This neuronal oscillation model is rather analogous to viewing a moving ob­
ject through an aperture with an oscillating (repeatedly opening-closing) shutter. 
If the frequency of the oscillations is fast, the viewer sees the scene with little 
delay even if the shutter is closed when viewing begins, and throughout the 
viewing little “ information”  is missed, because the open-close oscillations of 
the shutter create hardly more than a repeated flicker in the image. With a slowly 
oscillating shutter, however, the first glimpse may be either immediate or de­
layed, depending on whether the shutter is open or closed when the viewer first 
looked into the aperture, and in the course of viewing with a very slow shutter 
some information may be lost to the viewer during the closed phases.

The neural oscillation model is consistent with the findings that there are 
reliable individual differences in the oscillation (i.e., trial-to-trial variability) of 
RT issa.bt ]atency of the evoked potential,116501 and neural conduction velocity,[65dl 
and that these individual differences are even more highly related to g than are 
measures of speed per se (i.e., greater variability =  lower g). The hypothesized 
neural oscillation can also be called “ neural noise,”  likened to the static and 
cross talk on a bad telephone line, which reduces the efficiency of communi­
cation and thereby increases the time of the callers’ conversation, because many 
words and phrases have to be repeated to get the message across. The fact that 
RTSD (and other measures of intraindividual variability) is correlated with g, 
independently of median RT, suggests that it should be incorporated into the 
Erlangen (Lehrl & Fischer) model of information processing.

M yelination  o f N eurons R elated to Speed o f Inform ation  P rocessing. A 
prime candidate for the physiological basis of g as a reflection of individual 
differences in the speed and efficiency of information processing is individual
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differences in the degree of myelination of neurons in the brain. Myelin is a 
fatty substance that forms a thin covering, or sheath, around the neuron’s axon. 
The axon conducts nerve impulses from the cell neuron cell body to the synaptic 
terminals that connect with other neurons.

The brain’s “ gray m atter”  consists of the unmyelinated cell bodies of the 
neurons. The “ white matter,”  underlying the cerebral cortex, consists of the 
cortical neurons’ myelinated axons, the association fibers that transmit neurally 
encoded information (as electrochemical action potentials) from one part of the 
brain to another and also connect the left and right cerebral hemispheres. The 
myelin sheath surrounding the nerve fibers acts as an insulator, similar to the 
insulation on an electrical wire. A large part of the brain, by weight and volume, 
consists of white matter, or myelinated neurons. Compared to other species, 
humans have a larger proportion of white matter in relation to cortical gray 
matter.

The degree of myelination of nerves in the brain increases steadily from birth 
to maturity. Gradually, in later maturity, and more rapidly in old age, demye- 
lination occurs. This growth and decline of myelin has important implications 
for the observed relatively rapid growth and slower later decline of mental ability 
over the individual’s lifetime. For any particular type of neuron, nerve conduc­
tion velocity (NCV) is directly related to the degree of myelination. Hence RT 
and RTSD, as well as all other indices of speed or efficiency of information 
processing, including NCV, markedly improve over the years from early child­
hood to maturity and decline in the later years.

The amount of neural “ noise,”  as explained above, could be a function of 
the incompleteness of myelination, the insufficient insulation resulting in im­
pulses crossing between axons nonsynaptically, causing interference, like cross 
talk on a bad telephone connection. The degree of myelination, therefore, could 
theoretically account, at least in part, for both the speed (via NCV in axons) 
and consistency, or relative lack of neural “ noise”  (via insulation of axons), of 
information processing. Edward Miller has written a detailed review of the many 
types of evidence relating myelin to mental ability, offering highly plausible 
hypotheses for future research on the evolutionary and physiological basis 
of g .“

D esign  F eatures o f the Brain in R elation  to g. The design aspects of the 
brain, that is, the neural circuitry, specialized modules, localization of functions, 
and the like, is the major focus of research in present-day neuroscience. How­
ever, very little is known about individual differences in these features or 
whether they are in any way related to g. The working assumption seems to be 
that all biologically normal persons have the same neural “ hardware,”  so to 
speak, and that individual differences are not structural but rather a matter of 
how efficiently the “ hardware”  functions. The individual differences possibly 
result from differences in prior environmental experience or differences in brain 
chemistry.67 Nevertheless, the possibility cannot yet be ruled out that there may 
be some normal individual differences in the brain’s structural mechanisms.
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These structural design features of the neural substrate of information proc­
essing are probably more related to psychometric group factors independent of 
g rather than to g itself. One example of a design feature involved in a specific 
ability is pitch discrimination. Spearman originally found that pitch discrimi­
nation is g loaded to some extent, as is every cognitive ability, a finding that 
has been confirmed in many later studies. But pitch discrimination also has a 
substantial specific factor, and it is noteworthy that few persons, regardless of 
their level on g, are able to acquire what is known as absolute pitch, that is, the 
ability to sing or identify a specific musical note without reference to any other 
note. It is therefore called a “ special”  ability. Absolute pitch has been found 
in some mentally retarded persons, yet is lacking in some of the world’s greatest 
musicians. Such individual differences seem impossible to explain in terms of 
sheer speed of processing. Neuroscientists Willerman and Raz1681 put forth the 
following hypothesis of pitch discrimination, based on a type of neural mech­
anism already established in visual discrimination:

Neurons varying in central frequencies and band-widths can be organized to pro­
duce many features of intelligent functioning as indexed by our discrimination 
experiments. In the auditory domain, one neuron might be especially sensitive to 
hair cells that have a modal firing frequency of 800 to 810 Hz, another sensitive 
to frequencies o f 805 to 815 Hz. In addition, their conjoint activation could trigger 
a third n eu ro n ,. . . referred to as a “ grandm other”  cell. An activated grandmother 
cell indicates that the specific frequency of the sensory signal must have been 
between 805 and 810 Hz. By adding increasing layers to the hierarchy of neurons, 
for example, great-grandmother cells that fire only when two grandmother cells 
are simultaneously activated, the frequency of the original signal can be retrieved 
with increasingly greater precision. Therefore, it seems reasonable to propose the 
theory that intelligent people have a greater number of cortical elements arranged 
in some hierarchical order which permits finer analysis o f signals, (p. 9)

There may well be other such hierarchical neural structures, probably of com­
mon epigenetic origin and hence correlated with individual differences, that play 
a part in many other forms of information processing besides auditory and visual 
discrimination. But as yet these ideas are only speculation at the cutting edge 
of cognitive neuroscience. We have a number of suggestive neurological cor­
relates of g, but as yet these have not been integrated into a coherent neuro- 
physiological theory of g. There are still too many missing pieces of the jigsaw 
puzzle to be able to assemble a complete picture.

Another mechanism that is coming into prominence in the study of infor­
mation processing and has been proffered as an element in g is the inhibition, 
or suppression, of irrelevant associations and reaction tendencies.'691 For ex­
ample, reading comprehension, which is highly g loaded, is hindered if irrelevant 
associations to ambiguous or double-meaning words (e.g., “ bear" or “ lean” ) 
are not inhibited by the context in which they occur. It is not yet clear, however, 
whether this type of inhibition is generally related to g per se or to some nar­
rower group factor.
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B rain M echanism s in P sychom etric G roup Factors. We know more about 

the neural substrate of specialized functions, some of them corresponding to the 
major group factors established by factor analysis, particularly the verbal and 
spatial visualization factors. Research on these specialized functions is made 
possible by using persons with localized brain injuries and persons with rare 
genetic defects. It is most interesting that these localized abnormalities in the 
brain, when they affect mental abilities, usually produce behavioral effects that 
coincide with one or another of the main mental ability group factors identified 
in the normal samples by factor analysis. Verbal ability and visual-spatial ability 
are prime examples. They are primarily localized in the left (verbal) and right 
(spatial) cerebral hemispheres, yet in normal persons performance on tests of 
verbal ability and of spatial ability is highly correlated, because the actual ex­
pression of these abilities in normal persons always involves g. Their separation 
from g in biologically normal persons is made possible only by factor analysis, 
but then they are not really observable abilities but are hypothetical independent 
verbal and spatial group factors which, along with other factors (especially g), 
are loaded in the behaviorally manifested abilities. The existence of the group 
factors, of course, necessarily implies that there are individual differences (either 
innate or acquired) in their causal underpinnings. Localized damage to the brain 
areas that normally subserve one of these group factors can leave the person 
severely impaired in the expression of the abilities loaded on the group factor, 
but with little or no impairment of abilities that are loaded on other group factors 
or on g.

A classic example of this is females who are born with a chromosomal anom­
aly known as Turner’s syndrome.1701 Instead of having the two normal female 
sex chromosomes (designated XX), they lack one X chromosome (hence are 
designated XO). Provided no spatial visualization tests are included in the IQ 
battery, the IQs of these women (and presumably their levels of g) are normally 
distributed and virtually indistinguishable from that of the general population. 
Yet their performance on all tests that are highly loaded on the spatial- 
visualization factor is extremely low, typically borderline retarded, even in 
Turner’s syndrome women with verbal IQs above 130. It is as if their level of 
g is almost totally unreflected in their level of performance on spatial tasks.

It is much harder to imagine the behavior of persons who are especially 
deficient in all abilities involving g and all of the major group factors, but have 
only one group factor that remains intact. In our everyday experience, persons 
who are highly verbal, fluent, articulate, and use a highly varied vocabulary, 
speaking with perfect syntax and appropriate expression, are judged to be of at 
least average or probably superior IQ. But there is a rare and, until recently, 
little-known genetic anomaly, Williams syndrome,1711 in which the above-listed 
characteristics of high verbal ability are present in persons who are otherwise 
severely mentally deficient, with IQs averaging about 50. In most ways, Wil­
liams syndrome persons appear to behave with no more general capability of 
getting along in the world than most other persons with similarly low IQs. As
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adults, they display only the most rudimentary scholastic skills and must live 
under supervision. Only their spoken verbal ability has been spared by this 
genetic defect. But their verbal ability appears to be “ hollow”  with respect to 
g. They speak in complete, often complex, sentences, with good syntax, and 
even use unusual words appropriately. (They do surprisingly well on the Pea­
body Picture Vocabulary Test.) In response to a series of pictures, they can tell 
a connected and fully elaborated story, accompanied by appropriate, if somewhat 
exaggerated, emotional expression. Yet they have exceedingly little ability to 
reason, or to explain or summarize the meaning of what they say. On most 
spatial ability tests they generally perform on a par with Down syndrome persons 
of comparable IQ, but they also differ markedly from Down persons in peculiar 
ways. Williams syndrome subjects are more handicapped than IQ-matched 
Down subjects in figure copying and block designs.

Comparing Turner’s syndrome with Williams syndrome obviously suggests 
the generalization that a severe deficiency of one group factor in the presence 
of an average level of g is far less a handicap than an intact group factor in the 
presence of a very low level of g.

The R elationsh ip  betw een  B rain M odules and g. It is now well established 
that the brain has many differentiated modules for various specialized functions, 
including certain forms of information processing. The modules associated with 
some abilities in the cognitive domain are sources of individual differences that 
are statistically independent of the common source of individual differences 
attributable to g. In other words, individual differences in functions associated 
with various modules are not perfectly correlated across modules. But there is 
no inherent contradiction whatsoever between the existence of g and the exis­
tence of distinct brain modules for certain abilities.

Largely on the basis of such functional and neurological assemblies, Howard 
Gardner has proposed a model of the mind, referred to as “ multiple intelli­
gences,”  that includes seven distinct “ intelligences” : linguistic, logical- 
mathematical, spatial, musical, body-kinesthetic, interpersonal (understanding 
and influencing others), and intrapersonal (understanding oneself).720 Gardner 
has written a fascinating book72b of psychobiographical sketches of seven illus­
trious twentieth-century geniuses he regards as exemplars of each of these “ in­
telligences” : T. S. Eliot, Albert Einstein, Pablo Picasso, Igor Stravinsky, Martha 
Graham, Mahatma Gandhi, and Sigmund Freud.

The first three of Gardner’s “ multiple intelligences”  (linguistic, logical- 
mathematical, and spatial) have repeatedly emerged from factor analyses per­
formed over the last fifty years or so as major group factors. Measures of musical 
ability have been included in too few factor analyses with a wide enough variety 
of other psychometric tests to definitely characterize its status in the total hier­
archical factor structure of human abilities. However, as some of the basic com­
ponents of musical aptitude are known to be correlated with highly g-loaded 
tests, it seems a safe prediction that a battery of musical aptitude tests, such as 
the Seashore battery, if factor analyzed among a large number of other non­
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musical cognitive tests, would emerge either as a first-order or second-order 
group factor (called “ musical aptitude” ) and would be substantially loaded 
on g.

Little is known about the factor structure of the three remaining “ intelli­
gences”  (body-kinesthetic, interpersonal, and intrapersonal) and it is even ar­
guable from a factor analytic viewpoint whether they should even be included 
in the cognitive domain, so calling them “ intelligences”  may be a misnomer. 
But it hardly matters, because “ intelligence”  has no proper scientific meaning 
anyway. This is not to deny the undoubted behavioral reality of these individual 
characteristics, but “ body-kinesthetic”  may be more appropriately considered 
as aspects of motor skills and coordination, and “ interpersonal”  and “ intraper­
sonal”  may be aspects of personality rather than abilities. It has not yet been 
objectively determined where these qualities fit into the factorial structure of 
human traits.

A question largely neglected by Gardner concerns the extent to which a high 
level on any of these abilities would be advantageous to an individual in the 
absence of some fairly high threshold level of g. Gardner has stated that the 
manifestation of one of his multiple “ intelligences”  at a level of scientific, 
artistic, or social significance such as illustrated by his list of famous exemplars 
depend on a threshold IQ of at least 120. This minimum IQ cutoff of 120, of 
course, excludes the 90 percent of the population who are below this level. 
(Many psychologists would probably set the threshold at IQ 130 or more, thus 
excluding 98 percent of the population.) It is noteworthy that so-called idiots 
savants who manifest one of the multiple “ intelligences”  despite having a very 
low IQ are never considered as outstanding mathematicians, musicians, artists, 
or dancers; and exceedingly few, if any, are able to earn a living by their special 
talent. An average or above-average level of g seems an essential condition for 
the intellectually or artistically significant expression of any special talent in the 
cognitive domain.

The Q uestion  o f the U nity or D isunity o f g. The question of whether g is 
the result of individual differences in some single process or in a number of 
different processes1731 is probably answerable only if one takes into consideration 
different levels of analysis. At the level of conventional or complex psycho­
metric tests, g appears to be unitary. But at some level of analysis of the proc­
esses correlated with g it will certainly be found that more than a single process 
is responsible for g, whether these processes are at the level of the processes 
measured by elementary cognitive tasks, or at the level of neurophysiological 
processes, or even at the molecular level of neural activity. If successful per­
formance on every complex mental test involves, let us say, two distinct, un­
correlated processes, A and B (which are distinguishable and measurable at some 
less complex level than that of the said tests) in addition to any other processes 
that are specific to each test or common only to certain groups of tests, then in 
a factor analysis all tests containing A and B will be loaded on a general factor.
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A t th is leve l o f  an a ly sis , th is g en era l fac to r w ill fo rev e r ap p ear u n ita ry , a lthough  
it is ac tu a lly  th e  resu lt o f  tw o  sep ara te  p rocesses, A  and B.

T o  sh o w  that the g en era l fac to r in v o lv es in d iv idual d iffe ren ces in tw o  in d e­
p en d en t p ro cesse s , A  an d  B, and  is th erefo re  no t fun d am en ta lly  u n ita ry  w ould  
req u ire  th a t in d iv id u al d iffe ren ces  in A  and B be m easu red  sep ara te ly  and  that 
A and  B are  each  in d ep en d en tly  co rre la te d  w ith th e  genera l facto r o f  the p sy ­
c h o m e tric  tests . T he m o re  d ifficu lt co n d itio n  to sa tisfy  (w hich  has been  the basis 
o f  co n te n tio n  on th is issue) is that it m u st be assum ed  th a t the em p irica l g  fac to r 
sco res  d e riv ed  from  the  tests are “ p u re ”  g  u n co n tam in a ted  by any  n o n -g  “ im ­
p u ritie s”  th a t co n stitu te  so m e o f  the v arian ce  in the  m easures o f  p ro cesses  A 
o r B. B e cau se  it is v irtu a lly  im p o ssib le  to p rove d efin itiv e ly  th a t the g  fac to r 
sco res a re  “ p u re ”  in th is  sense , the issu e  re treats  from  the scien tific  a rena , and 
it then b eco m es a p u re ly  m etap h y sica l qu estio n  w h eth er g  is o r is not un itary . 
H o w ever, th e  fac t th a t g  has all the ch a rac te ris tics  o f  a  p o ly g en ic  tra it (w ith  a 
su b stan tia l c o m p o n e n t o f  n o n g en etic  varian ce) and  is co rre la ted  w ith  a n u m b er 
o f  co m p lex ly  d e te rm in ed  asp ec ts  o f  b ra in  an a to m y  and  ph y sio lo g y , as in d icated  
in C h a p te r  6, m ak es it h ig h ly  p ro b ab le  th a t g , though  u n ita ry  at a  p sy ch o m e tric  
level o f  an a ly s is , is no t u n ita ry  at a  b io lo g ica l level.

NOTES
1. The defining criteria of a ratio scale are that it has: (1) a true zero point and (2) 

units of measurement that represent equal intervals or increments of the thing or dimen­
sion being measured. An ordinary thermometer (whether centigrade or Fahrenheit), for 
example, is an equal-interval scale, but it is not a ratio scale, because it lacks a true zero 
point. In the case of the centigrade thermometer, the 0° C point is arbitrarily set at the 
freezing point of distilled water at sea level; 100° C is set at the boiling point. The true 
zero point is 273° below 0° C, which is the absolute limit of “ coldness.”  The Kelvin 
thermometer, which is a ratio scale, measures temperature from its absolute zero point, 
so that the freezing point of water is 273° K. Ratios between the measurements are 
meaningless on any scale that is not a true ratio scale. For example, 100° C does not 
represent twice as much heat as 50° C, because on the absolute Kelvin scale these tem­
peratures are 373°K/323°K =  1.15, not 2. Similarly, an IQ of 100 does not represent 
twice as much “ intelligence”  as an IQ o f 50. Statements often seen in the popular press, 
such as “ children have developed half of their adult level of intelligence by the age of 
four.”  are wholly nonsensical unless “ intelligence”  can be measured on one and the 
same equal-interval ratio scale at age four and at maturity. At present there is no psy­
chometric test that has the ratio scale properties that could justify such a statement. The 
actual shape of the mental growth curve (beyond saying that it is an increasing monotonic 
function o f age, from infancy to maturity) cannot be known without ratio scale meas­
urements o f mental ability. However, a true growth curve of increasing ability could be 
plotted from measurements based on time (e.g., “ X milliseconds to process one bit of 
inform ation” ). The question then is whether the ratio scale measurements based on time 
adequately represent a construct of scientific or practical importance as indicated by 
significant relations to other phenomena of interest, such as psychometric g.

2. Johnson et al. (1985) analyzed virtually all of Galton’s data by means of the
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analysis of variance and found significant differences in RT (and various measures of 
discrimination) according to educational and occupation level. Though significant, the 
differences are trivial and unimpressive in themselves, but if their statistical significance 
had been known earlier it would have alerted investigators to the possibility that more 
reliable measurements might reveal theoretically important relationships between RT and 
various commonsense criteria of high, medium, and low levels of mental ability.

3. For a brief review of the history of research on reaction time (and references to 
the historical literature), see Jensen, 1982a. Deary (1994a) has reviewed the early history 
o f tests of sensory discrimination and RT in the study of intelligence and has corrected 
some of the most common misconceptions about this work that have long been perpet­
uated in many psychology textbooks. It is a remarkable demonstration of how the sci­
entific and academic Zeitgeist can act as a sieve in determining which kinds o f research, 
methodologies, and empirical evidence can get into the basic textbooks in the field, or 
be fairly assessed if it is mentioned at all. The typical textbook misrepresentation of the 
Galtonian approach to the study of human mental ability gave it virtually an outcaste 
status for at least half a century during which empirical research in this vein remained 
in the doldrums. As a consequence, the Galtonian line of investigation has had to over­
come enormous prejudice to gain its recent ascendance.

4. The most prominent figures in the first decade o f  the revival o f chronometric, 
information-processing approaches to the study of individual differences are here listed 
chronologically according to their first influential publication on the subject: H. J. 
Eysenck (1967), Earl Hunt et al. (1973), John B. Carroll (1976), and Robert J. Sternberg 
(1977). Eysenck (1987b) provides an overview of the theoretical and empirical status of 
research on speed of information processing in the recent study of individual differences.

5. An introduction to chronometric techniques and descriptions of the elementary 
cognitive tasks most widely used (ECTs) in research on individual differences in infor­
mation processing is given in Jensen, 1985c. Studies of the relationship between reaction 
time and IQ are reviewed by Jensen (1982a, 1982b). A variety of ECTs and the results 
of some o f the studies using them are presented in the collection o f articles edited by 
Vernon (1987a).

6. In ECTs, the reliability of the total score (either mean or median RT over all trials) 
as a function of the number of trials conforms remarkably well to the reliability coeffi­
cient predicted by the Spearman-Brown prophecy formula. Therefore, the observed re­
liability of the total score based on a given number of trials permits one to determine 
(via the Spearman-Brown formula) the number of trials that would be needed to achieve 
any desired level of reliability.

7. Because the frequency distribution of a person’s single-trial reaction times is al­
ways skewed (positively), the median RT (or MT) is a better measure of the distribution’s 
central tendency than the mean RT. Studies in my chronometric laboratory have shown 
that the median RT has slightly higher internal consistency reliability and higher test- 
retest reliability than the mean.

8. A highly technical and mathematically sophisticated treatment of the experimental 
conditions affecting RT is given in the book by mathematical psychologist Duncan Luce 
(1986), which also contains the most extensive bibliography available on the experimen­
tal psychology o f RT. This literature impresses one that the experimental study of RT 
has become as much an exact science as physics or chemistry. The topic of individual 
differences in RT, however, is not considered in Luce’s monograph or its bibliography.
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A comparable monograph on this subject would be a worthwhile contribution to psy­
chological science.

9. Hick, 1952. A succinct explanation of Hick’s formulation and a comprehensive 
review of the literature on individual differences in the variables derived from the Hick 
paradigm and their correlations with IQ are provided in Jensen, 1987d.

10. Jensen, Schafer, & Crinella, 1981.
11. Morris & Hopkins, 1995.
12. Frearson & Eysenck (1986); Jensen, 1992d; 1993d; Jensen & Whang, 1993.
13. Diascro & Brody (1994); Jensen, 1987e, pp. 111-118.
14. Sternberg, S. (1966, 1969).
15. Jensen, 1987f.
16. Smith & McPhee, 1987.
17. Posner. 1978, pp. 35-49.
18. Hunt et al., 1975.
19. Vernon, 1983. This and many subsequent studies by P. A. Vernon have used this 

version of the Posner paradigm.
20. Jensen, Larson, & Paul, 1988.
21. Jensen. Cohn, & Cohn, 1989.
22. Digit span is measured by the largest number of digits a person can repeat without 

error on two consecutive trials after the digits have been presented at the rate of one 
digit per second, either aurally or visually. Recalling the digits in the order of presentation 
is termed forward digit span (FDS); recalling the digits in the reverse order o f presen­
tation is termed backward digit span (BDS). Digit span is a part of the Stanford-Binet 
and of the W echsler scales. Digit span increases with age, from early childhood to ma­
turity. In adults, the average FDS is about 7; average BDS is about 5. I have found that 
Berkeley students, whose average IQ is about 120, have an average FDS of between 8 
and 9 digits.

23. Cavanagh (1972); Kail, 1994.
24. Kyllonen & Christal, 1990. This article issues from the large-scale program of 

research on individual differences in speed of information processing being conducted 
at the Brooks Air Force Base; it has references to much of the other important research 
from this program. Later important studies in this research program are by Kyllonen, 
1993, 1994. A study by Roberts et al. (1988) shows how changes in task complexity 
experimentally introduced into the Hick paradigm by the dual-task method increase its 
correlation with Raven’s matrices.

25. Brand & Deary (1982) and Nettelbeck (1987) review most of the literature on the 
methods and findings of IT research; their references will lead readers to more than 90 
percent o f the IT literature. An excellent integrative overview of IT and its relation to 
RT. evoked potentials, and IQ is provided by Deary & Stough (1996).

26. Raz, W illerman, et al., 1983.
27. (a) Kranzler & Jensen, 1989. (b) The correlations used in this analysis are in 

Kranzler & Jensen (1991a, Table A-7) and in Carroll (1991b, Table 5).
28. Lynn, Wilson, & Gault, 1989. A study by Deary (1994b) obtained correlations 

between the nontimed Seashore pitch discrimination test (PD), auditory inspection time 
(AIT), the Mill Hill Vocabulary test (MHV), and Raven’s Standard Progressive Matrices 
(SPM) on 108 thirteen-year-old students. (The score on AIT was a factor-score composite 
of two different methods o f measuring AIT.) The g loadings (here represented by the 
first unrotated principal component) of these four variables are as follows (AIT is re­
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fleeted so that “ goodness”  of performance is positively correlated between all variables): 
PD =  .36, AIT =  .72, MHV =  .77, SPM =  .78. Although there are too few variables 
here to permit a hierarchical factor analysis, a principal factor analysis would have been 
preferable to the principal components analysis used by Deary. I have performed a prin­
cipal factor analysis on the correlations given by Deary. The first principal factor (i.e., 
the “ g ”  of this matrix) is the only significant factor (i.e., eigenvalue >  1). Its loadings 
in the four variables are as follows: PD =  .21, AIT =  .58, MHV =  .65, SPM =  .66.

29. Holt & Matson, 1974; Beer et al., 1989.
30. Vernon & Kantor, 1986; Vernon, Nador, & Kantor, 1985.
31. Cerella, 1985; Salthouse, 1985.
32. Libet, 1985, 1987; Libet et al., 1991. These papers are probably the best intro­

duction to L ibet’s work and they provide references to much of his other work on the 
neural basis-of conscious experience.

33. Jensen, 1992d.
34. Larson & Alderton, 1990; Kranzler, 1992.
35. (a) Nettelbeck, 1985; (b) Jensen, Schafer, & Crinella, 1981; (c) Vernon, 1981a, 

1987c; (d) Kail, 1992; (e) Kail, 1991; (f) Cerella, 1985; (g) Jensen, Cohn, & Cohn, 1989; 
(h) Cohn, Carlson, & Jensen, 1985; (i) Kranzler, Whang, & Jensen, 1994; (j) Jensen, 
Larson, & Paul, 1988.

36. Levine, Preddy, & Thorndike, 1987.
37. Two methods for combining RTs have been used: multiple regression and simple 

summation. In multiple regression, a different weight is given to each o f the RT variables 
before they are summed for each subject; the weights (obtained by multiple regression 
analysis) are such as to maximize the correlation (now called a multiple correlation, R) 
between the weighted sum of the several RT variables and IQ (or whatever is the criterion 
or dependent variable). When the sample size is very large and the number of predictor 
variables (also called independent variables) is small, there is very little bias in the 
multiple R. (R is always biased upward.) The smaller the subject sample size and the 
larger the number of predictor variables, the more that the true R is overestimated. On 
the other hand, there is no such bias (or “ capitalization on chance” ) in a simple sum of 
the predictor variables, although the simple sum will not yield quite as large a correlation 
(r) as the multiple R. In most studies using multiple R, however, the R is corrected for 
bias. When the RTs from different ECTs have significantly different means, their com­
bination in effect gives differential weights to the various ECTs. This may or may not 
be desirable, depending on the researcher’s purpose and the nature of the hypothesis 
being tested. When it is not considered desirable, it is preferable either to use multiple 
regression analysis to obtain the multiple R, or to assign unit weights to the RTs o f the 
various ECTs. This is done by transforming all of the RTs (separately for each ECT) to 
standardized (z) scores and averaging these to obtain each subject’s unit-weighted RT z 
score.

38. Vernon, 1988.
39. The multiple R  is not signed because it can never be less than zero. The multiple 

Rs shown here, however, represent negative correlations, because each of the predictor 
variables (RT or RTSD) entered into the multiple regression equation is negatively cor­
related with the dependent variable (IQ).

40. It should be recalled that the proportion o f IQ variance accounted for by RT is 
the square of the correlation between IQ and RT. Because the heritability coefficient is 
the proportion of (IQ) variance accounted for by genetic factors, we must compare the
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RT X IQ correlation squared with the heritability coefficient. Taking the upper-range 
RT X IQ correlation, for example, as .70 and the heritability as .70, one can say that 
the RT measure accounts for 100(.702/.70) =  70 percent of the heritable variance in IQ, 
assuming the genetic variance of IQ is the only variance in common between IQ and 
RT. (Note: If the heritability coefficient for, say, IQ is h2, then the correlation between 
the phenotypic and genotypic IQ is JJ? = h.)

41. Probably the simplest and clearest factor analysis of combined ECTs and psycho­
metric tests is the study by Levine et al. (1987), in which verbal, quantitative, and spatial 
psychometric tests were analyzed along with RTs from ECTs based on verbal, quanti­
tative, and spatial contents. The largest single factor analysis of this kind was performed 
by John B. Carroll (1991b; see also Carroll, 1993a, pp. 484-485) on data from the Berke­
ley chronometric laboratory (described in Kranzler & Jensen, 1991a). Carroll entered 38 
variables into the hierarchical factor analysis— 27 from ECTs (of the types described 
earlier in this chapter) and 11 psychometric tests (Raven’s Advanced Progressive M atri­
ces and the 10 diverse verbal and nonverbal subtests of the Multidimensional Aptitude 
Battery). The subjects were 101 Berkeley undergraduates whose average IQ was 120, 
with a S D  of about 10, or only two-thirds of the population S D  of 15; therefore, one 
must bear in mind the restricted range of ability in this sample. Carroll’s factor analysis, 
fully presented in his article, is quite complex because of the large number of ECT 
variables, and possibly also because some of the ECT variables (e.g., median RT and 
RTSD) are not experimentally independent, a condition that is problematic in factor 
analysis.

42. In C arroll’s (1991b) factor analysis of twenty-seven chronometric variables and 
eleven psychometric tests, for example, the average loading of the chronometric variables 
(RT and RTSD) on the g  factor is .47; their average loading on the non-g RT factors is 
.51. This implies that the average squared uniqueness (i.e., the proportion of variance 
due to specificity + error) of the RT and RTSD variables is about (1 -  .472 -  .5 12) = 
.52. (In the battery of mostly ECTs, the eleven psychometric tests have an average g 
loading o f .35; their average loadings on the verbal [or Gc] and spatial factors are .61 
and .47, respectively. The average squared uniqueness of the psychometric tests therefore 
is only .28.)

43. Jensen & Reed (1990) showed that simple RT (SRT) can act as a suppressor 
variable when it is entered into a multiple correlation with RTs based on more complex 
ECTs, such as choice RT (CRT) and Odd-Man-Out, to predict IQ. It should be noted, 
however, that when SRT is subtracted from the RT of a more complex ECT, say CRT, 
the difference has lower reliability than either o f the original measurements. It is a general 
psychometric principle that the reliability of a difference score, say X -  Y, is a function 
of the reliability coefficients of X and Y and the correlation rXY:

^ (X - Y K X —>•) —  0 'X X  rY\ ~ ^ / 'x y )  t ( 2  —  2/-X Y ).

Therefore, there is a trade-off (usually unequal) between two opposing effects: (1) the 
increased correlation of the difference CRT-SRT with g (as compared with the CRT X 
g correlation), and (2) the decreased reliability of the difference, CRT-SRT, which lowers 
the correlation of CRT-SRT with g. All this is fully explained, with empirical examples, 
in Jensen & Reed, 1990.

44. (a) M cGue et al.. 1984; (b) McGue & Bouchard, 1989; (c) Vernon, 1989a.
45. Jensen, Larson, & Paul, 1988.
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46. The correlation between two phenotypic traits can be partitioned into genetic and 

environmental components. The genetic correlation indicates the degree to which the two 
correlated variables are pleiotropic or influenced by the same genes. The environmental 
(or better-called “ nongenetic” ) correlation indicates the extent to which both variables 
have been subject to the same nongenetic influences. (The method for calculating the 
genetic correlation between two phenotypic variables is explained in Note 26 of Chap­
ter 7.)

47. (a) Ho, Baker, & Decker, 1988; (b) Baker, Vernon, & Ho, 1991.
48. (a) Jenkinson, 1983; (b) Vernon, 1989b; (c) Vernon, 1983; (d) Kranzler & Jensen, 

1991a.
49. (a) Smith & Stanley, 1987; (b) Larson, Merritt, & Williams, 1988; (c) Vemon & 

Jensen, 1984, (d) Nettelbeck & Rabbitt, 1992; (e) Hemmelgarn & Kehle, 1984.
50. (a) Alderton & Larson, 1994; (b) Chaiken, 1994; (c) Chaiken & Young, 1993. 

Brand (1987b) presents a trenchant critique o f strategy theories of g.
51. (a) Ahern & Beatty, 1979; (b) Larson, Saccuzzo, & Brown, 1994.
52. Jensen (1987d, pp. 126-133) examined practice effects on the Hick paradigm in 

ten university students who were tested on nine occasions. The variance due to the regular 
downward trend in RT in the course of prolonged practice, though statistically significant, 
was much smaller than the variance due to individual differences; and the rank order of 
individual differences is fairly constant over the course of practice sessions distributed 
over nine days, as shown by the high reliability o f individual differences in the RTs 
summed over all nine practice sessions for each of the ten subjects.

53. Neubauer & Freudenthaler, 1994. This study used the well-known sentence veri­
fication test (SVT) introduced by Baddeley, known as the “ star above plus”  test. Various 
statements o f this type are presented, followed by a picture o f a star (*) above (or below) 
a plus sign (+ ) , to which the subject responds by pressing buttons labeled T  (true) or F  
(false). The terms sta r and plus are randomly interchanged, and the intermediate words, 
also occurring at random, are above, below, not above, not below. This experiment 
permits measurement of two kinds of RT: Comprehension RT and Verification RT. After 
the appearance o f the “ statement,”  the subject, having read it, presses a button to bring 
up the picture on a display screen. (The interval between onset of the “ statement”  and 
pressing the button is the Comprehension RT, or CRT.) The subject evaluates the picture 
and “ verifies”  it as either true or false by pressing the appropriate button. (The interval 
between the onset of the picture and pressing the “ verification”  button is the Verification 
RT, or VRT.) The effects o f practice on the RT-IQ correlation follow different (down­
ward) trajectories and asymptotes at different points for CRT and VRT. Both are cor­
related with IQ after nearly 2,700 practice trials, with rs of -  .22 and - .3 9  for CRT and 
VRT, respectively.

54. Ericsson & Charness, 1994.
55. Thom pson’s (1985) primer gives an excellent overview of this subject.
56. Excellent examples o f neurological approaches to understanding cognitive phe­

nomena are seen in the articles by Gazzaniga (1989) and Posner et al. (1988). Also 
coming into prominence is the field of artificial neural networks (ANN), in which various 
neural models suggested by research in the neurosciences can be computerized. The 
interplay between neuroscience and ANN should prove valuable in testing theoretical 
models o f the neural design features of the brain proposed to explain certain cognitive 
phenomena (Freedman, 1994).

57. Goldman-Rakic (1994) reviews evidence from bilateral prefrontal ablation studies
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in monkeys and from human performance on working memory tests in persons with 
lesions in the prefrontal area, the part o f the brain that is larger and more highly devel­
oped in humans than in any other species. They both show marked impairment of the 
normal functions associated with working memory (a part of the short-term memory 
system). Long-term  memory (LTM), however, remained perfectly intact in these cases. 
Impairment o f consolidating (or later retrieving) recently acquired information in LTM 
is associated with lesions o f the hippocampus, located near the base of the brain far from 
the frontal lobes. The short-term and long-term memory systems are quite distinct, both 
in brain localization and in function.

58. The speed o f nerve impulses was unknown until the mid-nineteenth century, when 
Hermann von Helmholtz (1821-1894) measured nerve conduction velocity (NCV), first 
in frogs, later in humans. Earlier it was generally believed that nerve conduction had 
infinite velocity. On the basis o f this belief, Immanuel Kant (1724-1804) even argued 
that mental activity could never come under scientific measurement or investigation. 
Shortly before Helm holtz’s discovery, a leading physiologist of the time, Johann Muller 
(1823-1900), was more optimistic than Kant. He argued that the speed of nerve con­
duction was not infinite but cautiously claimed its velocity was sixty times greater than 
the speed o f light! We now know it actually averages closer to one-third the speed of 
sound. NCVs are highly variable, depending on the location o f the neuron, its diameter, 
the amount o f myelination (fatty insulation surrounding the axon), temperature, and cer­
tain biochemical conditions. Hence NCVs range from a few miles per hour to nearly 200 
miles per hour— quite a bit slower indeed than the speed of light (186,282 miles per 
second).

59. (a) Schafer et al., 1982; (b) Kutas et al., 1977.
60. A useful analogy for WM is of a juggler who can juggle, say, 5 balls (e.g., bits 

of information). That is, his capacity is 5 balls (or bits). If, while he is juggling 5 balls, 
someone tosses him another ball, he must drop a ball to catch the new ball and in the 
act of catching the new ball may even drop another ball, thereby ending up with only 4 
balls. (Like a person with a digit span o f 5 being given 6 digits and being able to recall 
only 4.) If, while juggling 5 balls, the juggler tries to place 1 ball on a table (e.g., get it 
into LTM), this action causes him to drop another ball, so he is left with 1 ball on the 
table and only 3 still being juggled; the fourth ball is “ lost.”  WM seems to operate in 
much the same fashion. But this analogy shouldn’t be carried any further.

61. Jensen, 1992c, 1992e, 1993c.
62. (a) Lehrl & Fischer, 1988, 1990. I have translated the symbols used by these 

German authors, which are antimnemonic for readers of English, to the initial letters for 
Capacity, Speed, and Duration, (b) Kline, Draycott, & McAndrew, 1994. (c) The g 
(principal factor I) loadings of the variables were C =  .92, S = .84, D =  .49; Raven =  
.44, Vocabulary =  .52. The latter two loadings are smaller than would normally be 
expected, most likely because these relatively easy tests have a more restricted range in 
a college sample than the timed tests used for measuring S and D. Personality factors 
were also measured in this study, but were negligibly related to the cognitive factors. A 
measure of LTM (discriminative recognition memory) for past-presented nonsense syl­
lables showed a loading of only .18 on the PFI. This is consistent with the general finding 
that tests of rote memory of material o f low meaningfulness have little g loading, (d) 
More recently, Draycott & Kline (1994) published another study o f the Erlangen theory 
and methodology and found that the S measure was highly loaded on Gc (mainly defined 
by verbal ability in an obliquely rotated factor analysis) but had a negligible
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loading on Gf. This study, based on an unusually small sample size (65) in relation to 
the number of tests (20) entered into the factor analysis and the number of factors ex­
tracted (4) calls for replication. Also, it is essential that a g factor (not just Gc and G f 
as rotated primary factors) be extracted. It also seems likely that the Erlangen measure 
of S (processing speed) is factorially too narrow, containing a specific verbal factor, 
causing it to load more on Gc than on Gf. A composite measure of speed derived from 
tasks o f varied content would almost certainly be more highly loaded on G f  and on g.

63. Jensen, 1992d, 1993b.
64. Anderson (1994) has proposed a different neural model to explain this particular 

phenomenon. Using a neural network type of model based on the specific pattern o f the 
connections between neurons, data simulated by computer showed a good fit to the 
empirically observed differences typically found between retarded and average persons 
in the non-Gaussian characteristics of the frequency distribution of an individual’s RTs 
obtained over many trials. Like the neural oscillation model, it attempts to explain the 
striking phenomenon that retarded persons’ fastest RTs differ much less from the fastest 
RTs of average persons than the difference between the slowest RTs of retarded and 
average persons. This phenomenon is evident between higher- and lower-IQ subjects 
within every segment of the range of IQs we have examined, from IQs of 50 to 150. 
Graphic plots o f such data can be seen in Jensen, 1982a, Figures 17, 18, 19.

65. (a) Fairbank et al., 1991; (b) Jensen, 1992. (c) Callaway, 1979; (d) Barrett, Daum, 
& Eysenck, 1990. To the best o f my knowledge, there has been no explicit study of 
intraindividual variability in IT (inspection time), probably because of the difficulty, 
perhaps even impossibility, of measuring the kind of intraindividual variability in IT that 
can be measured as RTSD in studies o f reaction time.

66. Miller, 1994. The summary from M iller’s lengthy article indicates the wide variety 
of lines of evidence he has surveyed relating myelin to g:
Many observations concerning intelligence could be explained if much variance in intelligence 
reflects m yelination differences. M ore intelligent brains show faster nerve conduction, less glucose 
utilization in positron emission tomography, faster reaction times, faster inspection times, faster 
speeds in general, greater circum ference and volume, sm aller standard deviation in reaction times, 
greater variability in EEG m easures, shorter white m atter T 2 relaxation times, and higher gray-white 
matter contrast with magnetic resonance imaging. Also explainable are peculiarities of the increased 
reaction tim es and standard deviations with num ber o f choices and complexity, reaction tim e skew­
ness, the shorter latencies in evoked potentials, shorter latencies to the P300 wave, the high glial 
to neuron ratio in E instein’s brain, less glucose utilization per unit volume in large brains, certain 
results related to lipids, essential fatty acids, and cholesterol in adults and premature babies, and 
the survival o f genes for low er intelligence. C hildren’s improved perform ance with maturation might 
result from m yelination. The slowing of response tim es with age, the decline in intelligence, and 
increased T 1 relaxation times could be explained. Differential m yelination in the mouse brain might 
be able to explain the heterosis observed for myelination, brain size, caudal nerve conduction ve­
locity, and maze perform ance observed, (p. 803)
Consistent with this theory are the intriguing findings by Benton (1995, 1996), based on 
very large samples, that amount of fat in the diet and cholesterol level are related to 
faster choice RT. The relationship is apparent in both “ blue collar”  and “ white collar” 
adults.

67. Certain ions (e.g., K + and C a++) are ubiquitous in all forms of chemical neuro­
transmission and variations in their concentrations and transport could be among the 
physiological processes involved in g. Specific neurotransmitters, which vary widely and 
are keyed to localized regions and specialized functions, would be less likely candidates 
for explaining g.
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68. W illerman & Raz, 1987.
69. Dempster & Brainerd (1994) have edited a collection of articles on theory and 

research on the construct of central inhibition in cognitive processing.
70. Bender, Linden, & Robinson, 1994.
71. Bellugi, Wang, & Jernigan, 1994.
72. (a) Gardner, 1983; (b) Gardner, 1993. Gardner’s books are well worth reading, 

although he largely ignores the psychometric research literature, and I disagree with his 
apparently intentional but entirely unjustified exclusion of g in his theoretical system. 
Including g would, of course, subtract considerably from the variance accounted for by 
most of his other “ intelligences”  that are most highly g loaded. Critiques of Gardner’s 
theory o f “ multiple intelligences”  are provided by Brody (1992, pp. 34-40) and Carroll 
(1993a, pp. 641-642).

73. See the rather fruitless debate on the methodological problems of proving the 
“ unity”  or “ disunity”  o f g in the series of articles by Kranzler & Jensen (1991a, 1991b, 
1993) and Carroll (1991b, 1991c, 1993b).



The Practical Validity of g
Chapter 9

Practical validity is indicated by a significant and predictively useful 
correlation of a measurement with some educational, economic, or 
social criterion that is deemed important by many people. The g 
factor (and highly g-loaded test scores, such as the IQ) shows a more 
far-reaching and universal practical validity than any other coherent 
psychological construct yet discovered. It predicts performance to 
some degree in every kind of behavior that calls for learning, de­
cision, and judgment. Its validity is an increasing monotonic func­
tion of the level of cognitive complexity in the predicted criterion. 
Even at moderate levels of complexity of the criterion to be pre­
dicted, g is the sine qua non of test validity. The removal of g (by 
statistical regression) from any psychometric test or battery, leaving 
only group factors and specificity, absolutely destroys their practical 
validity when they are used in a population that ranges widely in 
general ability.

The validity of g is most conspicuous in scholastic performance, 
not because g-loaded tests measure specifically what is taught in 
school, but because g is intrinsic to learning novel material, grasping 
concepts, distinctions, and meanings. The pupil’s most crucial tool 
for scholastic learning beyond the primary grades— reading com­
prehension— is probably the most highly g-loaded attainment in the 
course of elementary education.

In the world of work, g is the main cognitive correlate and best 
single predictor of success in job training and job performance. Its 
validity is not nullified or replaced by formal education (independent 
of g), nor is it decreased by increasing experience on the job.

Although g has ubiquitous validity as a predictor of job perform­
ance, tests that tap other ability factors in addition to g may improve
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the predictive validity for certain types of jobs— tests of spatial abil­
ity for mechanical jobs and tests of speed and accuracy for clerical 
and secretarial jobs.

M eta-analyses of hundreds of test validation studies have shown 
that the validity of a highly g-loaded test with demonstrated validity 
for a particular job in a particular organizational setting is general- 
izable to virtually all other jobs and settings, especially within broad 
job  categories.

The g factor is also reflected in many broad social outcomes.
Many social behavior problems, including dropping out of school, 
chronic welfare status, illegitimacy, child neglect, poverty, accident 
proneness, delinquency, and crime, are negatively correlated with g 
or IQ independently of social class of origin. These social patholo­
gies have an inverse monotonic relation to IQ level in the population, 
and show, on average, nearly five times the percentage of occurrence 
in the lowest quartile (IQ below 90) of the total distribution of IQ 
as in the highest quartile (IQ above 110).

So far, g has been discussed strictly in terms of its psychometric and statistical 
features, its correlation with biological variables, its genetic and environmental 
determinants, and its relation to information-processing theory. These aspects of 
g would be of little interest outside the strictly scientific realm if g did not also 
have substantial correlations with variables that are of direct practical impor­
tance, both to individuals and to the welfare of society. This chapter presents 
the main evidence that g is indeed the chief active ingredient responsible for 
the observed correlations between various widely used mental tests and many 
criteria of universally acknowledged importance in all civilized societies.

This chapter is not a detailed exposition of the statistical techniques for es­
tablishing test validity or a comprehensive review of the evidence for the pre­
dictive validity of the tests most commonly used for selection in education, 
employment, and the armed forces. (Entree to the extensive literature on this 
can be found elsewhere.1' 1) Rather, the focus is restricted to the role of g per se 
in practical predictive validity.

Most validity studies have concerned particular tests, which often were con­
structed to yield predictive validity coefficients as high as possible for a partic­
ular criterion, such as success in college, or in certain types of jobs, or in 
specialized training schools in the armed forces. Such tests are typically loaded 
substantially with g in addition to other factors intended to enhance their validity 
for some particular purpose. Surprisingly little of this applied literature on test 
validity, however, examines the degree to which g itself, as compared to other 
factors and specificity, contributes to tests’ validity. Fortunately, the few studies 
that focus specifically on this question have been conducted mostly by the armed 
forces and by the U.S. Employment Service of the Department of Labor. These 
studies, based on huge samples, are technically excellent.



272 The g Factor

PS YCII0 METRIC PRINCIPLES OF VALIDITY
THE ASSESSMENT OF PREDICTIVE VALIDITY

A test’s practical validity is measured by its correlation with performance on 
some criterion that is external to the test. Such a correlation is termed a validity 
coefficient, and since it is a correlation coefficient, it of course has all the sta­
tistical properties of a correlation coefficient. It is simply the correlation, rxc 
between a test score (X) and a measure of some criterion (c), such as college 
grade-point average, a rating of job performance, or a work sample.

Validity is said to be predictive if the test is administered prior to the as­
sessment of the criterion performance. A college selection test such as the SAT, 
for example, may be used to predict a student’s grade-point average at the end 
of the freshman year, or to predict how likely the student is to graduate.

Many types of correlation coefficient can be used to measure validity. The 
Pearson r is the most commonly used. A multiple correlation coefficient (R ) is 
used when two or more test scores (or other kinds of quantified variables) arc 
used in combination to predict the criterion.

The particular value of a given validity coefficient should not be thought of 
as an intrinsic property of a test. Conceptually, a validity coefficient is specific 
to the conditions under which it was determined. These include the nature of 
the criterion, the reliability of the test, the reliability of the criterion measure­
ment, and the range of individual differences in test-related ability in the subject 
pool for which prediction of the criterion variable is made. The degree of ge- 
neralizability of a given test’s validity for predicting a variety of different cri­
teria, and its generalizability across different subject pools (e.g., males, females, 
and different ethnic or cultural groups) is an empirical issue that has great im­
portance for the practical use of tests in selection. (It is discussed later in this 
chapter.)

The most fundamental fact about test validity is that the magnitude, or nu­
merical value, of a test’s validity coefficient results from the degree of congru­
ence between the factor composition of the test and the factor composition of 
the criterion. The validity coefficient is also affected to some degree (often 
negligible) by a kind of specificity that usually does not show up in the factor 
composition of a test battery, namely, common method variance. This is some 
feature of the measurement procedure per se that is common to both the test 
and the criterion. For example, the predictor variable X  may be a paper-and- 
pencil aptitude test and the criterion may be a paper-and-pencil test of job 
knowledge. Some part of the correlation rxc, then, could be the result of the 
method variance (i.e., use of paper-and-pencil tests). W hatever part of the cor­
relation rxc is the result of measuring both the predictor and the criterion by the 
common method therefore spuriously inflates the validity coefficient to some 
degree. Such spurious inflation of the validity coefficient occurs only if there
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are  re liab le  in d iv id u al d iffe ren ces  in w h a tev e r co n stitu tes  th e  m eth od  variance; 
o th e rw ise  the p a rtic u la r  m eth od  v arian ce  d oes not even  ex is t and  th e re fo re  is 
not reflec ted  in the  va lid ity  coeffic ien t.

T he va lid ity  co e ffic ie n t is a lso  a ffec ted  by the re liab ility  o f  the te st an d  the 
re liab ility  o f  th e  crite rio n . It is a lso  a ffec ted  by the ran g e  o f  ab ility  in th e  su b jec t 
pool, as reflec ted  bo th  in the test an d  in the m easu re  o f  the crite rio n . I f  the 
v arian ce  o b serv ed  in th e  c rite rio n  m easu rem en t d oes no t include so m e o f  the 
sam e  ab ility  fac to rs  m easu red  by th e  test, o f  co u rse , there  is no possib ility  o f  
the  te s t’s h av in g  any p re d ic tiv e  valid ity . T h e  re liab ility  o f  the test and  the range 
o f  ab ility  in the  su b jec t poo l, both  o f  w hich affec t the s ize  o f  the v a lid ity  co ­
effic ien t, can  be d e te rm in ed  in d ep en d en tly  o f  valid ity , and  the  o b serv ed  valid ity  
co e ffic ien t can  be p rec ise ly  co rrec ted  fo r atten u atio n  (un re liab ility ) and  fo r re ­
stric tio n  o f  range.

C o rrec tio n  o f  the  va lid ity  co e ffic ien t fo r restric tio n  o f  ran g e  is essen tia l w hen 
th e  co rre la tio n  (i.e ., the  raw  v a lid ity  co e ffic ien t) b etw een  the  te st and  the  c r i­
terion  is d e te rm in ed  in a su b jec t sam p le  th a t w as no t ran d o m ly  se lec ted  from  a 
la rg er u n se lec ted  su b jec t pool bu t ra th er w as se lected  on the basis o f  test scores. 
T h e  te s t-se lec ted  g ro u p  w ill have a restric ted  range o f  ab ility  co m p ared  to the 
to ta l su b jec t poo l, and  the valid ity  o f  the te s t in the to tal pool w ill be  u n d er­
es tim a ted  by the  o b serv ed  co rre la tio n  b etw een  te st sco res and crite rio n  p e rfo rm ­
ance in the se lec ted  g ro u p . C o rrec tio n  for ran g e  restric tio n  o f  the valid ity  
co e ffic ien t o b ta in ed  in a se lec ted  sam p le  p ro v id es an es tim a te  o f  the valid ity  
co effic ien t in the  u n re s tr ic ted  su b jec t poo l. T he co rrec ted  v a lid ity  co effic ien t 
e s tim a te s  the  te s t’s va lid ity  in p re se lec tin g  p ersons w h o  are the m o st likely  to 
succeed  on th e  c rite rio n  m easu re  at a  la ter tim e.

W h a t ex ac tly  d o es a va lid ity  coeffic ien t, r xc, tell us in q u an tita tiv e  te rm s?  
T h e re  a re  sev era l p o ss ib le  an sw ers ,2 b u t p ro b ab ly  th e  s im p le s t is this: W h en  test 
sco res  a re  ex p resse d  in s tan d a rd ized  fo rm  (zx) and the  c rite rio n  m easu res  are 
ex p resse d  in s tan d a rd ized  fo rm  (zc), then , if  an in d iv id u a l’s stan da rd ized  sco re 
on a te st is zxl, th e  in d iv id u a l’s p red ic ted  perfo rm an ce  on the crite rio n  is zci =  
r xc x  4 t- P ° r ex am p le , if  a p erso n  sco res  tw o  stan dard  d ev ia tio n s ab o v e  the 
g ro u p  m ean  on th e  te st ( i.e ., zxi =  + 2 )  an d  the te s t’s valid ity  co e ffic ien t is +  .50 
(i.e ., r xc =  + .5 0 ) ,  the p e rso n ’s p red ic ted  p erfo rm an ce  on the crite rio n  w ould  be 
o n e  stan d a rd  d ev ia tio n  ab o v e  the g ro u p  m ean  (i.e., zci =  r xc X zxl =  + .5 0  X 2 
= + 1).

P red ic tio n  is n ev e r w ith o u t so m e m arg in  o f  e rro r  (ex cep t in the u n realis tic  
ca se  w h ere  r xc =  1). T h e  lo w er the valid ity  co effic ien t, th e  g rea te r is the  erro r 
o f  p red ic tio n . E rro rs  o f  p red ic tio n  (tech n ica lly  te rm ed  the erro r  o f  e s tim a te3) are 
ran d o m  an d  h en c e  ev en ly  d iv id ed  b e tw een  o v erestim ate s an d  u n d eres tim a tes  o f  
th e  c rite rio n . (E rro rs  o f  p red ic tio n  th a t a re  system atic , o r n o n ran d om , and  cause  
co n s is ten t o ver- [or under-] estim atio n  o f  th e  c rite rion  p erfo rm an ce  o f  certa in  
id en tifiab le  g ro u p s  re la tiv e  to  o th e r g ro u p s in the pop u la tion , co n stitu te  test 
b ia s .4)
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EDUCATION AND «  VALIDITY 
THE RELATION OF g TO LEARNING ABILITY

Strangely, the study of learning and the study of “ intelligence”  have ad­
vanced along quite different tracks throughout the history of psychology. Learn­
ing has been a province of experimental psychology, while “ intelligence”  is a 
province of psychometrics and differential psychology. Yet definitions of “ in­
telligence”  often include learning ability as perhaps second only to reasoning 
ability. Learning and “ intelligence” have had separate research “ genealogies”  
only because they are conceptually distinct phenomena, even though they are 
closely related in everyday reality.

Learning per se can be studied in an individual organism. All organisms with 
a nervous system, however rudimentary, are capable of learning. Learning is 
manifested as a change in behavior, or response tendency, as the result of prior 
experience or practice. More precisely, learning may be defined as an experi- 
entially acquired change in the strength or probability of occurrence of a par­
ticular overt or covert response in the presence of a particular stimulus. 
(Excluded from the definition of learning are changes in response tendency 
attributable to physical maturation of the nervous system, fatigue, illness, drug 
effects, brain damage, emotional state, or level of motivation.)

Memory is the retention, over some period of time, of the behavioral changes 
that resulted from learning. Forgetting is a lessening or loss of, or the momentary 
inability to retrieve, the changes that were acquired through learning. Theories 
of learning are mainly concerned with the nature of the experimentally manip- 
ulable conditions that affect the rate of change in a particular response tendency 
in an individual organism and the experimental conditions that affect the reten­
tion of what has been learned. Learning theorists have seldom shown any interest 
in the wide range of differences in learning rates across individuals subjected 
to the very same experimental conditions.

When we focus our attention on individual differences in rate of learning 
(under conditions of learning that are the same for all individuals), we move 
into the field of differential psychology. It is well known that different individ­
uals need very different amounts of time to learn something to the same level 
of mastery, and some individuals are able to learn certain things that other 
individuals, given the same conditions of learning, are not able to learn at all.

All the knowledge possessed by any individual, of course, has had to be 
acquired through learning. It is obvious that there is a wide range of individual 
differences both in the rate of learning, the amount learned, and the upper level 
of complexity and abstractness o f what can be learned at all. Hence, at any 
given age, people (even full siblings who are reared together) differ in the 
amount of knowledge and skills they possess. Some people acquire knowledge 
(i.e., learning what) and skills (i.e., learning how) some ten to twenty times 
faster than others.5 In a typical school classroom, the fastest learners acquire
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knowledge and skills some five times faster than the slowest learners. By the 
time students reach their last year in high school there are some who are still 
having seemingly insurmountable trouble with long division and fractions while 
some others are learning calculus. These differences cannot be attributed merely 
to differences in opportunity, interest, or motivation. Laboratory experiments, in 
which the conditions of learning are highly controlled, have shown that indi­
viduals differ in the upper limit of complexity of the tasks or concepts that they 
are able to learn to a criterion of mastery, given any amount of time.

The question that concerns us here is the degree to which such individual 
differences in rate of learning per se are a function of g. As I have written a 
detailed article161 on this subject, with references to virtually the entire literature 
on the relationship between learning and IQ, I will here only summarize the 
main conclusions, and then present some especially informative new research 
that was not available when I wrote my review.

There is ample evidence of a wide range of individual differences in time to 
learn (TTL) a given amount of material to a uniform level of mastery, and that 
TTL is correlated with IQ.|7) For some years, however, psychologists believed 
that IQ and TTL were almost totally unrelated. This misconception came about 
as a result of studies performed in the 1940s that looked for correlations between 
IQ and each of a variety of single learning tasks of the simple type used in 
laboratory experiments on human learning. In these studies, tasks were selected 
for which the tested subjects had no prior experience, and the content to be 
learned consisted of meaningless material, such as nonsense syllables (e.g., cev, 
gok, jex). The material had to be learned by rote, and an individual’s learning 
rate was measured as either the amount learned in a set number of learning trials 
or the number of trials needed to learn the material to a criterion of mastery 
(i.e., the first trial on which every element in the task is performed without 
error). The typical measure of an individual’s learning was a gain score, that 
is, the difference between a measure of the level of performance taken on the 
last trial (of a uniform number of learning trials given to every individual) and 
a measure of performance level on the initial trial.

These measures of learning indeed had surprisingly low correlations with IQ, 
especially when gain scores were used. In some studies there was even a neg­
ative correlation between gain scores and IQ. Since performance levels on both 
the first trial and the last trial are often correlated with IQ, a gain score created 
by taking the difference between the two eliminates much of the variance in 
scores attributable to individual differences in IQ. Hence the correlation between 
the gain-score measure of learning ability and IQ is spuriously deflated.

The chief cause of the low correlation between IQ and learning scores, how­
ever, is that most laboratory learning tasks are so narrowly specialized in the 
ability they call upon that their factor composition consists mostly of specificity. 
In this respect, a particular learning task is much like a single item in an IQ 
test. The variance of a single item consists mostly of specificity, and the cor­
relations among single test items are typically between .10 and .20. The corre­
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lations between measures obtained from various laboratory learning tasks are 
scarcely larger than the correlations between the single items of IQ tests. How­
ever, when the correlations among a large number of learning tasks are factor 
analyzed, a general factor common to all of the learning tasks is revealed. This 
common factor could be called “ general learning ability.”

The important point is that this general learning ability factor is highly cor­
related with the g factor extracted from psychometric tests, and seems to be 
essentially nothing other than g. When a number of learning tasks and a number 
of psychometric tests of mental abilities are all entered into the same correlation 
matrix and factor analyzed, they are found to share a large common factor which 
is indistinguishable from psychometric g. In fact, there is no general learning 
factor (that is, a factor common to all learning tasks) that is independent of 
psychometric g. The general factor of each domain— learning and psychometric 
abilities— is essentially one and the same g.

Certain kinds of learning tasks, of course, are more g loaded than others. 
Concept learning and the acquisition of learning sets (i.e., generalized learning- 
to-learn), for example, are more g loaded than rote learning, trial-and-error learn­
ing, and perceptual-motor skills learning. Attempts to devise tests of “ learning 
potential”  in which the subject is first tested on some task (or set of tasks), then 
given some standard instruction, coaching, or practice on the same or a similar 
task, and then retested to obtain a measure of the gain in task performance 
resulting from the interpolated coaching have proved to be a poor substitute for 
ordinary IQ tests. Standard IQ has higher validity for predicting scholastic 
achievement.181 The existing tests of “ learning potential,” when used in con­
junction with an IQ test, add virtually nothing to the predictive validity of the 
IQ when it is used alone, probably because the chief active ingredient in pre­
dictive validity is g, and tests of learning potential have not proved to be as 
good measures of g as conventional IQ tests.

C orrelated  V ectors A nalysis o f  g  and L earn ing A bility. Two large-scale 
studies191 conducted by the U.S. Air Force provide the data needed to establish 
the central role of g in learning, as shown by the method of correlated vectors 
(which is explained in Chapter 6, p. 143, and Appendix B, p. 589). The exper­
imental learning task consisted of a brief course intended to teach a basic knowl­
edge of “ logic gates.” 10 Such knowledge is an essential element in 
troubleshooting failures in electronic equipment. The training program on this 
limited and clearly defined subject matter was entirely computerized and lasted 
about two hours. Having the training program completely computerized ensured 
uniform instruction for all subjects.

After completing the training program, the subjects were given a test devised 
to measure their accuracy in specifying the outputs of the various kinds of logic 
gates that were taught in the instructional program. A subject’s performance on 
this test is here called his learning score. The subjects were also given the 
Armed Services Vocational Aptitude Battery (ASVAB), which consists of ten 
separately scored subtests (General Science, Arithmetic Reasoning, Word
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Knowledge, Paragraph Comprehension, Numerical Operations, Coding Speed, 
Auto and Shop Information, Mathematical Knowledge, Mechanical Comprehen­
sion, Electronic Information).

The validity coefficients, or correlations of each of the separate ASVAB sub­
test scores with the learning scores (i.e., number correct on the “ gates”  test), 
ranged from + .39 (for both Auto and Shop Information) to +.65 (for Arith­
metic), with an overall average validity coefficient of +.53. (The Electronic 
Information subtest had a validity coefficient of + .53, interestingly not as high 
as that for Arithmetic.)

C orrelated  V ectors. The correlation between the column vector composed 
of the ten ASVAB validity coefficients and the corresponding column vector of 
the ten ASVAB subtests’ g loadings was + .82 in Study 1 and + .87 in Study
2. (The ASVAB subtests’ g loadings were based on the nationally representative 
1980 population sample of N  =  25,408,193 youths; the validity coefficients were 
corrected for range restriction so as to be representative of the same population 
sample.) These data clearly indicate that individual differences in the amount 
learned during a course of instruction of uniform duration is related mostly 
to g.

SCHOLASTIC ACHIEVEMENT
The purpose of the first “ intelligence”  test, devised by Binet and Simon in 

1905, was to assess elementary school children and identify those most likely 
to fail in the regular instructional program. These children would learn better 
with more specialized and individualized instruction suited to their below- 
average level of cognitive development. Since Binet’s invention, there have been 
countless studies of the validity of mental tests for predicting children’s scho­
lastic performance. The Psychological Abstracts contains some 11,000 citations 
of studies on the relation of educational achievement to “ IQ.”  If there is any 
unquestioned fact in applied psychometrics, it is that IQ tests have a high degree 
of predictive validity for many educational criteria, such as scores on scholastic 
achievement tests, school and college grades, retention in grade, school dropout, 
number of years of schooling, probability of entering college, and, after entering, 
probability of receiving a bachelor’s degree. With equality of educational op­
portunity for the whole population increasing in recent decades, IQ has become 
even more predictive of educational outcomes than it was before the second 
half of this century.

The evidence for the validity of IQ in predicting educational variables is so 
vast and has been reviewed so extensively elsewhere1' 11 that there is no need to 
review it in detail here. The median validity coefficient of IQ for educational 
variables is about + .50, but the spread of validity coefficients is considerable, 
ranging from close to zero up to about .85. Most of the variability in validity 
coefficients is due to differences in the range of ability in the particular groups 
being tested. The less the variability of IQ in a given group, of course, the lower



278 The g  Factor

is the correlation ceiling that the IQ is likely to have with any criterion variable. 
Hence we see an appreciable decrease in the average validity coefficient for 
each rung of the educational ladder from kindergarten to graduate or professional 
school. Several rungs on the educational ladder are the main junctures for either 
dropping out or continuing in school.

The correlation of IQ with grades and achievement test scores is highest (.60 
to .70) in elementary school, which includes virtually the entire child population 
and hence the full range of mental ability. At each more advanced educational 
level, more and more pupils from the lower end of the IQ distribution drop out, 
thereby restricting the range of IQs. The average validity coefficients decrease 
accordingly: high school (.50 to .60), college (.40 to .50), graduate school (.30 
to .40). All of these are quite high, as validity coefficients go, but they permit 
far less than accurate prediction of a specific individual. (The standard error of 
estimate is quite large for validity coefficients in this range.)

Achievement test scores are more highly correlated with IQ than are grades, 
probably because grades are more influenced by the teacher’s idiosyncratic per­
ceptions of the child’s apparent effort, personality, docility, deportment, gender, 
and the like. For example, teachers tend, on average, to give higher course 
grades to girls than to boys, although the boys and the girls scarcely differ on 
objective achievement tests.

Even when pupils’ school grades arc averaged over a number of years, so 
that different teachers’ idiosyncratic variability in grading is averaged out, the 
correlation between grades and IQ is still far from perfect. A strong test of the 
overall relationship between IQ and course grades was provided in a study1121 
based on longitudinal data from the Berkeley Growth Study. A general factor 
(and individual factor scores) was obtained from pupils’ teacher-assigned grades 
in arithmetic, English, and social studies in grades one through ten. Also, the 
general factor (and factor scores) was extracted from the matrix of intercorre­
lations of Stanford-Binet IQs obtained from the same pupils on six occasions at 
one- to two-year intervals between grades one and ten. Thus we have here highly 
stable measures of both school grades and IQs, with each individual’s year-to- 
year fluctuations in IQ and teachers’ grades averaged out in the general factor 
scores for IQ and for grades.

The correlation between the general factor for grades and the general factor 
for Stanford-Binet IQ was +.69. Corrected for attenuation, the correlation is 
+  .75. This corrected correlation indicates that pupils’ grades in academic sub­
jects, although highly correlated with IQ, also reflect consistent sources of var­
iance that are independent of IQ. The difficulty in studying or measuring the 
sources of variance in school grades that are not accounted for by IQ is that 
they seem to consist of a great many small (but relatively stable) sources of 
variance (personality traits, idiosyncratic traits, study habits, interests, drive, etc.) 
rather than just a few large, measurable traits. This is probably why attempts to 
improve the prediction of scholastic performance by including personality scales 
along with cognitive tests have shown little promise of raising predictive validity
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appreciably above that attributable to IQ alone. In the noncognitive realm, no 
general factor, or any combination of broad group factors, has been discovered 
that appreciably increases the predictive validity over and above the prediction 
from IQ alone.

Although IQ tests are highly g loaded, they also measure other factors in 
addition to g , such as verbal and numerical abilities. It is of interest, then, to 
ask how much the reported validity of IQ for predicting scholastic success can 
be attributed to g and how much to other factors independent of g.

The psychometrician Robert L. Thorndike1131 analyzed data specifically to 
answer this question. He concluded that 80 to 90 percent of the predictable 
variance in scholastic performance is accounted for by g, with 10 to 20 percent 
of the variance predicted by other factors measured by the IQ or other tests. 
This should not be surprising, since highly g-loaded tests that contain no verbal 
or numerical factors or information content that resembles anything taught in 
school (the Raven matrices is a good example) are only slightly less correlated 
with various measures of scholastic performance than are the standard IQ and 
scholastic aptitude tests, which typically include some scholastic content. Clearly 
the predictive validity of g does not depend on the test’s containing material 
that children are taught in school or at home. Pupils’ grades in different aca­
demic subjects share a substantial common factor that is largely g .14

The reason that IQ tests predict academic achievement better than any other 
measurable variable is that school learning itself is ^-demanding. Pupils must 
continually grasp “ relations and correlates” as new material is introduced, and 
they must transfer previously learned knowledge and skills to the learning of 
new material. These cognitive activities, when specifically investigated, are 
found to be heavily g loaded. It has also been found that various school subjects 
differ in their g demands. Mathematics and written composition, for example, 
are more g-demanding than arithmetic computation and spelling. Reading com­
prehension is so g loaded and also so crucial in the educational process as to 
warrant a separate section (p. 280).

The number of years of formal education that a person acquires is a relatively 
crude measure o f educational attainment. It is quite highly correlated with IQ, 
typically between + .60 and + .7 0 .15 This correlation cannot be explained as 
entirely the result of more education causing higher IQ. A substantial correlation 
exists even if the IQ is measured at an age when all persons have had the same 
number of years of schooling. Validity coefficients in the range of .40 to .50 
are found between IQ at age seven and amount of education completed by age 
40.1,61

Equally important is the fact that the correlation between IQ and years of 
education is also a within-family correlation. A within-family correlation (ex­
plained in Chapter 6, pp. 139) cannot be the result of differences in social class 
or other family background factors that siblings share in common. This is evi­
dent from a study1171 in which g factor scores (derived from the first principal 
component of fifteen diverse mental tests) were obtained for adult full siblings
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(reared together). The difference between the siblings’ g  factor scores and the 
difference in their number of years of education was + .50 for brothers, + .17 
for sisters, and + .34 for brother-sister pairs. (Similar correlations were found 
for siblings’ differences in g and the differences in their occupational status.)

There is also a fcerween-families component of the correlation between IQ 
and years of education associated with socioeconomic status (SES). More chil­
dren at a given IQ level from high-SES families tend to be “ overeducated” 
(i.e., are more likely to enter college) as compared with middle-SES and espe­
cially with low-SES children, who are less apt to enter college, given the same 
IQ as middle- and high-SES children.

C orrelated  V ectors. I have found only one studyII8ai that provides the nec­
essary data for a correlated vectors analysis of the relationship between tests’ g 
loadings and their predictive validity for school and college grades. The Wechs- 
ler Adult Intelligence Scale (WAIS) was given to high school juniors and each 
of the eleven subtests was correlated with the students’ class rank in grades at 
graduation. The WAIS Full Scale IQ was correlated +  .62 with class rank. The 
column vector composed of the eleven WAIS subtests’ g loadings (based on an 
independent comparable sam ple"8bl) was correlated + .73 with the column vector 
of the subtests’ validity coefficients (r =  +.51 after partialing out the vector of 
the subtests’ reliability coefficients). The corresponding rank-order correlation 
is .68, p <  .05.

The WAIS was also administered to entering college freshman. The Full Scale 
IQ correlated + .44 with the students’ Grade Point Average (GPA) at the end 
of the first semester. (The correlation is lower for college students than for high 
school students, because of restriction of range of IQ in the college sample.) In 
the college sample, the vector of the WAIS subtests’ g loadings (the same vector 
as above) was correlated +.91 with the vector of the subtests’ correlations with 
freshman GPA (r =  + .83 after partialing out the vector of the tests’ reliability 
coefficients). The corresponding rank-order correlation is .92, p  <  .01.

Although the WAIS Full Scale IQ validity is lower for college freshman than 
for high school students (because of the greater restriction of range of IQ and 
of grades in the college sample), the correlated vectors suggest that college 
grades reflect g more than do high school grades.19 This is probably because 
the college-level subject matter is more cognitively demanding and course 
grades are based more on examinations that reflect intellectual performance and 
less on teacher-perceived student characteristics that are less correlated with g, 
such as effort and classroom deportment.

R eading. It is common knowledge in psychometrics that a standardized test 
of reading comprehension is a good proxy for an IQ test. But this is true only 
if the persons tested are already skilled in word reading. In the psychology of 
reading, it is important to distinguish between the processes of decoding the 
symbols that constitute written or printed words (also known as “ word read­
ing” ) and comprehension, or understanding sentences and paragraphs.

The acquisition of decoding skill in young children is highly related to mental
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age (and to IQ in children of the same chronological age). But after word reading 
skill is fairly mastered, it is only weakly diagnostic of IQ or g. Children with 
average or above-average IQ who, with the typical reading instruction in the 
elementary grades, are still having trouble with word reading by age eight or 
nine are usually regarded as having a specific reading disability and are in need 
of expert diagnosis and special instruction.

Some 10 to 15 percent of school children are found to have a developmental 
reading disability. There are two main causes of reading problems, varying in 
severity and amenability to remediation. One is a slow rate of mental devel­
opment (manifested as low IQ on nonverbal tests); the other is various forms 
of dyslexia, in which the reading disability is highly specific and unrelated to 
g. Children diagnosed as dyslexic may, in fact, obtain very high scores on g- 
loaded tests if the test does not require reading. Specific reading disabilities 
show up almost entirely in the decoding aspect of reading, and decoding per se 
is not highly g-demanding. However, unless the decoding process becomes 
highly automatized  (as described in Chapter 8, p. 246), it occupies working 
memory (the central information-processing unit) to some extent, thereby hin­
dering full comprehension of the material being read.

People differ much more in reading comprehension than in decoding skill. 
And it is reading comprehension that is the most unavoidable of the g-loaded 
activities in the whole educational process. The educational psychologist Edward 
L. Thorndike, as early as 1917, likened the process of reading comprehension 
to that of reasoning. He well described the aspects of reading comprehension 
that demand the full use of working memory and cause it to be highly g loaded: 
“ The mind is assailed as it were by every word in the paragraph. It must select, 
repress, soften, emphasize, correlate and organize, all under the influence of the 
right mental set or purpose or demand.” 1201 Every one of the verbs used here 
by Thorndike describes a g-related function.

It is probably because of the g demand of reading comprehension that edu­
cators have noticed a marked increase in individual differences in scholastic 
performance, and its increased correlation with IQ, between the third and fourth 
grades in school. In grades one to three, pupils are learning to read. Beginning 
in grade four and beyond they are reading to learn. At this latter stage, a de­
ficiency in decoding skills becomes a serious handicap for comprehension. The 
vast majority of pupils, however, acquires adequate decoding skill by grade four, 
and from there on, the development of reading comprehension, with its heavy 
g saturation, closely parallels the pupil’s mental age (as measured by IQ tests). 
Except for the small percentage of persons with specific reading disabilities, the 
level of reading comprehension of persons who have been exposed to four or 
more years of schooling is very highly related to their level of g, as measured 
by both verbal and nonverbal tests.

Unless an individual has made the transition from word reading to reading 
comprehension of sentences and paragraphs, reading is neither pleasurable nor 
practically useful. Few adults with an IQ of eighty (the tenth percentile of the
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overall population norm) ever make the transition from word reading skill to 
reading comprehension. The problem of adult illiteracy (defined as less than a 
fourth-grade level of reading comprehension) in a society that provides an ele­
mentary school education to virtually its entire population is therefore largely a 
problem of the lower segment of the population distribution of g. In the vast 
majority of people with low reading comprehension, the problem is not word 
reading per se, but lack of comprehension. These individuals score about the 
same on tests of reading comprehension even if the test paragraphs are read 
aloud to them by the examiner. In other words, individual differences in oral 
comprehension and in reading comprehension are highly correlated.12'1

THE VALIDITY OF g  /TV THE WORLD OF WORK
Virtually every type of work calls for behavior that is guided by cognitive 

processes. As all such processes reflect g to some extent, work proficiency is g 
loaded. The degree depends on the level of novelty and cognitive complexity 
the job  demands. No job is so simple as to be totally without a cognitive com­
ponent. Several decades of empirical studies have shown thousands of correla­
tions of various mental tests with work proficiency. One of the most important 
conclusions that can be drawn from all this research is that mental ability tests 
in general have a higher success rate in predicting job performance than any 
other variables that have been researched in this context, including (in descend­
ing order of average predictive validity) skill testing, reference checks, class 
rank or grade-point average, experience, interview, education, and interest meas­
ures.1221 In recent years, one personality constellation, characterized as “ consci­
entiousness," has emerged near the top of the list (just after general mental 
ability) as a predictor of occupational success.

My purpose here, however, is not to provide a comprehensive review of this 
vast body of research on the practical validity of mental tests.23 Instead, the 
focus is on the role of g per se in the practical validity of tests used in personnel 
selection. The discussion is best divided into three main topics: job training, job 
performance, and occupational level.

VALIDITY OF g  FOR PREDICTING SUCCESS IN JOB TRAINING
A person cannot perform a job successfully without the specific knowledge 

required by the job. Possibly such job knowledge could be acquired on the job 
after a long period of trial-and-error learning. For all but the very simplest jobs, 
however, trial-and-error learning is simply too costly, both in time and in errors. 
Job training inculcates the basic knowledge much more efficiently, provided that 
later on-the-job experience further enhances the knowledge or skills acquired in 
prior job  training. Because knowledge and skill acquisition depend on learning, 
and because the rate of learning is related to g , it is a reasonable hypothesis that
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g  should be an effective predictor of individuals’ relative success in any specific 
training program.

The best studies for testing this hypothesis have been performed in the armed 
forces. Many thousands of recruits have been selected for entering different 
training programs for dozens of highly specialized jobs based on their perform­
ance on a variety of mental tests. As the amount of time for training is limited, 
efficiency dictates assigning military personnel to the various training schools 
so as to maximize the number who can complete the training successfully and 
minimize the number who fail in any given specialized school. When a failed 
trainee must be rerouted to a different training school better suited to his apti­
tude, it wastes time and money. Because the various schools make quite differing 
demands on cognitive abilities, the armed services employ psychometric re­
searchers to develop and validate tests to best predict an individual’s probability 
of success in one or another of the various specialized schools.

The best-known test battery that has evolved from this research effort so far 
is the A r m e d  Services Vocational Aptitude Battery  (ASVAB). It consists of ten 
distinct paper-and-pencil tests: Arithmetic Reasoning, Numerical Operations, 
Paragraph Comprehension, Word Knowledge, Coding Speed, General Science, 
Mathematics Knowledge, Electronics Information, Mechanical Comprehension, 
Automotive-Shop Information.

The Air Force has developed its own test battery, the A i r  F o r c e  Officer Q u a l ­
ifying Test  (AFOQT), which includes, in addition to six of the ASVAB subtests, 
ten others: Verbal Analogies, Data Interpretation, Electrical Maze, Scale Read­
ing, Instrument Comprehension, Block Counting, Table Reading, Aviation In­
formation, Rotated Blocks, and Hidden Figures. The Air Force probably has the 
largest number (over 150) of technical training schools, and the most varied and 
specialized, of any branch of the armed services.

Let me summarize, therefore, the Air Force research24 on the role of g  in the 
validity of its selection tests for predicting success in training, as measured by 
final grades based on written tests of job k n o w l e d g e  and ratings of performance 
of the specific job  skills that had been taught.

One study,|24“b| based on 24,000 subjects in training for thirty-seven diverse 
jobs, used the method of correlated vectors, in which the vector of g  loadings 
of the ten ASVAB subtests was correlated with the vector of ten validity co­
efficients of each of the ASVAB subtests for predicting training success. The 
rank-order correlation between the two vectors was + .75; this correlation 
increased to + .98 when the effect of the subtests’ differing reliabilities was 
statistically controlled. In brief, the larger a test’s g  loading, the better it predicts 
training success. The study was replicated124”1 on a sample of 78,000 subjects 
across 150 different job training courses, yielding a correlation of + .96 (con­
trolling the subtests’ reliabilities) between the subtests’ g  loadings and their 
validity coefficients.25

Increm ental V alid ity  o f N on-# V ariance. The term i ncremental validity re­
fers to the magnitude by which the validity coefficient is increased by adding
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another variable to predict the criterion measure. A variable’s incremental va­
lidity is determined by multiple regression analysis, in which each predictive 
variable is entered into the multiple regression equation in a stepwise fashion, 
and the size of the increment in the multiple correlation (/?) is noted as each 
predictor variable is successively included in the regression equation. An ex­
ample will make this clearer. Suppose we have three tests, X, Y, and Z, each 
of which has some correlation with the criterion C. If X, Y, and Z are not 
correlated with each other, then each will contribute its total predictive validity 
to the multiple correlation. But if X, Y, and Z are correlated with each other 
(hence they have overlapping predictive power), then the first variable (say, X) 
entered into the regression equation contributes all of its predictive power, the 
second variable (Y) contributes only that part of its predictive power that it does 
not share with X, and the third variable (Z) entered contributes only that part 
of its predictive power that it does not share with X and Y. By entering each 
variable in the regression equation in a different order, one can determine its 
unique (or in crem en ta l)  contribution to the predictive validity of the combined 
set of variables (X, Y, and Z). In combining the predictor variables (e.g., test 
scores), the variables are each weighted so as to maximize the correlation (R ) 
between their weighted sum and the criterion measure (C). The reg ressio n  e q u a ­
tion  (in terms of our example) is C =  bcxX +  bcyY + bczZ, where C is an 
individual’s p re d ic te d  performance on the criterion measure, b  is the optimal 
predictive weight for each test (called a reg ressio n  co e ffic ien t), and X, Y, and 
Z are the individual’s scores on each of the three tests. We will be concerned 
here with the incremental validity of a test battery after the amount of validity 
contributed by the battery’s g  factor is accounted for. The incremental validity 
in this case is associated with only the test variance that is n o t g , here called 
non-g. The reliable non-g variance typically consists of g ro u p  fa c to r s  (e.g., 
verbal, numerical, spatial, all residualized from g) and test sp ec ific ity  (e.g., gen­
eral information, vocabulary, verbal analogies, synonyms-antonyms, sentence 
completion, and the like, all residualized from both g and the group factors).

A study24b of the incremental validity of non-g (i.e., all sources of variance 
in the ten ASVAB subtests remaining after g has been removed) was based on 
78,049 airmen in eighty-nine technical job training courses. The g factor scores 
had an average validity coefficient of + .76 (corrected for restriction of range 
due to prior use of the test for selection); the non-g portion of the ASVAB 
variance had an average predictive validity of +.02. The highest non-g validity 
for any of the eighty-nine jobs was +.10. Non-g had no significant validity for 
one-third of the jobs. Moreover, the relation between g and training success was 
practically the same for all jobs. When an overall average prediction equation 
for all eighty-nine jobs was compared against using a unique optimal prediction 
equation for each job, the total loss in predictive accuracy was less than one- 
half of 1 percent.

In the same study, the average g validity was lower ( +  .33) for actual per­
formance measures than for course grades or a measure of job  knowledge, but
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it was still appreciably higher than the corresponding average non-g validity, 
which was only +.05.

A study240 based on 1,400 navigator trainees and 4,000 pilot trainees used the 
sixteen subtcsts of the AFOQT to predict success in achieving a number of 
training criteria measured in actual performance of the required skills at the end 
of training. The g score validity (cross validated, range corrected) for the com­
posite criteria was + .482 for navigators and +.398 for pilots. The corresponding 
incremental non-g validity coefficients were + .020 and +.084, respectively. 
Again, g proved to be the chief factor responsible for the AFOQT’s predictive 
validity.

The very small predictive validity of the ASVAB’s non-g component, it might 
be surmised, could result if each of the subtests measured scarcely anything 
other than g, despite the subtests’ quite different knowledge content. Empiri­
cally, however, this is clearly not the case. The g factor accounts for only 40 
to 60 percent (depending on the range of ability in various samples) of the total 
variance o f the ten ASVAB subtests. The remaining variance comprises group 
factors, test specificity, and measurement error (about 10 to 15 percent). 
Therefore, theoretically there is enough reliable non-g variance (about 30 to 50 
percent) in the ASVAB for it to have an incremental validity almost as high as 
that for g.

Ratings based on structured interviews (which systematically assess subject 
attributes including educational background, self-confidence and leadership, fly­
ing motivation) were also found to have significant predictive validity for suc­
cess in pilot training.1261 However, when the interview ratings were included in 
a multiple correlation along with the ASVAB to predict training success, the 
interview ratings proved to have no incremental validity over the ASVAB score. 
This finding indicates that whatever predictive validity the interview had was 
due to its overlapping variance with the predictive component of the ability 
factors tapped by the ASVAB, which is largely g.

VALIDITY OF g  FOR PREDICTING JOB PERFORMANCE
Test validity for predicting actual job  performance criteria is somewhat lower 

(by about .20, overall) than for job training criteria. Although g overshadows 
the validity of the non-g components of test variance slightly less than it does 
in the prediction of training success, g is still the main component of test validity 
for predicting job  performance.

The General Aptitude Test Battery (GATB) developed by the U.S. Employ­
ment Service is more varied in its factor composition than either the ASVAB 
or the AFOQT. In addition to paper-and-pencil tests (for measuring Verbal, 
Numerical, Spatial, and Clerical aptitudes), the GATB also includes several per­
formance tests that measure perceptual and motor abilities (form perception, 
motor coordination, finger dexterity, and manual dexterity). The predictive va­
lidity coefficients of the GATB have been determined and cross-validated re-
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Figure 9 .1 . Frequency distribution of 537 validity coefficients for the General Aptitude 
Test Battery (GATB) for 446 different occupations. The G-score is a single measure of 
general mental ability; multifactor validity is based on an optimally weighted composite 
o f nine GATB aptitudes (including G) for each job category. The median validity co­
efficients are + .27  for G and + .36  for the multifactor composite. If G is partialed out 
(i.e, removed), the validity coefficient (multiple R) of the residual multifactor composite 
is + .24. Source: Bias in mental testing by Arthur R. Jensen, Fig. 8.8, p. 349. Copyright 
© 1980 by Arthur R. Jensen. Reprinted with permission of The Free Press, a Division 
of Simon & Schuster, and Routledge Ltd.

peatedly and are reported for approximately 500 different occupations, ranging 
from unskilled manual laborer to Ph.D. mathematician. Correlations of each of 
the GATB scales with supervisor ratings of job performance or with objective 
work samples are reported in the GATB Manual. Using data in the GATB 
Manual, I have applied the method of correlated vectors to the GATB subscales. 
The vector of the subscales’ g  loadings (i.e., the first principal factor of the eight 
GATB aptitudes) correlated +.65 with the subscales’ mean validity coefficients 
across 300 occupations. This shows that g is the ubiquitous agent of predictive 
validity over an extremely wide variety of jobs.1271

This conclusion is further substantiated by the data presented in Figure 9.1, 
which shows the frequency distributions of validity coefficients obtained for 446 
different occupations, g-score validity here is based on a single score (g) rep­
resenting general cognitive ability (the GATB g-score is a composite of Verbal, 
Numerical, and Spatial aptitudes), and is measured by a Pearson r. Multifactor 
validity is a multiple correlation (/?), which is the correlation between the meas­
ure of job performance (called the dependent variable) and an optimally
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weighted composite of all eight of the GATB aptitudes (called the independent 
variables), each independent variable so weighted as to yield the highest possible 
correlation with the dependent variable for each specific job. (Mathematically, 
R can never be less than zero, while the Pearson r may have any value from 
— 1 to +1. Also, when the regression weights derived for a given sample are 
used to calculate the multiple R for the same sample, the R can never be smaller 
than the largest correlation of the dependent variable with any one of the in­
dependent variables.) The median g-score validity is + .27; the median multi­
factor validity is +.36. Hence the incremental validity of the non-g predictors 
is n/(.36)2 — (.27)2 =  .24. This is a slight overestimate of the incremental valid­
ity of the non-g component, as R is statistically biased (inflated) because of its 
“ capitalization on chance.”  (When the regression weights determined in one 
subject sample are cross-validated on a different sample, the R is always smaller 
in the second sample, the more so the smaller the samples.) It should be noted 
that the validity coefficients in Figure 9.1 are generally underestimates of the 
potential validity of the GATB, because they have not been corrected for range 
restriction in the applicant pool. The applicants for most of the jobs for which 
validity coefficients were obtained were self-selected, which considerably nar­
rows the range of ability in the applicant pool for any given job. If applicants 
for every job  were randomly selected from the general population, the g validity 
coefficients would be much higher, probably averaging at least +.50.

A study28 of the validity of the ASVAB for predicting work-sample job  per­
formance criteria in seven varied Air Force jobs compared g factor score validity 
coefficients with the multiple correlation (/?), which optimally combines the 
scores obtained from each of the ten ASVAB subtests. The obtained value of 
R (which is uniquely determined for each job) sets the upper limit of the possible 
correlation between the ASVAB subtests and the criterion measure of perform­
ance for each job. (To permit proper comparison with the single g -score validity 
coefficient, the R validity was statistically “ shrunken”  to adjust for degrees of 
freedom.) For predicting the overall work-sample performance criteria, averaged 
over the seven jobs, the g-score validity was +.42; the adjusted R validity was 
+ .44. Thus the total ASVAB has a practical predictive validity that is only +.02 
greater than its g validity alone.

Further evidence of the potency o f g and the relative impotence of other 
factors in tests’ predictive validity is demonstrated in a series of analyses by R. 
L. Thorndike.29 Three different multiple aptitude batteries (Differential Aptitude 
Test [DAT], Army Classification Test [ACT], and General Aptitude Test Battery 
[GATB]) were used to obtain validity coefficients for training criteria and for 
actual job performance in sixty-three highly diverse jobs. In one-half of the 
subject sample, the validity of each test battery for predicting performance 
within each job  classification was measured by the multiple R between the bat­
tery’s set of subtests and the performance measure. The regression weights for 
the obtained R were then cross-validated on the other half of the subject sample 
to obtain the cross-validated R for each battery and each job.
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Thorndike asked, How does the cross-validated R (which is uniquely deter­

mined for each job) compare with the validity o f g factor scores obtained from 
each test battery? (For a given test battery, a common set of g loadings, based 
on the entire subject pool, was used to calculate the g factor scores of subjects 
in every job  category.) For the three batteries (DAT, ACT, GATB), the validity 
coefficients based on g scores accounted for approximately 85, 90, and 120 
percent, respectively, as much criterion variance as the cross-validated multiple 
Rs. (If you are puzzled by the 120 percent, see Note 29 for explanation.) Thorn­
dike called this “ a rather startling result”  and concluded, “ [Fjor a wide range 
of criterion variables the major role in validity appears to be played by a com­
mon general factor”  (p. 241).

Increm ental V alid ity  o f  Spatial and P sychom otor A ptitudes. The factors 
that provide the largest incremental validity over and above the criterion vari­
ance predicted by g are spatial and psychomotor abilities, which often contribute 
to the validity for predicting success in jobs requiring technical or motor skills. 
Physical scientists, for example, are well above average not only in g but also 
in spatial ability. Although most spatial tests are also quite g loaded, they can 
significantly enhance predictive validity for certain job categories.

Tests of psychomotor abilities also enhance validity for some jobs that depend 
on manual dexterity and muscular coordination. Considering how very different 
in form and content psychomotor tests are from the paper-and-pencil tests typ­
ically used to measure cognitive ability, it may seem surprising how relatively 
small the incremental validity contributed by psychomotor tests actually is, com­
pared to the g validity even for jobs where psychomotor ability is relevant.1301 
The apparent reason for this is that the psychomotor tests are themselves largely 
tests of g, showing true-score correlations with g even as high as .70 after 
correction for range restriction in Air Force samples. Usually g accounts for 
most of the validity of psychomotor tests, thus allowing comparatively little 
incremental validity.31 (The expectation that a test’s appearance necessarily in­
dicates what latent traits it measures has been called the “ topographical fal­
lacy.” )

Major efforts to discover other psychometric variables that add appreciable 
increments over and above g to predictive validity for “ core job performance”  
have not proved fruitful.1321 Of course there are many other aspects of success 
in life besides g or spatial and psychomotor factors, such as physical and mental 
energy level, effort, conscientiousness, dependability, personal integrity, emo­
tional stability, self-discipline, leadership, and creativity. These characteristics, 
however, fall into the personality domain and can be assessed to some extent 
by personality inventories. A person’s interests have little incremental validity 
over g or other cognitive abilities, largely because a person’s interests are to 
some degree related to the person’s abilities. People generally do not develop 
an interest in subjects or activities requiring a level o f cognitive complexity that 
overtaxes their level of g. Specialized talents, when highly developed, may 
be crucial for success in certain fields, such as music, art, and creative writ­
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ing. The individual’s level of g , however, is an important threshold variable 
for the socially and economically significant expression of such talents. Probably 
very few, if any, successful professionals in these fields have a below- 
average IQ.

Job  C om plexity  and g  V alidity . In order to demonstrate the validity of a 
predictor variable, the criterion being predicted must vary. It is a fact that when 
various jobs are rank-ordered from low to high according to their complexity, 
or information-processing demands, there is a corresponding increase in the 
variance, or range of individual differences, in performance.”  There is also a 
corresponding increase in the validity of g for predicting job performance as 
jobs increase in their information-processing demands. This phenomenon, which 
seems to have extremely broad generality, apparently holds throughout the entire 
range of job  complexity. As noted in Chapter 8, even when going from simple 
reaction time to choice reaction time, there is an increase in individual differ­
ences in the standard deviation of the RT and a corresponding increase in the 
correlation between RT and g.

L inearity  o f R egression . The regression line, in terms o f validity, is the line 
that best fits the relationship between the predicted criterion and the predictor 
test. In nearly all studies of the predictive validity of highly g-loaded tests, this 
regression line is linear (i.e., a straight line). This is illustrated, for example, in 
Figure 9.2, from a study where the Scholastic Aptitude Test (SAT) was used to 
predict college grade-point average (GPA) for students just entering college. 
The regression line per se is not shown in this graph, but the mean GPAs at 
equal intervals on the scale of SAT scores all fall on a single straight line, from 
the lowest possible SAT score (200) to the highest possible score (800). In other 
words, the regression of the criterion measure (GPA) on the predictor measure 
(SAT score) is linear throughout the entire range of GPAs and SAT scores. A 
similar picture emerges in hundreds of studies of the prediction of training suc­
cess and job performance with various g-loaded tests.,34ab|

One of the mistaken beliefs about the predictive validity of IQ (and other g- 
loaded tests) is that beyond a certain threshold level, g has no practical validity, 
and individuals who score at different levels above the threshold will be effec­
tively equivalent in criterion performance. This is another way of saying that 
the linear regression of the criterion on g does not hold above some point on 
the scale of g and beyond this point g-level is irrelevant. This belief is probably 
false. I have not found any study in which it has been demonstrated, except 
where there is an artificial ceiling on the criterion measure.

This is not to deny that as variance in g is decreased (owing to restriction of 
range in highly g-selected groups), other ability and personality factors that were 
not initially selected may gain in relative importance. But studies have shown 
that the linearity of the relation between g and performance criteria is maintained 
throughout the full range of g for all but the least complex performance criteria. 
Individual differences in IQ, even within groups in which all individuals are 
above the ninety-ninth percentile (that is, IQ >  140), are significantly correlated
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Figure 9 .2 . Average college grade-point average (GPA) for students with different SAT 
scores. (Source: Manning & Jackson, 1984. Used with permission of Plenum Publishing 
and W. H. Manning.)

with differences in a variety of achievement criteria such as earning a college 
degree, intellectual level of college attended, honors won, college GPA, attend­
ing graduate school, and intensity of involvement with math and science. Since 
these are statistical trends to which there are many exceptions, prediction based 
on a g measure fo r  a given individual is only probabilistic, with a wide margin 
of error. When individuals of a given level of g are aggregated, however, and 
there are several such aggregate groups, each at a different level of g, the cor­
relation between the group means on g and the group means on the criterion 
measure approaches unity.13401 Since many idiosyncratic subject variables are 
averaged out in the group means, the linear relationship of the criterion measure 
to g is clearly revealed.

E ffect o f Job  E xperience on P redictive V alidity . There is no argument that 
job knowledge and performance skills increase with actual experience on the 
job. But it is a common misconception that the correlation between g-loaded 
test scores and job performance measures washes out after people have gained
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a certain base level of job  experience. The idea here seems to be that learning 
the knowledge and skills needed to do the job  is the most important thing and 
that once these are acquired through experience on the job, individual differences 
in whatever was measured by the selection test (mostly g) quickly become ir­
relevant.

Large-scale studies have proven that this notion is false. Job knowledge is 
the strongest predictor of work-sample performance, and the rate of acquisition 
and the asymptotic level of job  knowledge gained through experience are both 
positively related to g. For jobs of moderate complexity, periodic assessments 
of job knowledge, work samples, and supervisor ratings, after four months to 
five years of experience on the job, show no systematic decrease in the predictive 
validity of g .1:151 Five years of experience is simply the limit that has been tested 
to date, but there is no evidence to suggest that performance levels would be 
unrelated to g at any point in time beyond that limit. For jobs of greater com­
plexity and autonomy, it is likely that individual differences in g would be 
reflected increasingly in performance with increasing experience.

Residual Validity of Amount of Education. Some employers use number 
of years of education or other educational credentials as a basis for selecting 
workers. These measures are usually valid predictors, though seldom as valid 
as tests of general ability, except for a specialized job where specific educational 
qualifications are intrinsic and essential. Educational credentials derive almost 
all of their predictive validity from their substantial correlation with g. In gen­
eral, the number of years of education, for example, is correlated .60 to .70 with 
IQ. Since the applicants for many jobs are self-selected in terms of educational 
qualifications, the true correlation of educational level with ability is even 
higher. It may seem surprising, but in most selection situations the validity 
coefficient for years of education is typically not more than .10 to .15 versus a 
g validity of .40 to .50 in similar situations. Further, the incremental validity of 
education over a measure of g is practically nil. This is largely because the 
variance in educational level (measured by the highest school grade completed) 
is less than the variance in actual ability in the applicant pool and also because 
there is a wide range of ability at every level of education. On tests of general 
ability, such as IQ, and even on tests of scholastic achievement, there is con­
siderable overlap between the score distributions of high school graduates and 
college graduates.1,61
VALIDITY GENERALIZATION

The reported validity coefficients of cognitive tests vary greatly. The same 
(or highly similar) tests show highly variable validity across different jobs, or 
across nominally the same job in different work settings, in different organiza­
tions, and in different populations. Similarly for a given battery of tests, the 
specific set of regression weights that maximize the battery's predictive validity 
varies greatly, not only across different jobs, but across different situations for 
the same job. These observations led to a long-held belief that a test’s predictive
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validity is not general, but specific to each and every situation in which the test 
is used. This outlook implied that a given test’s validity must be proved over 
and over again, whenever it is to be used in a different situation.

Recent meta-analyses of hundreds of test validation studies carried out over 
the past two decades have proved this belief to be largely false.1371 It remains 
true, however, that test validity varies to some degree across broad job cate­
gories, depending mostly on job complexity, as previously explained.

The observed variability in validity coefficients across different studies (in 
which sample sizes are typically small) performed in different employment sit­
uations is almost entirely the result of various artifacts. A test’s true validity 
(within broad job categories) has virtually no variability across different situa­
tions. A test’s true validity is its validity coefficient after the irrelevant or no­
nessential components of its variation across studies conducted in different 
situations have been statistically removed. Observed situational specificity can 
largely be explained in terms of statistical sampling error, criterion unreliability, 
test unreliability, range restriction, different factor structures of tests and test 
batteries, and the use of non-Pearsonian (e.g., biserial, triserial, or tetrachoric) 
measures of correlation.

When all such artifacts are accounted for, the variance of the observed validity 
coefficients is reduced to about .01. (Sampling error alone accounts for some 
60 percent of validity variation.) Hence the best indicator of a test’s effective 
predictive validity for any given job (within a broad category of jobs or training 
programs) is the average of its observed validity coefficients obtained in many 
validation studies performed within the relevant broad job category.

OCCUPATIONAL LEVEL AS A FUNCTION OF g
The research literature on this subject has been so comprehensively reviewed 

elsewhere1381 that I will simply summarize the main conclusions for highly g- 
loaded measures such as standard IQ tests and the g-scores of the General Ap­
titude Test Battery (GATB).

There is a high degree of agreement among people when they are asked to 
rank occupational titles according to their impression of (1) the occupation’s 
socially perceived prestige, (2) the desirability (for whatever reason) of being 
employed in the occupation, and (3) the estimated level of “ intelligence” 
needed to succeed in the occupation. When a number of people rank a large 
number of different occupational titles, from highest to lowest, on each of these 
standards, the mean rank for each occupation remains fairly constant. The over­
all rank-order correlations in various studies fall between .95 and .98. This high 
consistency of rank order holds up across rankings by people from different 
occupations, social class backgrounds, industrialized countries, and generations. 
This high degree of agreement in people’s subjective impressions of the status 
o f different occupations means that this status hierarchy is associated with peo­
ple’s impression of the “ intelligence”  demands of the various occupations.
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The objective validity of such average subjective judgments is shown by the 

correlation between the mean ranks of occupations and the rank order of the 
actual mean IQ within each occupation, which is between .90 and .95. Thus 
there is no question that socially perceived occupational status is intimately 
related to IQ. Because IQ in the general population is correlated around .90 with 
g, the occupational hierarchy obviously reflects g more than any other psycho­
metric factor.

Another way to demonstrate the overall relative magnitude of g differences 
between occupations is by analysis of variance. I have performed this analysis 
on all 444 occupational titles used by the U.S. Employment Service. The General 
Aptitude Test Battery (GATB) Manual presents the mean and standard deviation 
of GATB G-scores for large samples of each of the 444 different occupations. 
An analysis of variance performed on these data shows that 47 percent of the 
total G-score variance is between occupations (i.e., differences between the mean 
G-scores of the various occupations) and 53 percent of the variance is within 
occupations (i.e., differences between the G-scores of individuals within each 
occupation). Since about 10 percent of the within-occupations variance is at­
tributable to measurement error, the true within-occupations variance constitutes 
only 43 percent of the total G-score variance. From these figures one can com- 
pute™ the true-score correlation (based on individuals, not group means) be­
tween occupations and G-scores. It is .72, which closely agrees with the average 
correlation of .70 found in other studies in which individual IQs were directly 
correlated with the mean rank of people’s subjective ranking of occupations. 
The correlation of individuals’ IQs with occupational rank increases with age, 
ranging from about .50 for young persons to about .70 for middle-aged and 
older persons, whose career lines by then are well established.

The relation of IQ to occupational level is not at all caused by differences in 
individuals’ IQs being determined by the differences in amount of education or 
the particular intellectual demands associated with different occupations. This is 
proved by the fact that IQ, even when measured in childhood, is correlated about 
.70 with occupational level in later adulthood.

Two statistically related features of the data on IQ and occupations afford an 
insight into the nature of their relationship. The first is the observed negative 
correlation between the means and standard deviations (SDs) of IQ across oc­
cupational levels. The higher the mean IQ of an occupation, the smaller is the 
range of IQs within the occupation.

The second is that high IQs are found in almost every occupation, but the 
lowest IQ found in each of the various occupations rises markedly, going from 
lower to higher occupational levels. This means that IQ (or g) acts as a variable 
threshold for different occupations, first because of the level of educational at­
tainment required, and second because of the g demands of successful perform­
ance. For example, the U.S. Employment Service data show that the lowest IQ 
found among persons employed with the occupational title “ mathematician” 
was 115 (the eighty-fifth percentile of the general population); the mean IQ was
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143. However, IQs this high are found within the total range of IQs reported 
for even unskilled jobs that have a mean IQ below the general population av­
erage. O f course, there is a range of individual differences in g within every 
occupation, differences that are often accommodated by the variety of tasks that 
can be performed by different workers in the same nominal occupation.

The findings reviewed here indicate that g plays an important role in occu­
pational level, as well as in level of performance within occupations. This fact, 
however, does not imply that a host of other factors in addition to g— special 
abilities, various personality traits, energy level, motivation, ambition, persist­
ence, education, and experience— are not also important, or even crucial, for 
success in many occupations. But none of these other factors is so potent as to 
completely override the threshold aspect of g in predicting an individual’s prob­
able success in a particular occupation.

SOCIAL CORRELATES OF g
The well-established correlation of IQ and similar cognitive measures with a 

number of social variables, such as poverty, crime, illegitimacy, and chronic 
welfare status, makes it almost a certainty that g itself is the major cognitive 
component in the relationship. However, I have not found a study that directly 
addresses the extent to which just g itself, rather than IQ or other highly g- 
loaded measures, is related to social variables. The repeated finding that verbal 
test scores are somewhat more highly correlated with delinquent and criminal 
behavior than are nonverbal performance tests (generally loaded on the spatial 
factor) suggests that other cognitive factors in addition to g are probably re­
sponsible for the correlation of IQ with these most common forms of antisocial 
behavior.

It must be recognized that the social variables known to be correlated with 
IQ are also correlated with other, noncognitive variables, such as age, gender, 
social class, cultural background, and education, to name a few. Because IQ is 
also correlated with most of these variables, the causal matrix is highly prob­
lematic. Therefore, even the most well-established correlation of IQ with any 
complexly determined social variable must be viewed simply as a raw empirical 
datum, without implying the direction of causality. The nature of the causal 
connections between all these variables is open to theoretical speculations, on 
which, so far, there has been little agreement among the experts. The complex 
statistical techniques applied to deciphering the causal pathways among the set 
of independent variables (including IQ) that are correlated with the targeted 
social variable are at least capable of establishing whether or not IQ makes any 
independent contribution to the targeted variable, over and above the contribu­
tion of the other correlated variables. Usually it does.

Though the independent contribution of IQ to any given social variable is 
typically small (a raw correlation generally less than .30), it can have striking
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consequences in certain segments of the IQ distribution in the population. Al­
though the correlation coefficient can establish that a statistically significant 
relationship exists, it does not provide the best representation of the relationship 
between IQ and some form of social behavior that is manifested by only a small 
fraction of the population and on which persons can be “ scored”  only dichot- 
omously (e.g., convicted felon =  1, nonfelon =  2). In such cases, there is a 
severe restriction of range (or variance) on the social variable, which mathe­
matically limits the magnitude of the correlation coefficient.40

Most forms of social phenomena that are generally considered undesirable 
are heavily concentrated in the relatively small segment of the population dis­
tribution of IQ that falls below the tenth percentile (i.e., IQs below 80). The 
relationship of IQ to social phenomena is often large enough to have consid­
erable social and economic consequences. Because the majority of people in the 
lower range of the IQ distribution are not involved in antisocial phenomena or 
in conditions often referred to as “ social pathology,”  and an even much smaller 
percentage of those of higher IQ are involved, there is a severe “ restriction of 
range”  on the social variable. Moreover, the form of the relationship between 
IQ and social behavior is often significantly nonlinear. Therefore, the Pearson 
correlation coefficient cannot fully convey the degree of relationship between 
IQ and the particular form of social behavior. The relationship can be most 
clearly depicted, not by any single statistical index, but by a table or graph that 
shows the percentage of people within each segment (e.g., intervals of ten or 
fifteen IQ points) of the entire IQ distribution who manifest the particular social 
condition. Since many social variables, besides being related to IQ, are also 
related to age and to socioeconomic status (SES), it is possible statistically to 
control the effects of age and SES, thereby revealing the relationship of IQ to 
the particular social variable independently of age and SES. (Also, the relation­
ship of the social variable to SES can be shown independently of IQ and age.)

This type of analysis was carried out by Herrnstein and Murray1411 for non- 
Hispanic whites from the nationally representative sample (N = 11,878) of 
young adults (aged eighteen to twenty-three) in the 1990 survey of the National 
Longitudinal Study of Youth (NLSY). Subjects were grouped into five catego­
ries on the basis of their scores on the Armed Forces Qualification Test (AFQT), 
a highly g-loaded battery. For the analyses summarized here, the AFQT scores 
were transformed to an IQ scale (mean =  100, SD = 15). The personal-social 
variables related to IQ all represent a dichotomous (Yes/No) classification of 
subjects. Table 9.1 shows the probability (percentage) of persons in each of the 
five segments of the total IQ distribution who manifested one of the listed per­
sonal-social outcomes. The first two variables (A and B) are generally positively 
valued in our society; all the remaining variables (C through S) are typically 
considered socially or personally unfortunate or undesirable. It is clearly evident 
that there is a consistent monotonic relationship between IQ level and the prob­
abilities of these outcomes. Note that for most of the social variables, the effects 
of age and SES have been statistically controlled, so that, in effect, all subjects



Probability o f Various Personal-Social Outcom es as a Function o f IQ Level in 
White Sample o f NLSY'
Table 9.1

O u t c o m e I
1 0

I I
L e v e l 2 
I I I  I V V

A . E a r n i n g  a  b a c h e l o r ' s  d e g r e e 7 5 3 8 8 1 0
B . M i d d l e - c l a s s  v a l u e s 3 7 5 6 3 4 7 3 2 2 2

C . B e l o w  p o v e r t y  l i n e * 1 4 7 14 2 6

D. H i g h  s c h o o l  d r o p o u t * 0 1 6 2 6 64

E . U n e m p l o y e d  1 m o n t h  
d u r i n g  y e a r 4 ( m a l e s ) * 4 6 8 11 14

F . D i s a b i l i t y  o n  j o b  ( m a l e s ) 13 2 1 3 7 4 5 62

G . D i v o r c e d  i n  f i r s t  5 y e a r s  
o f  m a r r i a g e * 12 17 2 1 2 6 3 2

H . M o t h e r  w i t h  i l l e g i t i m a t e  
f i r s t  b i r t h * 4 8 14 22 34

I . E v e r  h a d  i l l e g i t i m a t e  c h i l d 2 4 8 17 32

J . M o t h e r  b e l o w  p o v e r t y  l i n e  
f i r s t  c h i l d  i l l e g i t i m a t e * 13 2 5 3 7 4 5 7 0

K . C h r o n i c  ( > 5  y e a r s )  w e l f a r e  
r e c i p i e n t  a f t e r  b i r t h  o f  
f i r s t  c h i l d 0 2 8 17 3 1

L . M o t h e r  w e n t  o n  w e l f a r e  a f t e r  
b i r t h  o f  f i r s t  c h i l d * * 1 4 12 2 1 5 5

M. C h r o n i c  w e l f a r e  r e c i p i e n t * 7 10 14 2 0 28

N . M o t h e r  o f  l o w  b i r t h w e i g h t  b a b y * 1 . 5 2 . 3 3 . 5 oin 7 . 2

0 . M o t h e r ,  c h i l d  i n  p o v e r t y  f i r s t  
3 y e a r s  a f t e r  b i r t h  o f  c h i l d * 0 2 5 15 32

P . M o t h e r ,  w i t h  c h i l d  l i v i n g  i n  
b o t t o m  d e c i l e  o f  HOME i n d e x * 2 3 5 10 17

Q . M o t h e r  w h o s e  c h i l d  i s  i n  b o t t o m  
d e c i l e  o n  d e v e l o p m e n t a l  i n d i c a t o r s * 6 7 10 13 16

R . M o t h e r  w h o s e  c h i l d  i s  i n  b o t t o m  
d e c i l e  o f  IQ  ( I Q < 8 0 ) -  * 1 3 6 16 3 0

S . E v e r  i n t e r v i e w e d  i n  
c o r r e c t i o n a l  f a c i l i t y  ( m a l e s ) * < 1 1 3 6 13

C o l u m n  M e a n s 5 4 . 3 7 . 5 1 2 . 7 2 0 . 0 3 3 . 8

'D ata  from N ational Longitudinal Study o f Youth (NLSY) as reported by H erm stein & M urray
(1994).

2IQ range at each level: (I) above 125, (II) 110-125, (III) 90-110 , (IV) 75-90, (V) below 75. 
'Subjects indexed as having m iddle-class values were those who: (for men) obtained high school 

degree (or more), were in labor force throughout year (1989), had never been interviewed in 
jail, were still married to their first wife; (for wom en) obtained a  high school degree, had never 
given birth out o f wedlock, had never been interviewed in ja il, were still m arried to their first 
husband.

‘Persons in school or college not included.
'C olum n m eans include only variables C through S.
“"Effects o f  age and socioeconom ic status o f subject’s rearing environm ent statistically controlled. 
"“"Effects o f age, marital status, and poverty status at time of first birth statistically controlled.
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were statistically set equal to the average age and the average SES level of the 
total sample.

Replacing IQ by the subject’s SES of origin (with IQ and age controlled) 
reveals that SES is generally much less related to the various social outcomes 
than is IQ. (Herrnstein and Murray graphically show the independent effects of 
IQ and of SES on each of these variables.) IQ per se is a more potent variable 
than SES per se in relation to this set of socially important variables. The data 
clearly indicate that g is in some way implicated, however complexly, in these 
seemingly noncognitive social outcomes. As shown by the column means in the 
last row of Table 9.1, the probability of unfortunate personal-social outcomes 
rises sharply for the two lower IQ levels (IQs below ninety and below seventy- 
five).

DELINQUENCY AND CRIME
The last social outcome (labeled S in Table 9.1) indicates that getting into 

trouble with the law is related to IQ. Because of the social importance of delin­
quency and crime, their relationship to IQ has been studied more extensively 
than probably any other social variable except SES.1421 The studies show that 
nearly all forms of antisocial behavior, especially crimes against persons or 
property and crimes that reflect impulsiveness, physical threat, or violence, are 
more apt to be committed by persons in the lower half of the IQ distribution. 
Such persons are, on average, about ten to twelve IQ points below the average 
IQ of the general population. The more important fact is that the negative cor­
relation between IQ and delinquency exists within families. That is, criminals 
average about ten IQ points lower than their own full siblings with whom they 
were reared.142,11 Since the delinquents and their siblings were brought up 
together in the same family with the very same socioeconomic and cultural 
background, these environmental background variables cannot explain the in­
dependent role of IQ in antisocial behavior.

A large-scale longitudinal study of delinquency showed that among boys, then 
thirteen years of age, the relationship between delinquency and IQ remains even 
when social class, race, and test motivation were statistically controlled.1431 An 
important finding of this study was that the degree of seriousness of self-reported 
delinquent behaviors is inversely monotonically related to IQ.

When the circumstantial differences in the conditions often claimed as the 
instigating causes of criminal behavior are fairly uniform and controlled, as 
among Army recruits living together under highly similar conditions, the same 
relationship between IQ and delinquency as found in civilian life still exists. 
Among 1,780 enlisted men in the Army, delinquent behavior serious enough 
for court-martial conviction showed a (biserial) correlation of .31 with the 
AFQT, a highly g-loaded test. Other studies conducted in the armed forces show 
a similar relationship between mental test scores and delinquency.1441

Although there is no generally accepted theory of the IQ-delinquency rela­



298 The g  Factor

tionship, various hypotheses have been suggested. One hypothesis is that having 
a lower IQ than one’s siblings and classmates results in comparatively fewer 
experiences of success and more experiences of failure in the kinds of perform­
ance that are typically rewarded in school. This leads to frustration, alienation, 
rejection of commonly accepted social values, and aggression. Repeated expe­
riences of being unable to settle disagreements or win disputes though verbal 
argument finally lead to the use of physical threat. Another view is that IQ is 
related to all forms of reasoning, and that low-IQ persons have not reached the 
developmental level of moral reasoning generally attained by adults of average 
and higher IQ. Other hypotheses invoke the mediation of IQ-related traits that 
are found to characterize some criminals, such as impulsiveness, inability to 
delay gratification, and a “ present-orientation” — failing to consider the long­
term consequences of one’s behavior. Probably all of these hypothesized causes 
work together in causing the IQ-delinquency correlation. But whatever its cause, 
the correlation itself is a well-established empirical fact. Research on the causes 
(and prevention) of crime and delinquency, therefore, cannot dismiss the effects 
of low g. In fact, path models that take account of IQ and various other social 
and personal variables in analyzing their relationship to delinquency support the 
hypothesis that a moderately low level of g is probably one of the most direct 
causal factors.1431

ACCIDENT PRONENESS AND MORTALITY RATE
Large-scale epidemiological studies1451 o f accident and death rates conducted 

in Australia have shown that these variables are related to g, independently of 
other psychometric abilities and of personal and demographic variables that pre­
dict accident proneness and mortality. In the study cohort of 46,166 men, aged 
twenty to thirty-four, who had previously served in the Australian armed forces 
and for whom the study data had already been obtained, a total of 523 men 
died of causes other than combat in the armed forces. The Army General Clas­
sification (AGC) test and other tests measuring speed-and-accuracy and me­
chanical comprehension were obtained on all subjects in addition to fifty-four 
other variables classifiable into three categories: level of education, personal 
conduct (alcohol use, arrests, AWOL in army, and other personality and behav­
ioral traits considered risk factors for accidents), and health records (number of 
days in hospital, etc.). A complex multiple regression analysis of all fifty-seven 
variables was used to predict mortality (i.e., being alive or dead at the time of 
the study) in this cohort of twenty-to-thirty-four-year-old adults.[45a| The analysis 
was designed to reveal which of the fifty-seven variables made a statistically 
significant independent contribution to the prediction of mortality. The AGC, 
which is the most highly g loaded of the psychometric tests used, was the only 
test that made an independent contribution. It was considerable— a one standard 
deviation rise in the AGC test score was associated with a 16 percent decrease
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Table 9 .2
Death Rate per 10 ,000  due to Motor Vehicle A ccidents for Australian Men Aged 
20  to 34

IQ Level* Death Rate
Above 115 51.3
100 - 115 51.5
85 - 100 92.2
80 - 85 146.7

"Based on Army General Classification test, with raw scores transformed to IQ scale (mean =  100, 
SD  =  15).

Source: O ’Toole, 1990.

in mortality rate. Surprisingly, individuals’ health records were not as good a 
predictor.

Most of the deaths in this age group (twenty to thirty-four years) were attrib­
utable to external causes, particularly vehicular accidents. A separate analysisI45bI 
was performed for those who had died in motor vehicle accidents. The results 
are shown in Table 9.2. (It should be noted that, because all subjects had been 
accepted into the armed forces, the IQ distribution in this cohort was truncated 
at IQs below eighty.) The author of the study, Brian O ’Toole, interpreted the 
result as follows: “ [Pjeople with lower intelligence may have a poorer ability 
to assess risks and, consequently, may take more poor risks in their driving than 
more intelligent people. That is, their driving may not be any riskier in terms 
of follow-on distance, running amber lights, speeding, and so on, but they may 
lake such risks under conditions that a more intelligent person would avoid” 
(p. 220).

MISCELLANEOUS CORRELATES OF g
Many variables besides those previously mentioned in this book have been 

reported in numerous studies to be significantly correlated with g.l46] All of these 
variables (including those previously mentioned) are listed in Table 9.3. These 
are presented here simply as empirical correlates, without attempting to deter­
mine their causal nature. For most of these g-correlated variables the causation 
almost certainly comes about quite indirectly and g accounts for only a small 
part of the variance. The causal network in most cases is undoubtedly complex 
and largely unknown, although plausible speculative hypotheses may easily 
come to mind. The theoretically important point is that so many of these g- 
correlated variables are unrelated to any of the purposes for which mental tests 
were originally devised, or were at all in mind when factor analysis was first 
invented and g was discovered. This shows that g is a dimension of individual



300 The g  Factor

Table 9 .3
Variables Correlated With g

Positive Correlation

Achievement motivation
Altruism
Analytic style
Aptitudes, cognitive abilities, 

'abstractness of' integrative 
complexity 

Artistic preferences 
and abilities 

Craftwork
Creativity; fluency 
Dietary preferences

(low-sugar, low-fat) 
Educational attainment 
Eminence, genius 
Emotional sensitivity 
Extra-curricular attainments 
Field-independence 
Height
Health, fitness, longevity
Humor, sense of
Income
Interests, depth and breadth of 
Involvement in school activities 
Leadership
Linguistic abilities 

(including spelling)
Logical abilities 
Marital partner, choice of 
Media preferences 
Memory
Migration (voluntary)
Military rank
Moral reasoning and development 
Motor skills
Musical preferences and abilities 
Myopia
Occupational status 
Occupational success 
Perceptual abilities 
Piaget-type abilities

Practical knowledge 
Psychotherapy, response to 
Reading ability 
Regional differences 
Social skills 
Socioeconomic status 

of origin 
Socioeconomic status 

achieved 
Sports participation 

at university 
Supermarket shopping 

ability 
Talking speed 
Values and attitudes

Negative Correlation

Accident proneness 
Acquiescence 
Aging 
Alcoholism 
Authoritarianism 
Conservatism (of social 

views)
Crime
Delinquency
Dogmatism
Falsification ("Lie" 

scores)
Hysteria (versus other 

neuroses)
Impulsivity 
Infant mortality 
Psychoticism 
Racial prejudice 
Reaction times 
Smoking 
Truancy
Weight/height ratio

Source: Brand, 1987a.
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differences that enters into many aspects of human behavior besides those nar­
rowly conceived of as scholastic or intellectual.

NOTES
1. Jensen, 1980a (Chapter 8); Jensen, 1993a. The most detailed and advanced treat­

ments of validity are by Cronbach (1971) and Messick (1989).
2. Another way of conceptualizing the meaning of a validity coefficient (rxc) is in 

terms of the following formula:
r„ = (T - R) / (P - R),

where T  is the average level o f performance on the criterion for persons selected with 
the test, R is the mean level of criterion performance for persons selected at random, 
and P is the mean criterion performance for perfectly selected persons, as if rxc =  1. 
Hence rxc is a direct measure of the proportional gain in the mean criterion performance 
that results from the use of the test for selection as compared to what the mean level of 
criterion performance would be with random selection. In other words, the validity co­
efficient is a direct indicator o f the effectiveness of the test’s predictive accuracy, such 
that, for example, a validity coefficient of .50 provides just half as accurate prediction 
as a validity coefficient of 1.00, which indicates perfect prediction. Even a quite modest 
validity coefficient has considerable practical value when a great many binary (i.e., yes- 
no, pass-fail, win-lose) decisions are made. For example, the casino at Monte Carlo reaps 
large sums of money every day from its roulette games, because of course the house 
always has better odds for not losing than the gamblers have for winning, yet the house 
advantage is, in fact, equivalent to a predictive validity coefficient of only +.027! The 
practical value of a validity coefficient of + .27, therefore, is certainly not of negligible 
value where a large number o f selection decisions must be made.

3. The standard error o f  estimate (SEcj  is related to the validity coefficient (rJC) as 
follows: 5 £ cs, =  sc (1 -  rxc2 )y=, where j c is the standard deviation of the criterion measure. 
The ratio SEQJ s c measures the proportional error o f predicting individuals’ point values 
on the criterion. The percentage gain in accuracy of point predictions as compared with 
purely random selection is equal to 100(1 -  SEcJ s c), which is termed the index o f  
forecasting efficiency. The use of this index is now in disfavor when the overall value 
of test-based selection is being considered, because the index of forecasting efficiency is 
not directly related to the overall mean gain in criterion performance afforded by test- 
based selection. The validity coefficient itself, however, is a direct indicator of the pro­
portional gain in mean criterion performance of individuals who were selected by means 
of a test with a certain validity coefficient (see Note 2). The common habit of squaring 
the validity coefficient to obtain the proportion of variance in the criterion accounted for 
by the linear regression of criterion measures on test scores, although not statistically 
incorrect, is an uninformative and misleading way of interpreting a validity coefficient 
for any practical purpose.

4. There are several types, definitions, and statistical criteria of test bias. For a com­
prehensive discussion, see Jensen, 1980a, Chapter 9.

5. Some psychologists distinguish between two types of knowledge: declarative 
knowledge, which is knowing about something (e.g., Fe stands for iron in the periodic 
table of elements; Plato wrote The Republic, yeast is used in making bread), and pro­
cedural knowledge, which is knowing how  to go about doing something (e.g., trouble­
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shooting a stalled car; playing a musical instrument; solving a quadratic equation; writing 
an essay). A skill is some fairly specific and usually highly practiced form of procedural 
knowledge.

6. Jensen, 1989a.
7. Gettinger, 1984.
8. Glutting & M cDermott, 1990.
9. Christal, 1991.

10. A “ gate”  is an electronic component or logical element that makes an electronic 
circuit operative or inoperative until another signal is received. A “ logic gate’’ is an 
electronic component that has one output which is activated only by a certain combi­
nation o f two or more inputs.

11. Jensen, 1980a, Chapter 8; Jensen, 1991b, 1993a; Matarazzo, 1972, Chapter 12; 
Snow & Yalow, 1982. These citations also contain extensive references o f other reviews 
of the relationship o f IQ to educational variables.

12. Gedye, 1981.
13. Thorndike, 1984.
14. A factor analysis of pupils’ grades in six academic subjects yielded a general 

factor accounting for 58 percent o f the total variance in grades, with factor loadings 
averaging .76 and ranging from .65 to .86. I performed this principal factor analysis on 
the correlation matrix given in an article by Rushton & Endler, 1977, p. 301. The cor­
relations between six academic subjects (English, spelling, mathematics, geography, his­
tory, and science) ranged from .25 to .86, with a mean correlation of .56, for ninety-one 
pupils, aged ten to twelve. Besides the large common factor (i.e., the 1st PF) there was 
only one other factor with an eigenvalue >  1. It accounted for 9% of the total variance.

15. M atarazzo, 1972, p. 289. Although the g factor in IQ is the cause of the correlation 
between IQ and level of educational attainments, there is also evidence that amount of 
education has some causal effect on IQ scores per se, although probably not on g itself 
(Ceci, 1991). This issue is discussed further in Chapter 10, p. 302.

16. Occupational status at age forty has a similar correlation with IQ measured at age 
seven (details o f these studies given in Jensen, 1980a, pp. 333-335).

17. Nagoshi, Johnson, & Honbo, 1993.
18. (a) Conry & Plant, 1965; (b) Silverstein, 1982.
19. The vector of the validity coefficients for the eleven WAIS subtests for high school 

grades and the corresponding vector of validity coefficients for college grades are cor­
related +  .84 (rank-order correlation +.74).

20. E. L. Thorndike, 1917, p. 329. (Cf. R. L. Thorndike, 1973-74.)
21. Sticht et al., 1981.
22. Hunter, 1989.
23. Ghiselli (1966) is a classic text on the validity of job  selection tests, but it predates 

the application of meta-analysis to the study of test validity. Recent references on modern 
methods of studying the predictive validity of tests for personnel selection and summaries 
of the large-scale researches (which go well beyond G hiselli’s review) can be found in 
Gottfredson (1986), Gottfredson & Sharf (1988), Hunter, J. E. & Hunter, R. F. (1984), 
Schmidt & Hunter (1981), Schmidt, Ones, & Hunter (1992). Lubinski & Dawis (1992) 
provide an exceptionally keen discussion, at a fairly advanced level, of a number of 
cutting-edge issues and recent developments in the study of validity. It is recommended 
as probably the most up-to-date and comprehensive entree to the research literature on 
test validity.
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24. Technical details of these studies are contained in unpublished reports of the Arms­

trong Laboratory at Brooks Air Force Base. Various studies are well summarized in the 
following journal articles: (a) Ree & Earles, 1992a (also 1991b), (b) Ree & Earles, 1994, 
(c) Olea & Ree, 1994, (d) Earles & Ree, 1992, (e) Ree & Earles, 1992b.

25. I have computed the correlation between the g vector and the vector of validity 
coefficients (corrected for restriction of range and controlling reliability) of the ten AS­
VAB subtests, using data reported in three other Air Force studies24cd of navigator and 
pilot trainees, and the combined samples from 150 other different technical training 
schools. (A large part of these samples are included in the other reports described in the 
text.) The total N  = 90,548. The /V-weighted mean of the correlation between the vector 
o f ASVAB subtests’ g loadings and the vector o f the ASVAB subtests’ validity coeffi­
cients (averaged across schools) was + .95. All these results, taken together, leave no 
doubt that g is the chief active ingredient in ASVAB’s predictive validity for training 
success.

26. W alters, Miller, & Ree (1993).
27. Details of this analysis are given in Jensen (1980a, pp. 735-36).
28. Ree, Earles, & Teachout, 1994.
29. Thorndike (1985). Note\ In the initial validation sample, the regression weights 

for calculating the multiple R are mathematically determined such that they will yield 
the maximum possible R obtainable with the given set of predictor variables (tests). The 
magnitude of this R capitalizes to some extent on “ sampling error,”  that is, character­
istics peculiar to the particular sample, but not to the population from which it was 
selected. Therefore, when the set of tests is cross-validated  on a different subject sample, 
using the very sam e regression weights that were determined in the first sample, the 
weights will not yield the maximum possible R in the second sample. (Only a set of 
weights based on the second sample could do that.) The cross-validated R is somewhat 
smaller (in statistical terms, “ shrunken” ) by an amount related to the sample size and 
to the number of independent variables in the regression equation. But the cross-validated 
R is a better estimate o f the true R (i.e., the value of R in the population) than the R 
obtained in the first sample. (And, of course, the only weights available for prediction 
in a new sample are those that were previously derived in another sample.) For example, 
suppose the R validity coefficient in the first sample is .50, the cross-validated R is .40, 
and the g validity of the test battery in either sample is .48 (based on the subtests' g 
loadings determined in a large independent sample of job  applicants comprising all job 
categories.) The g validity then would be .48/.50 =  96% of the initial R validity and 
.48/.40 =  120% of the cross-validated R validity.

In his last, posthumous publication, Thorndike (1994) gives a most interesting testi­
monial and summary of his views on g and its practical predictive validity.

30. Ree & Earles, 1994, p. 131; Ree & Earles, 1993.
31. Ree and Carretta (1994) performed a confirmatory hierarchical factor analysis of 

four highly g-loaded subtests of the ASVAB along with eight psychomotor tests used in 
selection for pilot training in the Air Force (e.g., two-hand coordination in pursuit track­
ing, complex coordination, time-sharing tracking and monitoring, vertical and horizontal 
tracking). The best-fitting hierarchical factor model showed five first-order factors, a 
second-order psychomotor factor (common to all the psychomotor tests), and a g factor 
common to all of the tests, both cognitive and psychomotor. The g accounted for 39% 
of the variance in the whole battery; the psychomotor factor accounted for 29%. The g 
loadings o f the eight psychomotor variables ranged from + .22  to + .51, averaging +.34.
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But the most important finding in this study, from the standpoint of g  theory, is the 
comparison of the four ASVAB subtests’ g loadings when factor analyzed along with 
the psychomotor tests compared against their g loadings when they are factor analyzed 
separately from the psychomotor tests. The two sets of g loadings were almost identical; 
the largest difference between them was .04. 1 have compared the g loadings obtained 
on the four ASVAB subtests when factor analyzed among the psychomotor tests (in the 
sam ple o f Air Force pilot trainees) with the g loadings o f the same four ASVAB subtests 
when factor analyzed among the whole ASVAB battery o f ten subtests (using data from 
a representative sample o f about 12,000 American youths). The average difference be­
tween these two sets o f g loadings was .025, the largest difference being .030. These 
findings (like those of Thorndike, 1987) contradict the claim that tests’ g loadings are 
highly erratic and vary markedly depending on the particular collection of tests among 
which they are factor analyzed. The four ASVAB subtests showed only very slight fluc­
tuations in g loadings when factor analyzed among such contrasting test batteries as the 
total battery of ASVAB paper-and-pencil tests or the battery of hands-on mechanical 
devices used for measuring motor abilities.

32. McHenry et al., 1990.
33. Hunter, Schmidt, & Judiesch (1990) have demonstrated the relationship of vari­

ability in employee output to job  complexity. Their measure of variability of employee 
output was the coefficient of variation (CV =  a/^t), that is, the ratio o f the standard 
deviation of employee output to the mean output for all employees, expressed as a 
percentage (i.e., CV X 100). This measure was found to increase from below 20%, to 
30%, to above 50%, going from jobs of low, to medium, to high complexity, respectively.

34. (a) Hawk, 1970; (b) Toomepuu, 1986; (c) Lubinski & Dawis, 1992, pp. 41-45; 
Coward & Sackett, 1990. Also see Lubinski & Humphreys (1996) on the use of aggre­
gation (group means) in correlation analysis.

35. Schmidt et al., 1986, 1988.
36. The validity o f education in employment selection, its relation to general ability, 

and its contribution to maintaining the occupational hierarchy in modern society are all 
penetratingly discussed by Gottfredson (1985).

37. The following publications, besides summarizing the essential methodology and 
research on validity generalization, provide comprehensive references to most of this 
extensive literature: Hunter & Schmidt, 1990; Schmidt, 1992; Schmidt, Law, et al., 1993.

38. Dawis, 1994; Jensen, 1980a, pp. 339-347.
39. The intraclass correlation (/-,) calculated from these data (corrected for error, as­

suming G-score reliability of .90) is r, =  .47/.90 =  .52. The r, is a measure of the 
similarity (in G-scores) between individuals in the same occupation. The correlation of 
individuals’ G-scores with occupations, therefore, is Jr, = J S 2  =  .72.

40. When a variable is dichotomous, with binary “ scores”  (e.g., unemployed =  1, 
employed =  2), the variable’s variance is p  X q, where p  is the proportion of individuals 
scored 1 and q is the proportion scored 2 (and p + q =  1), It is apparent, therefore, that 
the largest variance exists when p  =  q =  .50, and the variance decreases as p  and q 
depart from .50. Hence the relative frequencies in the two parts of the dichotomized 
variable affect the size of the dichotomous variable’s correlation with another variable 
(whether the variable is continuous, dichotomous, trichotomous, or whatever). Departure 
from a .50/.50 split on the dichotomized variable imposes a constraint on the size of its 
correlation with another variable. The obtained correlation can be mathematically cor­
rected for restriction of variance, but then the corrected correlation has no realistic or
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practical meaning, although it may be of theoretical interest. The corrected correlation 
would indicate, for example, how much might be gained by changing (if possible) the 
dichotomous variable to a continuous variable or to several categories (scored, say, one 
to five) instead of just two.

41. Herrnstein & Murray, 1994. Details of the NLSY sample are given in their Ap­
pendix 2. The major part of their book (Chapters 5 to 12) presents detailed analyses, 
graphical presentations, and psychological interpretations of the NLSY data briefly sum­
marized here.

42. In addition to Chapter 11 in Herrnstein & Murray (1994), key reviews and ref­
erences to the research on the relationship of antisocial behavior to FQ are (a) Hirschi & 
Hindelang, 1977, (b) Gordon, 1975, 1987a, (c) Wilson & Herrnstein, 1985, (d) Levin, 
1997, Chapter 9.

43. Lynam et al., 1993; this study’s finding of a negative monotonic relation between 
the severity of delinquent acts and IQ has since been replicated twice (once in Pittsburgh 
and again in New Zealand) among males and females, blacks and whites, using several 
different measures of delinquency (Moffitt, et al., 1981, 1995). Levin (1997) provides a 
discussion of the relationship between cognitive ability and the comprehension of moral 
principles, particularly with reference to racial differences in crime rates.

44. Bayroff, 1963.
45. (a) O ’Toole & Stankov, 1992; (b) O ’Toole, 1990.
46. References to these studies are listed by Brand (1987a).



Chapter 10

Construct, Vehicles, and Measurements

As a construct, the g factor can be represented with varying degrees 
of convenience, efficiency, and validity by a wide variety of vehicles 
(psychometric tests, laboratory techniques, physiological indices) 
that yield measurements that have different scale properties. These 
three key concepts are related to one another, but do not all represent 
one and the same thing. It is important to recognize the distinctions 
between them when considering the nature of empirically observed 
changes in objective mental measurements. These may be sponta­
neous changes in test scores within an individual, or a secular trend 
in the mean of a population, or score gains induced by training or 
other interventions.

The critical question, then, is the locus of the change. Does it 
represent a change in the construct itself? Or is the change more 
attributable to properties of the vehicle, or to properties of the scale 
of measurement? The item content of the Stanford-Binet IQ tests, 
for example, differs from one age level to the next. Several different 
highly g-loaded tests (e.g., Stanford-Binet, Wechsler, Raven) differ 
in other factors unrelated to g. What exactly has changed— the level 
of g or the non-g sources of variance? Is a unit change in one range 
of the measuring scale equivalent to a unit change in another range, 
that is, are the measurements an interval scale throughout their 
range? A change in the measurement is not necessarily a change in 
the level of the construct; it could reflect any one (or a combination) 
of several different sources of variance in the measurements.

Evidence for an authentic change in the construct g requires broad 
transfer or generalizability across a wide variety of cognitive per­
formance. Anything less implies changes in lower-order factors, or
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in test specificity, or in conditions peculiar to the tests, or the con­
ditions of administration, or the measurement scales.

The practice effect from taking a given g-loaded test, as indicated 
by the amount of test-retest gain in score, appears to be unrelated 
to g. Test-retest gains probably reflect only the source of variance 
known as the test’s specificity.

Some persons show large, apparently spontaneous changes in IQ 
from one testing to another. They are a small minority of all persons 
who have been tested. All but about 10 percent of this group show­
ing large changes in IQ (or in other g-loaded test scores) can be 
accounted for by the normal distribution of measurement errors. The 
10 percent or so not so accounted for by measurement error are not 
attributable to any specific systematic causes and are statistically 
unpredictable for any given individual. The kinds of events and life 
experiences typically invoked post hoc to explain large IQ changes 
are in fact not significantly correlated with IQ change but occur with 
the same frequency among persons who have shown little or no 
change in IQ.

A secular upward trend in IQ averaging three IQ points per decade 
has been observed over the past half-century or so in many first- 
world countries. The gain has been greater on tests of fluid abilities 
(Gf) than of crystallized abilities (Gc), and it is generally greater in 
the lower than in the upper half of the IQ distribution. It is uncertain 
to what extent the rise in IQ represents a real change in g itself. 
Several different theories have been propounded to account for the 
secular rise in IQ, involving changing attitudes (e.g., risk taking, 
guessing tendencies) toward mental tests, effects of extended school­
ing and more widespread education throughout all strata of society, 
and improvements in nutrition and medical and health care. That 
many such biological factors could be a major cause of the IQ gains 
is suggested by the fact that, over the same period of time, the 
average physical stature of the population has shown a comparable 
increase (measured in standard deviation units).

Experimental attempts to raise IQ have not produced large or last­
ing effects. The most intensive and extensive psychological inter­
ventions, beginning shortly after birth and continuing until five or 
six years of age, when the treated children enter regular schools, 
have produced gains of twenty to thirty or more IQ points above 
that of a control group at the peak of their effectiveness. But these 
large gains diminish greatly over time. Moreover, the almost neg­
ligible generalizability, or transfer, of the training effect to scholastic 
performance during the years following treatment suggests that it is 
not the level of g, but only the test scores that were raised, and
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suggests that most of the training effect resulted from “ teaching to 
the test.”  The IQ gain is thus “ hollow”  with respect tog . However, 
the most recent and best-conducted intensive intervention experi­
ment showed a lasting gain equivalent to about five IQ points (at 
age twelve), and a significant transfer to scholastic achievement and 
to unconventional g-loaded Piagetian tests, which suggest that the 
expected outcome is a real change in the level of g. The long-term 
persistence of this gain, which some experts question, could be es­
tablished by a follow-up study, perhaps when the subjects are high 
school seniors.

This chapter concerns three classes of phenomena: (1) the natural variability 
in the measurements of g for the same individual, (2) the intentional malleability 
of g measurements for individuals, and (3) the secular stability (or instability) 
of the mean level of g measurements in a population across generations or for 
different same-age cohorts tested years or decades apart. These phenomena have 
been viewed as methodologically and empirically problematic for psychometrics 
and theories of mental ability. Before discussing the empirical findings, however, 
several basic concepts are essential background.

Three distinct concepts must be considered: (1) the construct of primary in­
terest (i.e., g, in this case); (2) the vehicle used to elicit the construct, such as 
a test or an apparatus and the specific procedures for using it; and (3) the 
measurement derived from the vehicle. Although these concepts are theoretically 
related, they can each vary independently. ( “ Vehicle”  is used here in the sense 
of a means of conveyance, as a bus is a vehicle for passengers or Hamlet is a 
vehicle for Sir Laurence Olivier’s talent.)

C onstru ct. The construct, g, can be elicited in many different ways, as I have 
already pointed out. It is not a function of any particular vehicle, but is a source 
of variance (i.e., individual differences) that is evidenced by the correlations 
between a number of diverse tests, each of which reflects g to some extent but 
may also reflect group factors and specificity. If individuals differ from one 
another in whatever innate or acquired properties or processes of the brain are 
reflected by the g factor, as must necessarily be the case for g even to emerge 
from the factor analysis of a correlation matrix, then individuals can be rank- 
ordered in terms of g, at least in theory. A hypothetical pure test of g could 
rank-order individuals perfectly in terms of whatever it is that creates the 
variance in performance on mental tests reflected in a factor analysis as g. And, 
in a manner of speaking, one could then say that certain individuals have more 
(or less) g than others. But to actually achieve such a ranking of individuals 
would require first having some test or device for registering each individual’s 
standing on g. Simply identifying g by factor analysis and knowing each test’s 
g loading can tell us nothing at all about the g level of any given individual. 
Factors and factor loadings are derived entirely from correlation coefficients,
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which are pure numbers. That is, they are completely divested of any infor­
mation about the level of performance of individuals or of the overall mean of 
the group used for the factor analysis. This is a purely mathematical consequence 
of any factor analysis based on correlations. When a Pearson correlation coef­
ficient r%y between any two variables, say X and Y, is computed, the actual 
means and standard deviations of the variables are completely lost, because the 
correlation is based on standardized scores (zx and zy), for which the means and 
standard deviations are deliberately set to mean =  0 and SD =  1 for each 
variable (i.e., rxy =  Z(zx'zy)/A0- Therefore, to rank individuals on their level of 
g requires a vehicle for eliciting and indicating an individual’s level of g.

Vehicles. Because g is manifested in so many kinds of behavior that involve 
mental abilities, an individual’s level of g can be elicited and assessed in many 
ways. The psychometrician’s aim is to devise a vehicle that will most accurately 
and efficiently measure an individuals’ standing on the construct.

As no pure test of g exists, the traditional solution has been to obtain a 
composite score from a number of substantially g-loaded tests that are highly 
diverse in the specific kinds of knowledge and skills required. Most of the 
variance due to the unique demands made by each test is averaged out. The 
greater the number of such diverse (but g-loaded) tests that enter into the com­
posite score, the more the unwanted sources of variance are averaged out and 
the more accurately the composite scores indicate individual differences in g 
level. In the best standardized test batteries currently in use, some 75 percent 
or more of the variance of the composite scores consists of g, which means that 
the correlation between the obtained scores and the construct g approaches 
J.75 =  .87. This is typical for the most widely used individual IQ tests. Factor 
scores, based on an optimally weighted composite of the subtests, are somewhat 
more highly correlated with the “ true”  g. But since the gain in precision is 
trivial or irrelevant for practical purposes, g factor scores are rarely calculated, 
except in research work.

Accurate measurement requires a prescribed standardized procedure. In men­
tal testing, this includes the instructions to be given by the examiner, the pre­
paratory practice given on typical test items, the precise time limits (if any), and 
the ambience of the testing conditions.

W hat is most important to realize, but not easy to grasp, is the conceptual 
distinction between the particular vehicle of g and the g construct per se. The 
vehicle is not the construct; the construct is not the vehicle. For example, Mount 
Everest has a “ true” height, which can be measured (i.e., estimated with some 
degree of accuracy) by a variety of means— by the altimeter in an airplane flying 
alongside Everest at a level even with its peak, or with a surveyor’s transit, or 
by the time it takes a cannonball shot out horizontally from the peak to reach 
the ground level, or by the oxygen content of the air sampled at the peak. All 
of these measurements, if properly done, would be in close agreement.

Likewise, two test batteries with quite different item contents can each be a 
good vehicle of g. However, under certain conditions one test may be better
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than the other. In a group of persons who have had the same schooling, for 
example, scores on a test containing many items of scholastic knowledge could 
be as highly correlated with a hypothetical true g as scores on a test containing 
only nonverbal items with no dependence at all on scholastic content. But in a 
group of much more heterogeneous educational background, the two types of 
tests probably would not be equally good vehicles of g.

Each test score reflects both the level of g and the properties of the vehicle 
of g (the latter being largely unrelated to g). One would predict, for example, 
that the g factor, which is highly and equally loaded in batteries of verbal and 
nonverbal tests when given to monolingual children, would have much smaller 
g loadings on the verbal tests (given in English) than on the nonverbal tests 
when that battery is given to bilingual children. For the bilingual group the 
verbal tests would reflect the degree of second-language acquisition more than 
they would reflect g.

An individual’s raw score on a test is simply the number of test items an­
swered correctly. The difficulty level of an item (termed the P value) is the 
percentage who pass the item in a representative sample of the normative pop­
ulation for which the test is to be used. Variation in item P  values provides the 
basic units of an individual’s score on the test. In composing items for a test, 
the idea is to have a wide enough range of item difficulty, from very easy to 
very hard items, to be able to register the full range of individuals’ ability levels 
in the particular population for which the test is intended. A test in which the 
easiest items are failed by some persons is said to produce a “ floor”  effect; a 
test in which the hardest items are passed by some persons is said to produce 
a “ ceiling”  effect. Floor and ceiling effects truncate the range in test scores, 
which then underestimate the full range of individual differences in the popu­
lation. Floor and ceiling effects are eliminated by including easier items or more 
difficult items, respectively.

Various tests, each having a quite different range of item difficulty, could 
yield equally valid measures of g provided each test’s difficulty level were ap­
propriate (i.e., without floor or ceiling effects) for the range of ability in the 
group to which it is administered. It sacrifices accuracy and wastes testing time 
to use a test containing item difficulty levels appropriate for the entire range of 
ability in the general population when only a select segment of the ability dis­
tribution in the total population is to be tested. Hence there are different tests, 
each measuring mostly g, that are best suited for use with groups that have a 
restricted range of ability. But the scores on all these different tests are usually 
not on a common scale, so a person’s score on Test A cannot be directly com­
pared with another person’s score on Test B. An analogy is the different types 
of thermometers we use for measuring temperatures in different ranges, as in a 
refrigerator, a room, the human body, a kitchen oven, or a blast furnace. They 
all measure temperature, but you wouldn’t want to use a clinical thermometer 
in a blast furnace.

There is, however, an essential difference between the specialized thermom­
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eters and the various tests of g. The temperatures measured by all the different 
thermometers can be represented on one and the same scale of measurement, 
and the distances between scale points on each thermometer correspond to the 
same equal intervals o f differences in the amount of the thing being measured, 
namely, heat. Also, different temperature scales, such as Fahrenheit (F) or Cel­
sius (C), can each be transformed by a linear equation into each other or into 
Kelvin (K), the absolute measure of temperature having a true zero point, equal 
intervals on the scale representing equal increments of heat, and physically 
meaningful ratios (e.g., 50°K is in fact one-half as much heat as 100°K, whereas 
50°F/100°F ¥= 50°C/100°C + one-half the amount of heat).

M ental M easurem ents. Very few mental test scales, on the other hand, have 
these advantageous scale properties of physical measurements. Raw scores on 
a test are a function of two things: the number of items composing the test and 
the items’ difficulty levels as determined in a random sample of persons from 
some appropriate reference population, or “ norm”  group. Raw scores typically 
constitute only an ordinal, or rank-order, scale. The score by itself is not at all 
interpretable.' (The percentage of items answered correctly is equally uninter­
pretable.)

To have any meaning at all, a test has to be “ normed”  on a subject sample 
of some defined population. A raw score (X) then can be transformed to a 
standardized score (called a z score), which is expressed as a deviation from 
the mean of the norm group in units determined by the standard deviation of 
the raw scores (i.e., z =  [X — mean]/SD). The distribution of raw scores can 
even be “ normalized,”  that is, made to fit the normal curve perfectly, first by 
rank-ordering the raw scores, then converting the ranks to percentile ranks, and 
finally assigning to each percentile rank the standard score (z) corresponding to 
the percentile of a normal deviate, that is, all values of z distributed as the 
normal, or Gaussian, curve. (The IQ scale, with mean =  100 and SD = 15, is 
simply 100 + 15z.) An individual’s score on such a standardized or normalized 
scale only indicates that individual’s standing relative to the particular norm 
group. Most important: an individual’s test score (in either raw or standardized 
form) is not a measure of the quantity of the latent trait (e.g., g) per se possessed 
by that individual.

When a new test is created, or a test is revised and some of the original items 
are replaced by new items, the test must be renormed on a new sample for the 
scores to be interpretable. By giving the new norm group both the old test and 
the new (or revised) test, it is possible to equate121 the two tests’ scores so an 
individual’s standardized score on either test indicates the same percentile rank 
(within the new norm group) on both tests. Obviously, these norm-derived scores 
do not measure an absolute level of ability, nor can they be transformed to an 
absolute or ratio scale (as temperatures on Fahrenheit or Celsius thermometers 
can be transformed to Kelvin, the absolute scale of heat). Modern techniques of 
constructing and scaling tests, known as item response theory131 (IRT), however, 
have gone beyond the scaling methods of classic test theory by making it pos­
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sible to scale item difficulty independently of the ability level of any norm group 
and to measure both item difficulty and individual differences in ability on one 
and the same equal-interval scale. However, the most widely used IQ tests today, 
such as the Stanford-Binet and Wechsler scales, are not based on IRT. In any 
case, although the methods of IRT scaling would be a technical boon to the 
measurement aspect of research on the temporal fluctuations of test scores 
known to occur both for individuals and for populations, it could not by itself 
answer the main question as to the meaning or causes of the observed fluctua­
tions. Are they fluctuations in g itself, or only in the vehicle or measurement 
of g?

A rough analogy may help to make the essential point. Suppose that for some 
reason it was impossible to measure persons’ heights directly in the usual way, 
with a measuring stick. However, we still could accurately measure the length 
of the shadow cast by each person when the person is standing outdoors in the 
sunlight. Provided everyone’s shadow is measured at the same time of day, at 
the same day of the year, and at the same latitude on the earth’s surface, the 
shadow measurements would show exactly the same correlations with persons’ 
weight, shoe size, suit or dress size, as if we had measured everyone directly 
with a yardstick; and the shadow measurements could be used to predict per­
fectly whether or not a given person had to stoop when walking through a door 
that is only 5 ‘/ 2-feet high. However, if one group of persons’ shadows were 
measured at 9:00 a . m . and another group’s at 10:00 a . m . ,  the pooled measure­
ments would show a much smaller correlation with weight and other factors 
than if they were all measured at the same time, date, and place, and the meas­
urements would have poor validity for predicting which persons could walk 
through a 5 '/2-foot door without stooping. We would say, correctly, that these 
measurements are biased. In order to make them usefully accurate as predictors 
of a person’s weight and so forth, we would have to know the time the person’s 
shadow was measured and could then add or subtract a value that would adjust 
the measurement so as to make it commensurate with measurements obtained 
at some other specific time, date, and location. This procedure would permit the 
standardized shadow measurements of height, which in principle would be as 
good as the measurements obtained directly with a measuring stick.

Standardized IQs are somewhat analogous to the standardized shadow meas­
urements of height, while the raw scores on IQ tests are more analogous to the 
raw measurements of the shadows themselves. If we naively remain unaware 
that the shadow measurements vary with the time of day, the day of the year, 
and the degrees of latitude, our raw measurements would prove practically 
worthless for comparing individuals or groups tested at different times, dates, 
or places. Correlations and predictions could be accurate only within each unique 
group of persons whose shadows were measured at the same time, date, and 
place. Since psychologists do not yet have the equivalent of a yardstick for 
measuring mental ability directly, their vehicles of mental measurement— IQ 
scores— are necessarily “ shadow”  measurements, as in our height analogy, al­
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beit with amply demonstrated practical predictive validity and construct validity 
within certain temporal and cultural limits.

Many possible factors determine whether a person passes or fails a particular 
test item. Does the person understand the item at all (e.g., “ What is the sum of 
all the latent roots of a 7 X 7 R matrix?” )? Has the person acquired the specific 
knowledge called for by the item (e.g., “ Who wrote Faust?"), or perhaps has 
he acquired it in the past and has since forgotten it? Did the person really know 
the answer, but just couldn’t recall it at the moment of being tested? Does the 
item call for a cognitive skill the person either never acquired or has forgotten 
through disuse (e.g., “ How much of a whole apple is two-thirds of one-half of 
the apple?” )? Does the person understand the problem and know how to solve 
it, but is unable to do it within the allotted time limit (e.g., substituting the 
corresponding letter of the alphabet for each of the numbers from one to twenty- 
six listed in a random order in one minute)? Or even when there is a liberal 
time limit does the person give up on the item or just guess at the answer 
prematurely, perhaps because the item looks too complicated at first glance (e.g., 
“ If it takes six garden hoses, all running for three hours and thirty minutes to 
fill a tank, how many additional hoses would be needed to fill the tank in thirty 
minutes?” )? [Answ er: thirty-six.]

Obviously, there is almost no limit to the possible idiosyncratic reasons for 
failing a given item. It is probable, however, that some part of the reason for 
failing a particular item is the person's standing on the general ability measured 
by the test as a whole (composed of, say, 100 items), even absent the particular 
item in question. Thus it is possible to state the probability that any given item 
will be passed (or failed) by a person selected at random from all persons who 
obtained the same g score (derived from the whole test). In a well-constructed 
test to measure g, the probability that a given person will pass any given item 
is a positive monotonic function o f  the person’s standing on g. A plot of this 
“ S ” -shaped function is called the item characteristic curve (ICC).

The ICCs for each of two items are shown in Figure 10.1. The location of 
the zero point and the slope parameter of the ICC may differ for every item in 
the test. This general monotonic relationship between a person’s ability level 
and the probability of the person’s passing a given item holds even when the 
items differ as much as or more than those in the earlier list of why items are 
failed.

Item types can vary greatly, and the ICC’s baseline g scores can even be 
derived from a battery of exclusively nonverbal tests such as Raven matrices, 
block designs, number series, and figural analogies and yet yield typical ICC 
functions for vocabulary items (such as “ What is an amanuensis?” ) or general 
information items (like “ What is the capital of India?” ). Obviously, some latent 
trait has to exist on which persons differ and which can be distilled from a large 
pool of items such that the more of the trait that a person possesses, the greater 
is the probability that the person will pass any given item. A test that does not 
manifest this relationship between persons’ ability level and items has in fact
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Figure 10.1. Typical item characteristic curve (ICC) for each o f two test items. Item 
A is a quite “ easy”  item; Item B is relatively “ difficult.”  The standard error of P, the 
probability o f passing the item at any given score on the latent trait or ability factor (e.g., 
g ), is inversely related to the size (AO of the sample used to determine the ICC at that 
region: SEP =  V/[P(1 -  P )/N].

little external validity for predicting “ real life”  criteria and is not a practically 
useful test.

These points are necessary in order to address the real question: What is it 
that changes when test scores fluctuate, for individuals or for populations— the 
construct, the vehicle, or the measurement? Does a change in a person’s IQ (or 
a group’s mean IQ) represent a real change in the construct— the efficiency of 
information processing reflected by g and its neural substrate? Or is it just a 
change in the vehicle— the increased general familiarity of certain items’ infor­
mation content attributable to education, TV, or previous experience in taking 
similar tests? Or is it a change in IQ on a renormed test— the result of a sampling 
artifact whereby the new norm group does not represent the same population, 
but has a different absolute level of ability from the previous norm group whose 
raw scores were used for the original standardized of the IQ scale?

TEST-RETEST CHANGE IN SCORES
When the same test, or an equivalent or parallel form of the test, is admin­

istered to persons on two separate occasions, days, weeks, or even months apart, 
there is usually an increase in scores, called a “ practice effect.”  It affects per­
formance on the particular test and on highly similar tests.141 Subsequent retest­
ing on the same (or similar) tests, however, shows ever smaller gains. Typically
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Table 10.1
Spearman’s Rank Correlation between the Column Vector o f Mean Test-R etest 
Increm ents on GATB Aptitude Scores for Various R etest Intervals and the Col­
umn Vector o f the A ptitudes’ g  Loadings0

Test-Retest Interval
Rank

Males
Correlation

Females

1 Day -.526 -.381
2 Weeks -.397 -.619
6 Weeks -.529 -.500
13 Weeks -.387 -.108
26 Weeks -.462 -.180
1 Year -.791 -.548
2 Years -.861 -.707
3 Years -.860 -.695

‘'All the g  loadings (first principal factor) of the GATB subscales were corrected for attenuation.

the initial gain amounts to almost one-third of a standard deviation (about three 
to six points on the IQ scale).

The increment in scores due to the practice effect, however, has little effect 
on the rank order of individuals’ scores. For intervals of less than one year, the 
test-retest correlations are generally above .90. This indicates that the test meas­
ures essentially the same factors on both occasions, despite the average incre­
ment in scores. It would be interesting to know, however, whether the increment 
in scores due to the practice effect reflects an actual increase in g itself or an 
increase in group factors or test specificity that are independent of g.

My search of the literature turned up a data set that lends itself to the kind 
of analysis appropriate to answer this question.151 Large samples were given the 
General Aptitude Test Battery (GATB) on two occasions, separated by intervals 
of 1 day, 2 weeks, 6 weeks, 13 weeks, and 26 weeks. Other large groups had 
test-retest intervals of either 1, 2, or 3 years. Each of the eight distinct aptitude6 
scores yielded by the GATB subtests showed a retest increment (ranging over 
all aptitudes and test-retest intervals from about ,08o to 0.5ct). I then correlated 
the column vector of score increments on each of the eight aptitudes with the 
column vector of the g loadings of each of the aptitudes, based on the total 
GATB standardization sample (N  =  23,428; Table 10.1). Note that the test- 
retest increments in the aptitude scores for all intervals are negatively correlated 
with the aptitude tests’ g loadings.7

The higher a test’s g loading, the less susceptible it is to a practice effect. 
That is what these data indicate about the relation of the practice effect to g. If 
there were a positive correlation, it would mean that the more that a test is g
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loaded, the greater is the increment in test scores with practice, whether or not 
the increment is also g loaded. But a negative correlation, as was found here, 
means that the more g loaded a test is, the less susceptible it is to practice gains, 
whether or not the score increment due to practice is also g loaded. In other 
words, a test’s g loading predicts the magnitude of the practice effect on that 
test relative to other tests, but tells us nothing about the degree to which the 
increment in scores is g loaded.

Since the observed score increments could just as well reflect gains in test 
specificity rather than in g or any other common factors, a further analysis is 
required. A principal components analysis of the mean practice gains over all 
test-retest intervals on each of the GATB aptitudes reveals two significant com­
ponents (eigenvalues >  1) that together account for 78 percent of the variance. 
However, neither one bears any resemblance to the aptitudes’ g loadings (Spear­
man rank correlations of —.048 and —.024, respectively). This tells us that the 
common factors in the score increments are not related to the g factor of the 
GATB. Probably subtest specificity, rather than any common factors, is the main 
constituent reflected in the score increments due to a practice effect. This inter­
pretation is consistent with the general finding that practice effects, or even gains 
from specific training, on a given test show remarkably little transfer to other 
tests. The inverse relationship between g loadings and practice effects, and the 
relative absence of g in the increments themselves, may explain the low external 
validity of the IQ gains that result from specific training in the various cognitive 
skills assumed to be measured by IQ tests. The training-induced gains in IQ 
scores fail to predict external criteria (e.g., scholastic achievement) to the degree 
that would be expected if the induced gain in IQ represented a true gain in g, 
rather than merely a gain in the test’s specificity. This “ hollow IQ”  phenom­
enon is discussed more fully in a later section on the attempts to raise IQ by 
special educational interventions.

‘SPONTANEOUS’’ CHANGES IN 10 ARE MOSTLY 
IDIOSYNCRATIC CHANCE

Individuals’ IQs fluctuate over the age range from early childhood to maturity 
and from later maturity to old age and death. IQ is relatively unstable in early 
childhood, but from age two to age ten it becomes increasingly stable and more 
highly predictive of individuals’ IQs in early adulthood. The correlation between 
IQ at age 10 and at age 18 is between .70 and .80; IQ measured at successive 
ages beyond age 10 gradually approaches a correlation of .90 with IQ at age 
18.181 Much of the variability in mental growth rates from early childhood to 
maturity is genetically programmed, as shown by the fact that monozygotic 
twins have nearly identical mental growth curves, with the same spurts and 
plateaus, while dizygotic twins show less similar growth curves, with spurts and 
plateaus occurring at different ages.191 The decreasing stability of IQ in old age
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is related to increasing individual differences in general health and physical 
fitness and probably inherited differences in the rate of mental decline.

Developmental psychologists and psychometricians alike have puzzled over 
the occasionally large and seemingly spontaneous changes in some individuals’ 
IQs and the fact that IQ has proven so resistant to change by means of psycho­
logical and educational interventions. If the cause(s) of the seemingly sponta­
neous changes could be discovered, perhaps they then could be intentionally 
manipulated to produce desired changes in IQ.

The most thorough study"01 analyzing spontaneous IQ changes that I have 
found in the literature is based on a representative sample of 794 children who 
were tested on the Wechsler Intelligence Scale for Children (WISC-R) at ages 
7, 9, 11, and 13. The correlations of IQ at every age with every other age range 
from .74 to .84, indicating some instability in the children’s relative standings 
on IQ from one testing time to another. The magnitude of changes, in IQ points, 
was rather normally distributed, with a mean near zero and a slight positive 
skew (i.e., more extreme upward than extreme downward changes). The mean 
intraindividual standard deviation of IQ over all four test occasions was 3.35 
points. At each testing interval, about 10 percent of the sample changed more 
than fifteen IQ points. For the vast majority of children, the fluctuations in IQ 
were small enough to be accounted for by the unreliability of measurement, but 
the IQ changes shown by that 10 percent of the sample were too large to fall 
within the range of normally distributed measurement errors, given the reliability 
and standard error of measurement of the WISC-R. Concerning this group with 
real and marked IQ changes, the authors stated, “ [T]his change is variable in 
its timing, idiosyncratic in its source and transient in its course”  (p. 455).

In an attempt to discover possible causes of the larger than chance IQ changes, 
the 107 most erratic testees were compared against the 687 relatively stable 
members of the sample on a set of thirty-seven family and child characteristics 
that have been theoretically or empirically related to IQ (such as perinatal prob­
lems, central nervous system syndromes, impaired vision or audition, motor 
development, behavior problems, family size, maternal health, family relations, 
socioeconomic status, moving location, changing caretakers, and the like). Only 
three of the thirty-seven variables showed a significant difference (p <  .05) 
between the erratic and stable groups in frequency of occurrence (mean address 
changes by age thirteen, percent boys, motor development score). Out of thirty- 
seven such comparisons, one should expect about two significant ones to occur 
by chance alone. Therefore, it is quite possible that the two groups did not really 
differ overall more than chance expectancy in the variables thought to influence 
mental development.

Other variables were also examined, such as parental separation or remarriage, 
nervous system trauma or illness, emotional problems, and the like. But for 
every child for whom a life event was linked to a marked IQ change, it was 
possible to find several other children who had experienced the same life event 
but who showed no detectable effect on IQ. The authors suggested that ‘‘the
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causes of marked IQ change may be unique events that occur in the lives of 
individual children; ‘the slings and arrows of outrageous fortune’ ”  (p. 489). 
Also, they concluded, “ [W]e cannot yet predict in advance whether or not a 
child’s IQ will change in response to any perturbing event, no matter how 
strong”  (p. 491). The IQ is described as “ elastic”  rather than “ plastic,”  because 
marked changes in the trajectory of a child’s mental development are typically 
followed later by a return to the initial trajectory for that child. The finding that 
the reliable change in IQ that does take place is idiosyncratic and not associated 
with any identifiable environmental change is entirely consistent with the find­
ing, based on the correlation of mental growth curves of MZ and DZ twins, that 
the observed spurts and plateaus in mental growth, as indicated by IQ, are about 
as genetically determined as individual differences in IQ measured on any one 
occasion during middle childhood and adolescence.191

THE SECULAR INCREASE IN IQ
One of the most puzzling phenomena is the increase in raw scores on various 

IQ tests in many populations over the last sixty years or so. This phenomenon 
has been under investigation since the mid-1980s. Most of the evidence for the 
upward trend comes from the many past studies where various tests that were 
originally normed at one time on a representative population sample were re- 
normed many years later on a different, but supposedly equivalent, population 
sample.

This upward trend in the population’s mean test scores has been aptly dubbed 
the “ Flynn effect,”  after James R. Flynn, a professor of political science at the 
Otago University in New Zealand, who was responsible for amassing most of 
the evidence for what he has referred to as “ massive IQ gains.” 1111 The bulk of 
this evidence comes from the period between 1930 and 1980.

Before summarizing this evidence, it should be noted that when a test is 
normed or renormed, the IQ (which is a standardized score) is always scaled 
such that the population mean is 100 and the standard deviation is fifteen. Pop­
ulation trends in actual test performance, as indicated by raw scores (number 
right), therefore, are not reflected by the IQ, except to some degree as the trend 
proceeds between the original norming and the renorming of the same test. 
Actual gains in test performance over long periods are adequately measured 
only by raw scores.

In measuring these raw-score gains two problems must be considered: (1) The 
change in raw scores must be demonstrated on the identical test administered 
on both occasions. Changes in test items (e.g., dropping some old items and 
substituting new ones) may alter the overall difficulty level of the test, causing 
a spurious rise (or fall) in the mean raw score of the more recently tested sample; 
(2) a much more problematic condition in renorming tests (or in comparing the 
same test on different samples that were tested at widely separated times) is the 
assumption that the two norm samples are truly equivalent. A number of factors
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militate against obtaining equivalent and representative samples of a population. 
The most obvious are population changes over decades or generations, due to 
changing demographics, such as birth rates in different socioeconomic segments 
of the population, rates of immigration and emigration, regional changes in the 
types of employment available, and the like.

Although the supposed equivalence of samples taken at different times is of­
ten open to doubt, changing demographics should not cause changes in test 
scores that are consistently in one direction for every test in every study con­
ducted with many different population samples. Flynn’s compilations of 
changes in test scores over decades and generations were drawn from fifteen 
economically advanced nations in North America, Europe, and Asia. In addi­
tion, since the publication of Flynn’s major reviews, other investigators have 
reported highly similar results based on data from other countries and on tests 
not included in Flynn’s reviews. The overwhelming consistency of virtually all 
of the data with respect to the direction of the trend in test scores leaves little 
doubt of the reality of the “ Flynn effect.”  Whatever inconsistencies exist are 
all in the details.

D escriptive S tatistics on Increase in Scores. Although all of the score in­
creases discussed here are based on raw scores, they have been standardized 
and expressed as IQ differences, as the IQ scale (ju. =  100, a = 1 5 ) is the most 
familiar. Because different data sets span different time intervals, the change in 
test scores is always expressed here in terms of the amount of IQ change per 
decade, henceforth labeled AIQ (“ delta IQ” ).

The reported values of AIQ for twenty-five tests in fifteen countries range 
from 1.8 to 12.5, with an overall mean of 5.0 (SD =  2.9). AIQ varies rather 
erratically across different countries, across different studies within the same 
country, across studies, across different tests, and across different time periods 
between 1930 and 1990. All these variables are utterly confounded with one 
another in the available data.

The most frequently reported test data on secular trends are for the Raven 
Matrices (nonverbal) and the Wechsler (both verbal and performance scales). 
The Raven’s overall average AIQ is 5.69 (SD =  3.49); the W echsler’s AIQ is 
5.20 (SD  =  .271). (Note: getting just one additional correct item on the Raven 
makes for two to three points increase in IQ.) More of the secular increase in 
the W echsler IQ is on the Performance scale (AIQ =  7.8) than on the Verbal 
scale (AIQ =  4.2). In the United States between 1932 and 1978, AIQ =  3.0, 
averaged over the W echsler and Stanford-Binet tests. Culture-reduced tests and 
tests of fluid g (Gf) show somewhat larger AIQ than verbal tests or tests of 
crystallized g (Gc). Strangely, despite the trend over the same period toward 
universal education in all economically advanced countries, tests that emphasize 
scholastic content show the least gain. The several studies in Great Britain1121 
show AIQ values ranging from about 1.5 to 3.0, which is probably the smallest 
gain of all the countries in which studies have been done, with the possible 
exception of Denmark. Also in the British and Danish studies, the increase in
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scores is largely concentrated in the lower segment of the IQ distribution. W hat­
ever causes the rise in IQ, il has its greatest effect on those at the lower end of 
the scale, with a corresponding shrinkage of the standard deviation.

The best studies available on the secular increase in test scores, published 
after Flynn’s 1987 review, were based on five large cohorts of males (born 
between 1939 and 1969), who were tested at age eighteen as part of the com­
pulsory conscription for military service in Denmark.1131 Each of the five cohorts 
o f eighteen-year-olds selected from different years (at five-year intervals) was 
so selected as to constitute at the time a truly random sample of Denmark’s 
male population of the same age. Moreover, the test was ideal in its construction 
and in its scaling of item difficulty.14 Each of the four highly g-loaded subtests 
(letter matrices, verbal analogies, number series, and geometric figures) consti­
tutes a unidimensional scale, and the composite score is an excellent measure 
of g.

The increase in mean raw scores in this study was equivalent to a AIQ of 
2.5. Although the test used has almost no scholastic content, the observed in­
crease is related to the average increase in the level of education going from 
the earlier to the later cohorts. Since the cohorts were randomly selected to 
represent the entire male population at age 18, the correlation (r =  +.71) be­
tween AIQ and the rising educational level probably indicates a direct causal 
relationship.15

C om ponents o f  S ecu lar C hange in Population  M eans. I have not found 
any study of the factor composition of the secular increase in test scores. Has 
the level of g and of other common factors changed, or does the increase in 
scores reflect only properties of the vehicles of these factors, because of people’s 
greater sophistication in taking tests, as a result of their increasing use?

What has been determined is that the mean scores on highly g-loaded tests 
(e.g., Raven Matrices, Wechsler, Stanford-Binet) all show secular change, but 
the tests’ g loadings are not highly correlated with the amount of secular change 
in scores. A study1161 in Scotland of the average gains on the six verbal subscales 
of the WISC from 1961 to 1983/84 permits a rank-order correlation of the 
column vector of gains on each of the subtests with the column vector of each 
of the subtests’ g loadings (obtained from the U.S. standardization sample). The 
rank correlations are + .22 and + .40 for ten-year-olds and thirteen-year-olds, 
respectively. (The high reliability of the vector of subtest gains is indicated by 
its + .96  correlation between the two age groups.)

The Seattle Longitudinal Study1171 compared twelve age cohorts with birth 
years from 1889 to 1966, all tested at the same age as adults, at seven-year 
intervals, on five of Thurstone’s Primary Mental Abilities. The largest gains 
were on the two most highly g-loaded tests (Inductive Reasoning [g =  .84] and 
Word Meaning [g =.67]), the next highest gain was for Spatial Orientation (g 
=  .33), while there was no overall gain for Number (g =  .60) and Word Fluency 
{g =  .68). The rank-order correlation between the degree of secular increase 
(over seventy-seven years) in each of the five PMA scores and their g loadings
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is only + .30. Hence the mean rise in test scores largely reflects something other 
than the degree to which the scores measure g , although we cannot rule out that 
some increase in the level of g may also be one of the constituents in the overall 
trend.

Another study,1181 of secular changes (1978 to 1988 in Northern Ireland) on 
five of Thurstone’s PMA tests given to children nine to eleven years old, showed 
the following values of AIQ: Verbal 0.24, Reasoning 1.30, Numerical 2.58, 
Spatial 6.18, Perceptual Speed 8.88. (There was no appreciable decrease in SD 
for any test.) Here there is an inverse relationship between the tests’ g loadings 
and their AIQ. The Spatial Relations and Perceptual Speed tests, which are the 
least g loaded o f the PMA battery, show the largest gains, while the Reasoning 
and Verbal abilities, which are the most g loaded, show the least gains. On the 
other hand, research by the Educational Testing Service1191 on various national 
samples of United States high school seniors found a decline in spatial/visual 
skills between 1960 and 1980. Both male and female high school seniors in 
1980 performed on spatial tests at the level of high school freshmen in 1960. 
(The male-female difference on the spatial tests decreased by one-third during 
this period.) The most likely explanation for the decline among seniors is the 
decrease in high school dropout rates between 1960 and 1980, creating a less 
select group o f seniors. (Their reading scores also declined between 1960 and 
1980.) This well illustrates the possible artifact associated with population sam­
pling, which probably accounts for much of the inconsistency in studies of 
secular change. It is likely that a large part of the variation in the magnitudes 
of the observed effects in different studies results from the failure to obtain 
equivalent population samples when the samples are selected at widely separated 
points in time, such as a decade or more.

Spearman’s “ Law of Diminishing Returns”  (see Appendix A, pp. 585-88) 
states that less of the variance in a collection of diverse mental tests consists of 
g within a high-ability group than it does within a low-ability group. A corollary 
of this “ law” is that the average intercorrclation among diverse tests is smaller 
for a high-ability group than it is for a low-ability group. The mounting evidence 
that this is an authentic phenomenon suggests a possible test of the hypothesis 
that the secular increase in IQ involves to some extent an increase in the actual 
level of g in the population. It would be supported by finding a secular decrease 
in the average intercorrelation among tests (and hence a decrease in their g 
loadings). This hypothesis, first advanced by Richard Lynn,1201 was tested on the 
French and Japanese versions of the WISC (and WISC-R) in France (for a 
sixteen-year interval) and Japan (for a twenty-five-year interval). Increases in 
test scores had already been found in these countries. The hypothesis appears 
to be borne out in both data sets; that is, the average correlation between the 
W echsler subtests decreased in the more recently tested group. In France the 
average subtest intercorrelations decreased from .38 to .29; in Japan, from .41 
to .23. Unfortunately, these results cannot be considered definitive, because no 
account was taken of the possible change in the variances of the subtest scores.
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If the subtest variances decreased from one time to the next, their intercorrela­
tions would be diminished from that effect alone, which is incidental with re­
spect to Spearman’s “ law.”  Because the subtest variances on each occasion 
were not reported, I cannot correct the correlations for this possible artifact. It 
is not an improbable one, since some studies have shown a secular decrease in 
raw-score variance.12 11

Secu lar D ecline in Scholastic A ch ievem ent Scores. During the same period 
that IQ performance was rising, scores on tests of scholastic achievement were 
declining, at all age levels. These opposite trends seem paradoxical, because, 
for students who have had the same amount of schooling, individual differences 
in scholastic achievement are highly correlated with IQ. When various achieve­
ment tests and IQ tests are factor analyzed together, both kinds of tests are 
highly loaded on a large general factor that is clearly g. These results provide 
a striking example of how the level of highly g-loaded measurements is influ­
enced by the vehicle through which g is expressed. When the g-loaded test is 
composed largely of nonscholastic items (e.g., matrices, figure analogies), the 
raw scores show a secular increase; when an equally g-loaded test is composed 
of scholastic items (e.g., reading comprehension, math) the raw scores show a 
secular decrease. Obviously, the true level of g cannot be changing in opposite 
directions at the same time. The difference in vehicles must account for the 
discrepancy. So the extent to which the level of g per se has been rising (or 
falling) over the past few decades remains problematic.

About three-fourths of the decline in the national mean Scholastic Aptitude 
Test (SAT) score, from 1952 to 1990, is due to the increasing percentage of 
high school students with college aspirations who take the SAT (rising from 
about 5 percent in 1952 to about 30 percent in 1968). The pool of applicants, 
in fact, became increasingly less selective between 1960 and 1985. But even 
after this decline in test scores due to the changing composition of the college- 
going population is accounted for, a real SAT score decrement remains. Its cause 
has been attributed to the “ dumbing down”  of the school curriculum and slack­
ening attainments in the kinds of academic knowledge and cognitive skills 
tapped by the SAT, especially by students in the upper quartile.1221 The overall 
decline in SAT scores has been slightly larger than the gain in IQ scores; when 
both are expressed in terms of AIQ, they amount to about - 5  for the SAT and 
+  3 for IQ. (The SAT-Verbal score declined slightly more than SAT-Math.)

H yp othesized  C auses o f the Secular Increase in IQ  T est Perform ance. 
Any explanation of the secular change in IQ test raw scores must take account 
of the fact that, unlike the population means, there are certain properties of the 
IQ that have remained virtually constant across the past sixty or seventy years. 
These include its reliability, its correlations with measures of other psychometric 
abilities, its g loading, and its external validity, as indicated by its correlations 
with variables such as SES, race, scholastic achievement, occupational status, 
and job performance. Further, there has been no detectable change over the 
decades in the IQ correlations of MZ twins, or of DZ twins or other kinships,
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or o f the heritability of IQ. The relationship of IQ to each of these variables has 
in no way been affected by the secular trend of the raw scores themselves. In 
this respect, the upward trend in scores is like a rising tide that lifts all ships 
without changing their relative heights. It is as if in each successive year over 
the past several decades, a small constant value was added to the total raw score 
obtained by every person who took an IQ test. As a result, the population mean 
rises steadily, but this does not change the test scores’ correlations with any 
other variables.

At least four distinguishable hypotheses have been put forth to explain what 
has caused the secular increase in test scores. They are: the attitude theory, the 
schooling theory, the biological-environment theory, and the genetic theory. Al­
though these hypotheses are not mutually exclusive or at all incompatible, their 
proponents often seem to treat them as if they were. They all seem plausible 
and I strongly suspect that each is involved to some (as yet undetermined) degree 
in producing the secular rise in scores. Picking through the many previously 
mentioned inconsistencies in the details of the extensive and unsystematic data 
on secular trends, a critic can always find, amid that chaos, some bit of evidence 
with which to contradict any one (or all) of these causal hypotheses. And the 
ample possibility for contradictions in this realm has indeed provided ammu­
nition for IQ nihilists. Determining the relative importance of the hypothesized 
causes of secular trends requires going beyond a piecemeal examination of the 
existing data. Rather, let’s examine the competing hypotheses in detail.

A ttitudes. Christopher R. Brand, a psychologist at the University of Edin­
burgh, has hypothesized1231 that certain general attitudes manifested in the testing 
room contribute to the secular rise in test scores on timed tests (such as Cattell’s 
culture-reduced tests of g) and on multiple-choice tests (such as the Cattell, the 
Raven, and many other modern objective group tests). Multiple-choice tests 
allow subjects to guess at the correct answer. Brand argues that the increasing 
liberalism, permissiveness, and extraversion (implying a certain risk-taking reck­
lessness) have increased in the modern world’s advanced economies in recent 
decades and these are reflected in a test-taking attitude of quick, intuitive re­
sponding that makes for greater speed (hence more items are attempted) and 
more guessing at the correct answers. These tendencies increase the chances that 
one or two multiple-choice items, on average, could be gotten “ right”  more or 
less by sheer luck. Just one additional “ right”  answer on the Raven adds nearly 
three IQ points. This in fact approximates the average gain shown over a whole 
generation in the Scottish data. Brand goes on to argue that when the supposed 
intergenerational change in risk-taking attitudes, test sophistication, and cogni­
tive style is taken into account, the modest secular rise on the Raven (and similar 
tests) is on a par with that seen for the Wechsler Verbal IQ. The Wechsler 
Verbal IQ is based on untimed tests that call for response production  rather than 
multiple-choice response selection , thereby making it hardly possible to gain 
points by simple guessing.

Flynn124' countered Brand’s conclusion with a remarkably indirect and com­
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plex estimate of the Scottish gains on the WISC-R Verbal scale of AIQ «  4.4, 
which is notably larger than the AIQ »  1.1 reported by Brand. The main reason 
for the discrepancy, however, is not in the data themselves, but in the way that 
the gain-score was calculated. Brand used the median of the gains on each of 
the separate items on each of the verbal subtests; Flynn based his estimate on 
the total scores of the subtests. The two methods of measuring the average gain 
are simply not comparable. For purely statistical reasons, Brand’s method (which 
is improper in this case, as it ignores item intercorrelations and hence under­
estimates a possible change in g) must inevitably give a much smaller estimate 
of gain than the method used by Flynn.25

Sch ooling. Over the same time span that IQ has increased, schooling has 
increased in the general population. More and more people have been exposed 
to an increasingly standardized educational curriculum extending over more 
years of schooling, increasing rates of high school graduation, and more people 
going on to college. Also, first radio, then television, which dispense more gen­
eral than local information, gradually spread into every segment of the popu­
lation, finally becoming more universal in the industrialized countries than even 
indoor plumbing.

Teasdale and O w en,"31 who investigated secular trends in IQ in Denmark, 
invoke the schooling hypothesis to explain their findings. They discount the 
attitude or guessing hypothesis as even a partial explanation of their data, since 
they used tests that did not allow for selecting the correct answer from several 
multiple-choice alternatives, but rather required subjects to produce the correct 
answers. They explain their finding that the lower part of the IQ distribution 
gains the most as the result of the relatively greater increase in amount of ed­
ucation by the lower-scoring segment of the population, the increasing number 
of “ special education”  programs, and the lower rate of school dropout.

Although the causal role of increased schooling in producing the secular gains 
on IQ tests has not been directly investigated, the hypothesis is made highly 
plausible by strong evidence that schooling does affect IQ and this could be an 
important causal element in the secular rise of IQ. Stephen J. Ceci, a psychol­
ogist at Cornell University, has reviewed virtually the entire research literature 
on the effects of schooling on IQ.l26a| His analysis leaves little doubt that in­
creased schooling, with more of the population attaining a higher grade, prob­
ably accounts for some substantial part, perhaps as much as half, of the observed 
secular increase in IQ raw scores. But Ceci notes, “ Although schooling helps 
prop up IQ scores, this is not equivalent to claiming that it props up intelligence. 
The latter entails more than the acquisition of certain modes of cognizing that 
are valued by a test manufacturer, or the acquisition of cultural artifacts— no 
matter how important some may regard such shared knowledge.” 1261,1 This is 
just another way of stating the distinction between the construct (i.e., g ) and 
any particular vehicle for it (i.e., test content). The construct that Ceci considers 
to be the sine qua non of “ intelligence”  is novel problem solving (tests of 
which are highly g loaded). As described later in this chapter, experimental
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methods that have been successful in raising IQ scores (at least temporarily) 
also show that the educationally induced gain in test scores is “ hollow”  with 
respect to g. The experimentally induced increment in IQ lacks the external 
validity of highly g-loaded tests.

However, as noted previously, it is the nonverbal and culture-reduced tests, 
some of which call for novel problem solving, and few of which have item 
contents that resemble anything explicitly taught in school, that show the largest 
secular gains o f any type of test. At first glance, this appears paradoxical if the 
schooling hypothesis is true. But perhaps not. One of the well-known by­
products of schooling is an increased ability to decontextualize problems. In 
almost every subject in the school curriculum, pupils learn to discover the gen­
eral rule that applies to a highly specific situation and to apply a general rule 
in a wide variety of different contexts. The use of symbols to stand for things 
in reading (and musical notation); basic arithmetic operations; consistencies in 
spelling, grammar, and punctuation; regularities and generalizations in history; 
categorizing, serializing, enumerating, and inferring in science, and so on. Learn­
ing to do these things, which are all part of the school curriculum, instills cog­
nitive habits that can be called decontextualization of cognitive skills.27 The 
tasks seen in many nonverbal or culture-reduced tests call for no scholastic 
knowledge per se, but do call for the ability to decontextualize novel situations 
by discovering rules or regularities and then using them to solve the problem.

B iological E nvironm ent. During the same period that schooling has in­
creased throughout the industrialized countries there has been a parallel trend 
in features of the biological environment, particularly nutrition and health care, 
that have had marked effects on human physical development and well-being. 
One of the leading researchers on the secular trend in IQ, Richard Lynn, a 
psychologist at the University of Ulster in Northern Ireland, has hypothesized 
that these biologically based environmental effects are the major cause of the 
upward trend of IQ in the populations of the economically advanced countries. 
The part of the test score gain that is biologically based, in Lynn’s view, reflects 
a real increase in the level of g.2g

The increase in the biological component of g is viewed as just one among 
a number of many of the well-known beneficial effects of a nurturing environ­
ment on physical development. Others are decreased rates of fetal loss and infant 
mortality, increased life span, increased stature, and a faster growth rate from 
infancy to adulthood, with earlier puberty and sexual maturation.

Improved nutrition is probably the main causal agent of the enhanced growth 
rates and increasing stature, as greater numbers in the population have been 
receiving more adequate diets over recent decades— milk, breakfast cereals, and 
other processed foods enriched with vitamin and mineral supplements, along 
with school lunch programs for children of low-income families, and increased 
information on nutrition dispensed by schools and the mass media. This has 
occurred for virtually the entire population of first-world countries (although at 
somewhat different times and rates), and has brought about an increase of ap­
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proximately one standard deviation in both adult height and head size over the 
same period as the secular rise in IQ has taken place. The amount of change in 
these physical features is fairly comparable to the rise in IQ (equivalent to about 
three points on the AIQ scale). As was noted in Chapter 6 (pp. 146^19), both 
height and head size (a proxy for brain size) are correlated with IQ. To the 
extent that there is a direct causal relation between brain size and IQ, and given 
the correlation between brain size and IQ of approximately 0.40 (as shown in 
Chapter 6, p. 147), then an increase in brain size of one standardized unit should 
result in 0.4 of a standardized unit increase in IQ. The effect of improved nu­
trition on IQ solely via its effect on brain size, therefore, would amount to a 
AIQ =  .4 X 3 =  1.2 IQ points. The finding of greater secular gains on nonverbal 
or performance tests than on verbal tests is consistent with an experiment that 
added a number of vitamin and mineral supplements to children’s diets which 
produced a significant gain on the W echsler Performance IQ of 3.7 IQ points 
over a control group, while the Verbal IQ was unaffected.1291

There are other environmental factors besides nutrition that have changed 
throughout this century that probably affect the biological basis of g:
• The widespread inoculation o f infants against what were formerly the most common 

childhood diseases, such as scarlet fever, measles, chicken pox, mumps, and whooping 
cough.

• Advances in obstetrics that have reduced the incidence of prenatal and perinatal risks 
known as “ reproductive casualties,”  which can affect mental development. For ex­
ample, the increased use of modern obstetrical techniques and cesarean section to re­
duce prolonged labor and difficult birth, thus sparing fetuses with larger-than-average 
head/brain size (and large-headed), has probably contributed to the increase of IQ in 
first-world countries.

• A decrease in parity (i.e., the number of previous births by a given mother), which 
reduces the effects of a number of blood-type incompatibilities between mother and 
fetus, such as kernicterus (the mother is Rh negative and the fetus is Rh positive), a 
condition that is negatively correlated with the child’s later IQ. The increased use of 
Rh immunoglobulin in second and subsequent pregnancies has lessened the harmful 
effects of this and other immunoreactive factors in the last two generations.30

• The increased hours of exposure to electric lighting and television are also probably 
responsible for some part of the increased overall rate of maturation, via stimulation 
of the pineal gland— an effect that has been demonstrated experimentally in anim als.31

• Because of the remarkably beneficial effect of m other’s milk (as contrasted with for­
mulas) on early mental development and later substantial gains in IQ,[32al the doubling 
of the percentage of infants who were breast fed[32bl over the past generation has prob­
ably contributed to the upward trend of IQ in the population.

Although each one of these different environmental factors alone may have 
only a small incremental effect on the population level of g itself, the summation 
of many such increments might constitute as much as half of the AIQ, while 
the remainder of AIQ reflects the trend toward more universal schooling, wider
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exposure to the mass media, increased “ test-wiseness”  from the more frequent 
use of tests, and similar factors that raise test scores without increasing g.

Genetics. Although IQ is known to have a high heritability, most commen­
tators have assumed that genetics could not be a causal factor in secular gains 
of the magnitude seen for IQ over such a short time span as just two to three 
generations. A directional change in the population frequency of genes with 
additive effects on the phenotypic expression of a trait implies positive selection 
for the trait. This is the mechanism of biological evolution, in which change by 
natural selection occurs slowly. The process can be greatly speeded by means 
of artificial selection, depending on the severity of the selection differential. To 
produce the observed IQ gain by selection alone would require breeding only 
by people in the upper half of the IQ distribution. As nothing at all this drastic 
has happened, genetic selection may be ruled out as the sole or even major 
cause of the secular trend in IQ.

However, another genetic factor might well have had a small incremental 
effect on IQ over the last three or four generations. Following the period of the 
Great Depression in the 1930s, there was an increasing preference by more 
mature, better-educated, and higher-SES white women (who are mostly in the 
upper-half of the population IQ distribution) for having more children, shifting 
away from 2- and 3-child families to 3- and 4-child families as the desired 
family size in this above-average IQ segment of the population.1331 But the re­
lationship of demographic and birthrate changes within different segments of 
the IQ distribution to the rising mean IQ of the population has not yet been 
systematically investigated. It is even possible that genetic and environmental 
trends have been moving in somewhat opposite directions and that the observ­
able effects on IQ by the one are, to some extent, masked by the other.

Probably a more influential genetic contributor to the rising IQ is heterosis, 
or hybrid vigor, which results from the mating between persons from different 
ancestral lines. A purely genetic effect, heterosis enhances all polygenic traits 
that involve genetic dominance. It is the converse of inbreeding depression. 
Heterosis results from decreasing the number of double-recessive genes that 
depress a polygenic trait in relatively inbred populations; inbreeding depression 
results from an increase in double recessives. Heterosis shows up in the offspring 
of parents who each came from two separated regions that have long been 
relatively isolated from each other and who have fewer ancestors in common 
than two persons from the same region would have. The American “ melting 
pot,”  which has fostered social contact between many diverse national and eth­
nic groups, has created the conditions for heterosis on a grand scale. The large- 
scale relocations of people in the industrialized world during and after World 
War I and World War II and the vast increases in transportation and travel have 
contributed to heterotic effects in Europe and Asia, particularly Japan. (A het- 
erotic effect on psychometric g was measured in the offspring of Asian and 
European crosses in Hawaii.(341)

The only study I have found that investigated whether there has been a secular
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YEAR OF BIRTH

F ig u re  1 0 .2 . The heritability coefficient of the intelligence test used by the Norwegian 
Army for same-age cohorts born in different years from 1931 to 1960. (From Sundet et 
al., 1988. Used with permission of Ablex.)

change (over thirty years) in the heritability of g-loaded test scores concluded 
that “ the results revealed no unambiguous evidence for secular trends in the 
heritability of intelligence test scores.” 1351 However, the heritability coefficients 
(based on twenty-two same-age cohort samples of MZ and DZ male twins born 
in Norway between 1930 and 1960) showed some statistically reliable nonlinear 
trends over the thirty-year period, as shown in Figure 10.2. The overall trend 
line goes equally down-up-down-up with heritability coefficients ranging from 
slightly above .80 to slightly below .40. The heritability coefficient was the same 
for the cohort born in 1930 as for the cohort born in 1960 (for both, h2 =  .80). 
The authors offer only weak ad hoc speculations about possible causes of this 
erratic fluctuation of h2 across 22 points in time.

B road er Im p lications o f  the Secu lar R ise in IQ. The secular trend in IQ 
raw scores, despite its great variability across different tests, countries, and time 
intervals, has been a decidedly upward trend in all economically advanced coun­
tries for which data are available. The overall average gain is impressive if 
measured as differences between generations rather than as increments per dec­
ade, or AIQ. On average, it amounts to about one standard deviation (fifteen IQ 
points) per generation (thirty years).

It is improper, however, to extrapolate the trend much beyond one generation. 
Extrapolation of secular trend lines in either direction beyond the time range of 
the actual data often leads to absurdity. To make the point, if we extrapolate 
back to the time to Aristotle, Shakespeare, or Newton (assuming an IQ test 
standardized in their times gave them each an IQ of 200), their IQs on a test 
standardized in 1990 would be about —1,000, 0, and 50, respectively! (Even if 
the secular changes in IQ were not an additive but a proportional progression,
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these extrapolations backward in time would, of course, still result in ridicu­
lously low [though not below-zero] IQs for these historic geniuses.) The secular 
gain in IQ is just as limited to a narrow period in modern history as is the 
secular increase in height (which was marked in the first half of this century 
but began gradually leveling off after World War II). The extent to which the 
upward IQ trend is leveling off has not yet been determined.

Flynn uses the secular gain evidence to argue that IQ tests do not measure 
“ intelligence” but rather are a correlate with only a weak causal link to intel­
ligence.1361 His position seems to be that not any part of the intergenerational 
gain in test scores reflects a gain in “ real-world problem solving ability,”  which 
surely implies that it doesn’t reflect a gain in the level of g , because g is the 
main factor in mental tests’ external validity. Flynn argues that if the intergen­
erational gain in IQ scores were “ real”  (i.e., reflected g ), the real-life conse­
quences would be conspicuous. For example, the younger generation with 
average IQs would perceive their parents and grandparents as intellectually dull 
or borderline retarded. Flynn even suggests that baseball and cricket fans of two 
or three generations past wouldn’t have had enough intelligence to understand 
the rules of the game. Also, professors whose teaching careers span a generation 
would have noticed an increase in the number of “ geniuses”  in their classes, 
and we would have experienced a renaissance of intellectual creativity in liter­
ature and science and invention (as indicated by a marked increase in the number 
of patents for inventions issued over the past thirty or forty years). If, however, 
the IQ gain resulted mainly from pulling up the lower end of the IQ distribution, 
as observed in the exemplary Danish study by Teasdale and Owen,1131 rather 
than uniformly raising scores throughout the whole distribution, one would not 
expect the remarkable “ renaissance”  of intellectual achievements described by 
Flynn.

That there was a real increase in the functional, or g, component of the ap­
proximately one standard deviation gain in the test scores of army draftees be­
tween World W ar I and World War II1371 is attested by the observation that 
eighteen-year-old draftees in 1942 were able to learn general military and spe­
cialty skills more quickly than did their counterparts in 1917, according to Lloyd 
Humphreys,1381 a leading psychologist who, in World War II, was employed in 
the armed services to do research on personnel selection and training.

Others have noted, however, that the intergenerational increase in physical 
stature (which, in standard deviation units, is nearly the same as for IQ) does 
not invalidate the yardstick as a measure of height or a spring scale as a measure 
of weight. Nor has it caused people to view their parents or grandparents as 
midgets. And just as there has been no marked increase in the number of patents, 
there has been no increase in the number of Olympic gold medals won by the 
contestants, despite the well-known gains in all athletic records during this cen­
tury. The standards are more demanding for winning in the Olympics as the 
performance level of the contestants rises. Likewise, the standard for patents 
changes. Modern inventions, such as those in electronics and computer hard­
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ware, are typically more demanding of scientific and technological ingenuity 
and research and development than were a great many earlier patented inven­
tions.

In fact, we have no precise and unambiguously interpretable “ real life”  in­
dices of the intergenerational increase in the level of g. Virtually all real-life 
achievements are much less than perfectly correlated with g and depend on other 
traits and conditions as well, so a standard unit increase in g would result in 
much less than a unit increase in achievement. Flynn’s surmise of the dramatic 
manifest effects of IQ gains if they really reflected g (which he denies) would 
be much less exaggerated if only a fraction (perhaps less than half) of the in­
tergenerational gain in IQ scores were associated with a gain in the level of g. 
This gain in true g has probably been brought about largely by secular changes 
in all the environmental factors that have favorable biological effects.

Flynn argues that the failure of the observed secular gain in IQ to reflect a 
corresponding increase in real-world achievements requires abandonment, or at 
least drastic revamping, of the whole Spearmanian theory of g (or the Spearman- 
Jensen theory, as Flynn1360' prefers to name it).

W hatever its cause(s), the Flynn Effect is important because it does not seem 
to “ fit”  in neatly with any existing environmental or genetic theories of mental 
ability. In science generally, it is such novel facts, when fully investigated, that 
lead to an increased level of understanding.

What appears counterproductive to me, however, is the extent to which 
Flynn’s argument is used to sidestep the real-world implications of race differ­
ences in IQ, particularly the black-white difference. This is even more so for 
less fair and technically unsophisticated commentators who invoke the Flynn 
Effect like a mantra in dismissing IQ.

Flynn’s research on IQ gains, for example, is the centerpiece of his critique 
entitled “ Race and IQ: Jensen’s Case Refuted” [36bl and the same argument is 
reiterated in most of his publications on secular gains. Flynn hypothesizes that 
whatever unknown factors are responsible for the intergenerational gain in IQ 
scores (and are not reflected in “ real world problem-solving ability” ) also op­
erate within generations, causing IQ differences between certain contemporary 
subgroups in the population, in particular the average one standard deviation IQ 
difference between blacks and whites in the United States. Therefore, Flynn 
argues, the black-white IQ difference doesn’t represent a real functional differ­
ence in ability, that is, a difference in g, any more than does the IQ raw-score 
difference observed between successive generations of whites. Psychologist 
Robert C. Nichols1391 characterized Flynn’s argument as a “ faulty syllogism” :

1. W e do not know what causes the test score changes over time.
2. We do not know what causes racial differences in intelligence.
3. Since both causes are unknown, they must, therefore, be the same.
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4. Since the unknown cause of changes over time cannot be shown to be genetic, it must

be environmental.
5. Therefore, racial differences in intelligence are environmental in origin.

If the Flynn effect is caused by environmental factors, it is most remarkable that 
a steady rise in the population’s average test scores over a period of fifty or 
sixty years has had no effect on the mean IQ difference between blacks and 
whites, which has remained at about l a  since World War I. This era has been 
one of steadily diminishing disparities between blacks and whites in educational, 
social, and economic opportunities. Yet the general upward secular trend in the 
overall population level of mental test scores has not changed the standardized 
difference between the mean test scores of blacks and whites.

A definitive test of Flynn’s hypothesis with respect to contemporary race 
differences in IQ is simply to compare the external validity of IQ in each racial 
group. The comparison must be based, not on the validity coefficient (i.e., the 
correlation between IQ scores and the criterion measure), but on the regression 
of the criterion measure (e.g., actual job  performance) on the IQ scores. This 
method cannot, of course, be used to test the “ reality” of the difference between 
the present and past generations. But if Flynn’s belief that the intergenerational 
gain in IQ scores is a purely psychometric effect that does not reflect a gain in 
functional ability, or g, is correct, we would predict that the external validity of 
the IQ scores, assessed by comparing the intercepts and regression coefficients 
from subject samples separated by a generation or more (but tested at the same 
age), would reveal that IQ is biased against subjects from the earlier generation. 
If the IQs had increased in the later generation without reflecting a corresponding 
increase in functional ability, the IQ would markedly wntferpredict the perform­
ance of the earlier generation— that is, their actual criterion performance would 
exceed the level of performance attained by those of the later generation who 
obtained the same IQ. The IQ scores would clearly be functioning differently 
in the two groups. This is the clearest indication of a biased test— in fact, the 
condition described here constitutes the very definition of predictive bias.40 If 
the test scores had the same meaning in both generations, then a given score 
(on average) should predict the same level of performance in both generations. 
If this is not the case (and it may well not be), the test is biased and does not 
permit valid comparisons of “ real-life”  ability levels across generations.

When this kind of analysis is applied to contemporary black and white groups, 
the regressions are the same for both groups; that is, blacks and whites with the 
same test scores perform at the same level on the criterion. Hence it has been 
concluded that the test scores are not biased; they have the same meaning for 
each racial group. In hundreds of validity studies, the occasional exceptions to 
this generalization consist of finding tests that overpredict the performance of 
blacks. That is, the black level of real-world criterion performance is, on aver­
age, below  that of whites with the same test score. This discrepancy is usually
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attributable (correctly) to the imperfect reliability of the test scores (even when 
the reliability is exactly the same for both racial groups). When the regressions 
are corrected for attenuation (unreliability), a single regression line predicts in­
dividuals’ level of performance equally well for each group.'411 This would not 
happen if the mean difference between the groups’ test scores were “ hollow”  
with respect to g (and whatever other factors contribute to the test’s external 
validity). The nonexistence of predictive bias for the same test scores obtained 
by blacks or whites is a strong refutation of Flynn’s supposition that the secular 
trend in test scores explains away the observed average racial differences in IQ 
(i.e., that there is no real difference in the level of functional ability between 
races.) As shown by the evidence reviewed in Chapter 9, g is the main functional 
ingredient of tests’ practical predictive validity.

Using the method of correlated vectors, we can determine definitively whether 
the mean differences between any two groups on each of the tests in a battery 
does or does not reflect a difference in g. The battery is factor analyzed, and 
the column vector of the tests’ g loadings is correlated with the column vector 
of the mean group differences on each of the tests. A significant correlation 
proves that the groups differ on g and therefore should also differ on any ex­
ternal, or nonpsychometric, correlates of g. This finding in regard to the black- 
white difference was presaged by Spearman himself and is the subject of the 
next chapter.

F uture R esearch  on Secu lar T rends in g. At present, the most reasonable 
hypothesis to account for the secular trend in IQ seems to be that the AIQ 
increments consist of two main parts: (1) a functional, ^-loaded part due to the 
secular trend in those environmental improvements that produce general biolog­
ical effects (including brain development) for virtually the entire populations of 
countries in the industrialized world; and (2) a secular trend in such psycholog­
ical environmental effects (including increased years of schooling, TV, “ test­
wiseness,”  “ teaching to the test” ) that adds an increment to test scores that is 
slightly, if at all, reflected in a functional increase of real-life problem-solving 
ability and is largely “ hollow” with respect to g.

The problem is how to test this surmise rigorously and then determine how 
much of the secular increment in IQ scores is attributable to each source. I see 
no way that this can be done with any presently available data. Therefore, if the 
subject is to be researched in the future, it will call for an innovative method­
ology and an additional kind of data. As I have suggested elsewhere,1421 con­
ventional psychometric raw scores will need to be anchored to measures that 
presumably are not influenced by the environmental variables that raise test 
scores without increasing g. The anchor variables would consist of measures of 
reaction time to various elementary cognitive tasks, evoked brain potentials, 
nerve conduction velocity, and the like, that are demonstrably g-loaded. (A com­
posite measure based on the anchor variables should have a reasonably high 
correlation [say, r >  .50] with the psychometric test scores.) Mental test raw 
scores would be regressed on these anchor variables in a representative sample
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of some population. A later comparable sample would be matched to the earlier 
sample on the anchor variables. This later sample’s raw scores (on the very 
same psychometric test) then would be regressed on the anchor variables.43 A 
significant difference between the regression lines of the earlier and the later 
tested groups would indicate that the psychometric scores were not measuring 
the same thing in each group. Thus the secular increment in mean score wouldn’t 
mean simply “ more of the same.”  If the regression lines remained the same, 
however, it would indicate that any significant observed mean raw-score differ­
ence between the groups was a real difference in whatever the test measured at 
both points in time. That is, the mean gain would be reflected in the anchor 
variables as well as in the test scores.

EXPERIMENTAL ATTEMPTS TO RAISE MENTAL ABILITY
The question of whether the level of an individual’s mental abilities can be 

improved by psychological or educational means has been investigated syste­
matically ever since mental tests first appeared. The obvious and far-reaching 
disadvantage of a conspicuously lower level of ability has long motivated efforts 
to discover ways to raise mental ability by a practically significant amount. Most 
such attempts, naturally, have been applied to individuals of below-average IQ. 
On the assumption that mental development is most rapid in early childhood 
and becomes less malleable with increasing age, attempts to raise mental ability 
have been applied most frequently to children. Few other topics in the history 
of behavioral science have resulted in so vast a literature, and no other comes 
close to it in total research expenditure.

Actually, there are three distinct questions one must ask about any experiment 
that claims to raise the level of mental ability:

1. Does the indicator (i.e., the measurement obtained on a particular vehicle) 
o f the targeted ability in the treatment group (T) show a significant and practi­
cally meaningful gain relative to an untreated control group (C)? This is an­
swered by a statistical test of the significance of the difference between the 
means of the T group and the C group, along with an evaluation of the effect 
size (i.e., the ratio of the mean difference [T-C] to the averaged standard devi­
ations within the T and C groups). Typically, the indicator is IQ; the vehicle is 
a particular test, such as the Stanford-Binet or the Wechsler.

2. If there is a significant gain in the indicator of the targeted ability, does it 
also represent a gain in the latent factor (for example, g) it was intended to 
measure? Because g (or any other latent ability) cannot be measured directly by 
a single test, something more than a mean gain in score on a particular test is 
needed to demonstrate that the level of g itself has been affected by the treat­
ment. W hat is required, therefore, is a demonstration of what are termed fa r  
transfer of training or broad generalizability of the treatment effect. As all forms 
of cognitive activity are to some degree saturated with g, the treatment effect, 
if it really involves g, should be reflected in a wide variety of vehicles that
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manifest cognition. Scores based on vehicles that are superficially different 
though essentially similar to the specific skills trained in the treatment condition 
may show gains attributable to near transfer but fail to show any gain on ve­
hicles that require fa r  transfer, even though both the near and the fa r  transfer 
tests are equally g-loaded in the untreated sample. Any true increase in the level 
of g connotes more than just narrow (or near) transfer of training; it necessarily 
implies fa r  transfer.

One way to test for a far transfer effect following treatment is to compare the 
T group with the C group on a wide variety of tests and other behavioral cor­
relates of g (as demonstrated in untreated samples). If the groups do not differ 
significantly on all of the varied g-saturated criteria, it means that the treatment 
effect is confined to the particular vehicle or to near transfer to similar vehicles. 
One can also compare T  with an untreated group whose scores on the indicator 
of the targeted ability match those of the T group after treatment. If  these two 
groups are statistically distinguishable (as by a discriminant analysis) on a wide 
variety of g-saturated criteria, it again means that the treatment had no significant 
effect on g but only on the specificity or lower-order factors in the test on which 
the two groups were matched. A third method is to apply the method of cor­
related vectors to determine the correlation between the size of the mean gain 
(T-C) on a variety of tests and the tests’ g loadings as determined in an untreated 
population. If the T group’s gain in various test scores is unrelated to the tests’ 
g loadings, the gains are hollow with respect to g and consist only of gains in 
lower-order factors or, more likely, in test specificity.

3. The last and probably most important question is: Aside from whether or 
not their level of g has been altered by the treatment, was any knowledge or 
set of skills inculcated that has practical utility for the treated persons in “ real 
life” ? Skill training, the acquisition of a useful or employable skill, or of ben­
eficial habits in the conduct of one’s life, is valuable in its own right, regardless 
of any general carry-over to g. Although the type and level of skill that can be 
attained, and the speed of acquisition, may be related to the level of g (or other 
ability factors), acquisition of any useful skill is usually a personal and economic 
advantage in its own right, regardless of g.

The general finding regarding number 1 (proper control group) is that while 
certain educational-psychological treatments are capable of increasing scores on 
IQ tests (in a few cases up to as much as twenty IQ points or so) the gains 
induced by most preschool interventions and special education are typically 
about 0 .3a, or five IQ points.[44) Even this modest gain, however, typically 
diminishes to near-zero within one or two years after the intervention. By com­
parison, the average effect of direct coaching on test taking skills is about
0 .25a.1441 (The coaching effect is also ephemeral.) In both cases the gains prob­
ably represent near transfer, which in the extreme case is referred to as “ teach­
ing to the test.”

As for point number 2 (generality of effect), I have found possibly only one 
bona fide example of an educational-psychological treatment that resulted in
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test-score gains that appear to be gains in g itself (see Abecedarian Project, 
below). Most studies, in fact, make no attempt to determine if the treatment 
actually raised the level of g. The investigators usually assume that a rise in 
scores on a particular test sufficiently demonstrates the efficacy of the treatment 
in raising “ intelligence,”  with little or no realization that g  is the sine qua non 
of an IQ test’s being an indicator of “ intelligence.”

Others have reviewed this body of evidence and reached similar conclusions. 
A textbook on intelligence by Nathan Brody,1451 concludes a review of the effects 
of early interventions on the development of general mental ability as follows: 
“ There is no credible evidence that experimental interventions during the pre­
school years will create enduring changes in performance on tests o f intelli­
gence”  (p. 178). Specifically on the effects of Head Start, Brody writes, 
“ Children exposed to Head Start may have behaved in ways that school au­
thorities found more acceptable than children in the control groups in these 
investigations. These changes, however, were not accompanied by enduring 
changes in cognitive functioning either as assessed by intelligence tests or by 
the ability to acquire the skills that constitute the standard curriculum in the 
public schools”  (p. 179). The final summary chapter1461 of a book in which 
twenty-three psychologists and educators addressed the issue of how intelligence 
might be increased by psychological methods concluded: “ We now return to 
the contrast made in the title between training cognitive skills and raising in­
telligence. We would argue that although the participants may eventually be 
quite successful at raising cognitive skills, their present papers are silent on the 
issue of intelligence and its modifiability”  (p. 226).

The training of specific skills (referred to under question number 3, above) 
has generally proven successful, when the degree of complexity of the particular 
skill and the method of instruction are properly geared to the learner’s level of 
g. Skill training, though essential and valuable in its own right, demonstrates 
most clearly that g per se is not a skill, nor any combination of skills, nor can 
it be characterized in the psychological terms used to describe the nature of 
skill. Learned skills are, of course, every bit as important as g for getting along 
in life, but they are not a substitute for g (any more than g is a substitute for 
skills). The operative difference is that skills can be inculcated, within limits, 
by psychological means, while the level of g, as such, cannot be permanently 
raised by training, as far as we know. Skill acquisition depends mostly on the 
contingencies of instrumental learning— essentially, the person’s making specific 
responses to a given situation, receiving immediate feedback as to adequacy of 
the responses, and being allowed repeated practice. These are the basic psycho­
logical variables involved in acquiring any skill, from tying one’s shoelaces to 
playing a Tchaikovsky violin concerto. On the other hand, the preponderance 
of evidence argues that variance in the level of g is not a psychologically ma­
n ip u la te  variable, but rather a biological phenomenon under the control both 
of the genes and of those external physical variables that affect the physiological
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and biochemical functioning of the central nervous system, which mediates the 
behavioral manifestations of g.

In a well-researched book on the history of attempts to raise the intelligence 
of retarded persons, Herman Spitz, an expert in this area, concluded as follows:

Much o f the evidence from basic psychological research suggests that mild and 
moderate mental retardation [IQ <  70] is not primarily a deficiency in learning 
and memory except to the extent that thinking enters into learning and memory. 
Mental retardation is, rather, a thinking disability, and intelligence is synonymous 
with thinking. Although it is possible to educate mentally retarded persons and to 
train them to perform many tasks, up to a point, we do not yet have the means 
of raising their general level of intelligence. We have no prescription that will 
change their capacity to think and to reason at the level of persons of average 
intelligence, to solve novel problems and real-life challenges of some complexity, 
and to respond effectively to an infinite variety of circumstances, but just to those 
used in training.1471

The level of mental retardation described by Spitz is not of a type distinct 
from the total distribution of g  in the general population, rather it reflects a level 
of g lying on the same continuum as the average and higher levels. Mental 
retardation is the lower tail of the whole range of g represented by the bell- 
curve distribution of IQ in the population. The differences in g (reflected by IQ) 
are manifested continuously throughout the entire scale covered by the bell 
curve. That is, they are not differences of kind but of degree. For example, a 
positive correlation between individual differences on the highly g-loaded math­
ematics subtest of the SAT and academic achievement exists within every decile 
of the SAT scale and has been shown to predict later achievement even within 
a large sample of individuals who were tested in grades seven and eight and 
scored in the top 1 percent of the SAT distribution.141*1 Aggregated data most 
clearly show a monotonic increase in socially desirable behavior and achieve­
ments, when indices of these are plotted as a function of group means for every 
decile of the IQ range.

The conditions and general findings described in the preceding paragraphs 
regarding the effects of training or other educational interventions on abilities 
can be most neatly summarized in terms of what Carroll1491 refers to as the three- 
stratum hierarchical factor model of mental abilities, such as shown in Figure 
10.3. At the base of the triangle-shaped hierarchy are a great many tests, dif­
ferent clusters of which are each dominated by a different first-stratum factor. 
Smaller groups of the first-stratum factors are each dominated by several second- 
stratum factors, all of which are dominated by the single third-stratum factor, 
or g. As Carroll notes, the efficacy of special interventions is most clearly man­
ifested on specific tests that most resemble the trained skills. The training effect 
is still evident at the level of certain first-stratum factors, depending on the nature 
of the training. However, it all but disappears at the level of second-stratum 
factors, and is altogether undetectable at the third-stratum of factor generality,
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F ig u re  10.3. A hierarchical factor model with three strata, consisting of primary factors, 
second-order factors, and a general factor, g. Source: Bias in mental testing by Arthur 
R. Jensen, Fig. 6.9, p. 212. Copyright © 1980 by Arthur R. Jensen. Reprinted with per­
mission of The Free Press, a Division of Simon & Schuster, and Routledge Ltd.

which is g. This implies that training effects show the most transfer across tests 
or tasks that are all dominated by one particular first-stratum factor. Transfer is 
almost nil across tasks dominated by different second-stratum factors, and it is 
sifted out completely before reaching the level of g derived from any large and 
diverse battery of tests. The few tests that are most similar to the trained skills, 
and therefore most likely to reflect the specific training effect, tend to diminish 
in g loading after training, when compared to their g loadings before training. 
That is, after training, these particular tests reflect the effect of the specific 
training more than the general ability factor that accounts for their correlation 
with many superficially dissimilar tests.

We can now use the three questions posed above to examine critically specific 
intervention programs, which are often claimed to raise IQ.

H ead Start. The federal preschool intervention known as Head Start, which 
has been in continual existence now since 1964, is undoubtedly the largest- 
scale, though not the most intensive, educational intervention program ever un­
dertaken, with an annual expenditure over $2 billion. The program is aimed at 
improving the health status and the learning and social skills of preschoolers 
from poor backgrounds so they can begin regular school more on a par with 
children from more privileged backgrounds. The intervention is typically short­
term, with various programs lasting anywhere from a few months to two years.
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The general conclusion of the hundreds of studies based on Head Start data 
is that the program has little, if any, effect on IQ or scholastic achievement that 
endures beyond more than two to three years after exposure to Head Start. The 
program does, however, have some potential health benefits, such as inoculations 
of enrollees against common childhood diseases and improved nutrition (by 
school-provided breakfast or lunch). The documented behavioral effects are less 
retention-in-grade and lower dropout rates. The cause(s) of these effects are 
uncertain. Because eligible children were not randomly enrolled in Head Start, 
but were selected by parents and program administrators, these scholastic cor­
relates of Head Start are uninterpretable from a causal standpoint. Selection, 
rather than direct causation by the educational intervention itself, could be the 
explanation of Head Start’s beneficial outcomes.

The most penetrating statistical analysis1501 of Head Start outcomes that I have 
found in the vast literature on this subject controls many family background 
factors, including mothers’ “ IQ”  (measured by the Armed Forces Qualification 
Test). The analyses are based on within-family data, that is, children who were 
enrolled in Head Start were compared on a number of variables against their 
siblings who were not in Head Start. Also, mothers who themselves had been 
enrolled in Head Start as preschoolers were compared against their adult sisters 
who had not experienced Head Start.

Groups were also analyzed separately by ethnicity: white, black, and Hispanic. 
This is important, because different factors influence the selection of children 
into Head Start according to ethnicity. White children who attend Head Start, 
for example, were the most disadvantaged in academic potential, but showed 
larger and more lasting effects of Head Start on cognitive measures than did the 
black children. (In marked contrast, white children who attended a preschool 
other than Head Start were more privileged and scored above the average white 
child on IQ tests.) Hispanic children, whose Head Start programs emphasized 
English language acquisition, also manifested significant and enduring gains in 
mental test scores and especially in scholastic performance. The gains in cog­
nitive skills for whites and Hispanics, in fact, were still detectable in their test 
scores as adults. Blacks, who constituted the largest proportion of Head Start 
enrollees, did not perform better on IQ tests or in school as a result of Head 
Start, although they grew to be significantly taller than their siblings who did 
not attend. It is uncertain whether the gain in height is attributable to Head Start 
(possibly its nutritional component) or was a result of a difference in children’s 
characteristics that may have governed parental selection of particular children 
to be enrolled in Head Start.

One of the most important findings is that the effectiveness of Head Start 
increased as a function of the mother’s IQ (AFQT score). Also, children from 
the most advantaged backgrounds (in terms of family income, maternal IQ, and 
education) gained more from Head Start than did children from less advantaged 
backgrounds. Simply lumping together all the results and not examining these
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moderating variables tends to obscure the possibly beneficial aspects of Head 
Start for improving cognitive and scholastic outcomes.

The disappointing outcome for the most disadvantaged, and for blacks in 
particular, is often attributed to the short-term treatment afforded by Head Start. 
Therefore, it is important to examine the most intensive and prolonged inter­
vention programs that have so far been tried.

A d option . Adoption o f a child in infancy who is then reared by caring adop­
tive parents in a middle-class or upper-middle-class home is an intensive and 
prolonged kind of intervention open to study. This is especially so if the level 
of IQ and the environmental status of the adopted child’s biological parent(s) 
are predictably less advantageous for a child’s mental development than the 
conditions provided by the adoptive parents.

Adopted children’s IQs are generally more highly correlated with their bio­
logical m others’ IQs than with their adoptive mothers’ IQs, even when the child 
has had no contact with the biological mothers since birth or early infancy. This 
fact should not be misinterpreted as meaning that adopted children’s level of IQ 
is, on average, closer to that of their biological mothers than to that of their 
adoptive mothers. A correlation coefficient, by its mathematical nature, cannot 
reflect the size of the mean difference between the correlated groups, in this 
case, mothers and their children. A correlation coefficient indicates the degree 
to which the rank order of the measurements on one variable (e.g., the mothers’ 
IQs) is similar to the rank order of another variable (e.g., their children’s IQs), 
regardless of the average difference in the absolute level of IQ between the 
mothers and the children. In assessing the malleability of IQ, therefore, one 
must take account of the mean difference between the biological mother and 
her adopted child and compare this difference with the mother-child difference 
in IQ for mothers of the same IQ and socioeconomic level who did not put their 
child up for adoption. Another informative comparison is between the mean IQ 
of adopted children and the theoretically predicted mean IQ of children born to 
mothers whose average IQ is the same as the average IQ of the biological 
mothers of the adopted children.51 Adoption studies are most valuable for as­
sessing the malleability of IQ when there is a large disparity between the IQ 
levels of the biological and adoptive parents. (The IQ of the biological father is 
unknown in most studies of adopted children.)

The famous study by Skodak and Skeels has long been cited as one of the 
most striking examples of the estimated effect of adoption on IQ. The biological 
mothers of the adopted children had an average IQ of 92.7. If the children had 
been reared by their biological mothers, their average expected IQ would be 
about 97. But presumably because the children had been adopted into much 
more privileged homes than are typically provided by parents whose IQs average 
92, the children in fact averaged 105.5, or about nine IQ points above their 
expected mean value if they had been reared by their biological mothers.52 This 
estimated gain in IQ is fairly close to the typical maximum effect of adoption 
on IQ found in other studies.
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A detailed and methodologically expert review1531 of adoption studies best 
suited for determining the maximum estimated gain in IQ that resulted from 
markedly contrasting environments found the best estimate of the limit of IQ 
malleability to be about ten to twelve IQ points. It concluded: “ Simply put, 
there appear to be limits to the extent to which even the most substantial en­
vironmental changes can affect IQ. The clarity of this conclusion depends pre­
cisely on the failure to find evidence of higher malleability where it should most 
easily be seen— in studies of contrasted environments. This is not to imply that 
malleability is insignificant in these studies, only that is seems relatively modest 
where it might in theory be far more impressive given the potential for change 
provided by the adoptive environments”  (p. 290).

Three main additional points should be kept in mind when interpreting these 
findings. First, they are based, as they only could be, on existing environmental 
conditions. Obviously, they can tell us nothing about other, but as yet nonex­
istent, environmental conditions that might possibly have a greater effect. Sec­
ond, they do not tell us the precise cause of the adoption effect (which could 
be better nutrition and other conditions for health, greater cognitive stimulation 
and educational advantages, or uncontrolled selection factors in final adoption 
placements that might favor healthier, more energetic, or alert-looking infants). 
Environmental effects on IQ seem to be highly multifactorial, resulting from the 
cumulative effects of a great many small, largely random or unrelated, microen­
vironmental events.1541 Third, the adoption studies, though showing beneficial 
effects on IQ per se, are not informative about the extent to which the IQ gain 
reflects a gain in g. I am not aware of adoption data that can answer that ques­
tion. This would require assessing the similarity of groups of adopted and non­
adopted children on the g loadings derived from a large battery of highly diverse 
cognitive tests. It would also be valuable to compare the subsequent life histories 
and achievements of groups of adopted and nonadopted individuals of approx­
imately the same IQ.

However, it could be argued that although adoption is undoubtedly a long­
term “ treatment,”  extending from infancy to early adulthood, it is not neces­
sarily the most intensive treatment that could be devised to promote cognitive 
development. Therefore, it would pay to look at the two most intensive and 
prolonged experimental intervention programs for raising IQ ever attempted.

The M ilw aukee P roject. Aside from Head Start, this is the most highly 
publicized of all intervention experiments. It was the most intensive and exten­
sive educational intervention ever conducted for which the final results have 
been published.55 It was also the most costly single experiment in the history of 
psychology and education— over $14 million. In terms of the highest peak of 
IQ gains for the seventeen children in the treatment condition (before the gains 
began to vanish), the cost was an estimated $23,000 per IQ point per child.

The intensive treatment phase lasted from 1966 to 1973. Periodic follow-up 
testing and assessment of scholastic performance continued through 1981, when 
the subjects approached fifteen years of age.
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The experiment was expressly intended to determine whether children, with­

out intervention, were predictably at risk for mental retardation because they 
were born in poor environments to mothers whose IQs were seventy-five or 
below. All the mothers were black and from the poorest inner-city section of 
Milwaukee. They were selected while pregnant, prior to the birth of the proband 
children. Forty mothers volunteered for the experiment. The main inducement 
to participate was the offer of regular pediatric examinations and medical care 
throughout the duration of the study.

The study sample was divided into fairly equivalent treatment (T) and control 
(C) groups, each with twenty infants. Subject attrition during the long course of 
the study resulted in final samples of T =  17 and C =  18, on which all of the 
statistical analyses were based. Both the T and C groups received the same 
periodic IQ testing with the Stanford-Binet and the Wechsler (WISC) tests 
throughout the duration of the study.

Before the infants were six months old, those in the T group were removed 
from their homes every weekday to spend several hours in what was called the 
Infant Stimulation Center, established in the “ high risk”  neighborhood in which 
the children lived. This regimen lasted until the children were six years of age. 
At the beginning, each child had a private tutor trained in child development. 
As the children grew, the child-tutor ratio of 1:1 was increased to 2:1 and later 
to 3:1.

The program of cognitive stimulation and training received by the children 
was intensive. It incorporated virtually every kind of play and didactic activity 
ever suggested in the child psychology literature as having a beneficial effect 
on children’s mental development. The founder and director of the program, 
Rick Heber, once quipped that compared to the cognitive development regimen 
provided in the Stimulation Center, the childhood environments of such famous 
prodigies as John Stuart Mill and Sir Francis Galton appear educationally de­
prived.

This intensive treatment, extending continuously over six years, indeed raised 
the T group’s mean IQ well above that of the C group, with the thirteen testings 
over that interval showing an average T-C difference of about thirty IQ points. 
The treatment program ended when the children entered first grade in the public 
schools. At that time the T-C difference in IQ was 1 19 -  87 =  32 points on 
the Stanford-Binet. From age six to age fourteen there was a gradual decrease 
in the T-C difference, falling from 119 — 87 =  32 to 101 — 91 =  10 IQ 
points— still a statistically significant difference, larger and of longer duration 
than the typical IQ gains produced by less intensive intervention.

But why the eighteen-point decline in IQ scores for the T group? The most 
plausible explanation is that the prolonged, intensive training in cognitive skills 
given to the children during their first six years closely resembled the skills 
demanded by the assessment tests used in each of the periodic testings. Much 
of the cognitive training activity promoted the acquisition of the kinds of knowl­
edge and skills that psychologists would glean from a task analysis of the items
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typically found in a variety of standard intelligence tests. The T children’s per­
formance was thus probably based on narrow transfer of the trained skills to the 
IQ tests. In other words, it was an indirect form of “ teaching to the test.” 
Consistent with this interpretation is the fact that, in subsequent testings on more 
advanced IQ tests during the period of decline after age six, those subtests whose 
contents least resembled the kinds of material on which the children had been 
trained (and tested) showed the greatest decline. These tests, evidently, showed 
the least transfer of training. It should be noted that the IQ tests’ item contents 
differ somewhat at each age level, so in each subsequent year after age six, 
when the children entered regular school, the contents of the subsequent IQ tests 
became less and less similar to the materials they had been trained on in the 
Stimulation Center. Therefore, as the transfer of training effect gradually dimin­
ished, the tests increasingly reflected the children’s true level of g.

This interpretation is most impressively underlined by the annual assessments 
of the children’s scholastic performance as they progressed through regular 
school. Even by the end of grade one, the T-C difference in scholastic achieve­
ment scores was not significant, although T still scored somewhat higher than 
C. For all school years up to the end of grade four there was no significant 
difference between the T and the C groups. The T group scored near the tenth 
percentile on the math problem-solving section of the Metropolitan Achievement 
Test, which is the most g-loaded subtest in the MAT. (The tenth percentile of 
the standardization sample for the IQ scale is eighty, which is the mean of the 
C group’s IQ.) In short, the T group’s scholastic achievement fell far below the 
level normally predicted for children of the same nominal IQ as the T group. 
The T  group, despite having a ten-point higher IQ than the C group, still per­
formed in school very much like the C group. That is, both the E and C groups 
performed in school much as would be expected for children with an average 
IQ of eighty. The evident lack of generality, or broad transfer, of the effects of 
the T group’s previous cognitive treatment indicates that the T-C gain in IQ was 
“ hollow”  with respect to g.

The A b eced arian  E arly Intervention  Project. This project, begun in 1972 
at the University of North Carolina, is similar to the Milwaukee Project in its 
intent and essential methodology. It differs, however, in its subject selection 
procedure. The infants were selected on a number of criteria known to be pre­
dictive of risk for mild (i.e., familial or sociocultural) mental retardation, such 
as low family income, low level of parents’ education and occupation, welfare 
status or recipient of special social services, and mother’s low IQ (i.e., below 
ninety-one). No single criterion was critical for selection, which was based on 
a composite score on all of the criteria. A mother with above-average IQ could 
volunteer her infant for participation in the Project provided the required “ high 
risk”  score was met by other selection criteria. Whereas all of the mothers 
whose infants took part in the Milwaukee Project had IQs below seventy-five, 
the average IQ of the mothers in the Abecedarian Project averaged eighty-four. 
Most of the subjects (98 percent) were black. Both the experimental (E) and
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control (C) groups were provided pediatric care and nutritional supplements, as 
well as family support services by social workers.

The Abecedarian Project, from its beginning, has been conducted in a model 
fashion as a scientific experiment, in terms of frequency of reporting results in 
peer-reviewed journals and in the openness and completeness of reporting re­
sults. Benefiting from a knowledge of the methodological questions raised by 
the Milwaukee Project and avoiding the excessive hype given earlier claims by 
the mass media, the Abecedarian Project is now generally regarded by experts 
as a larger, less questionable, educational experiment with statistically more 
definitive results than the Milwaukee Project.

From as early as six weeks of age, infants in the T group attended a day-care 
center six to eight hours a day, five days a week, fifty weeks a year, for five 
years, and then entered regular kindergarten in the public schools. In addition 
to pediatric surveillance and good nutrition, they were given a specially designed 
curriculum for cognitive development, with pupil-teacher ratios of 1:1 to 6:1 at 
various stages of the program, which appears to have been as intensive as the 
Milwaukee Project in its aim to stimulate mental development.

Both the T and C groups (each with about fifty subjects) were given age- 
appropriate mental tests (Bayley, Stanford-Binet, McCarthy, WPPSI) at 
six-month intervals from age six months to sixty months. The important com­
parisons here are the mean T-C differences at each testing. (Because the test 
scores do not have the same factor composition across this wide age range, 
the absolute scores of the T group alone are not as informative of the efficacy 
of the intervention as are the mean T-C differences.) At every testing from six 
months to five years of age, the T group outperformed the C group, and the 
overall average T-C difference (103.3 — 95.5 =  7.8 IQ points) was highly 
significant (p <  .001). Peculiarly, however, the largest T-C differences (aver­
aging fifteen IQ points) occurred between eighteen and thirty-six months of 
age and then declined during the last two years of intervention. At sixty 
months, the average T-C difference was 7.5 IQ points. This decrease might 
simply reflect the fact that with the children’s increasing age the tests become 
increasingly more g-Ioaded. The tests used before two or three years of age 
measure mainly perceptual-motor functions that have relatively little g  satura­
tion. Only later does g becomes the predominant component of variance in 
IQ. In follow-up studies at eight and twelve years of age, the T-C difference 
on the WISC-R was about five IQ points,1571 a difference that has remained up 
to age fifteen. At the last reported testing, the T-C difference was 4.6 IQ 
points, or a difference of 0.35ct. Scholastic achievement test scores showed a 
somewhat larger effect of the intervention up to age fifteen.1571 The interven­
tion effect on other criteria of the project’s success was demonstrated by the 
decreased percentage of children who repeated at least one grade by age 
twelve (T =  28 percent, C =  55 percent) and the percentage of children with 
borderline or retarded intelligence (IQ <  85) (T = 12.8 percent, C =  44.2 
percent).1561
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Thus this five-year program of intensive intervention beginning in early in­
fancy increased IQ (at age fifteen years) by about five points. Judging from a 
comparable gain in scholastic achievement, the effect had broad transfer, sug­
gesting that it probably raised the level o f g to some extent. The finding that 
the T  subjects did better than the C subjects on a battery of Piaget’s tests of 
conservation, which reflect important stages in mental development, is further 
evidence. The Piagetian tests are not only very different in task demands from 
anything in the conventional IQ tests used in the conventional assessments, but 
are also highly g loaded.1571 The mean T-C difference on the Piagetian conser­
vation tests was equal to 0 .33a (equivalent to five IQ points). Assuming that 
the instructional materials in the intervention program did not closely resemble 
Piaget’s tests, it is a warranted conclusion that the intervention appreciably 
raised the Level of g.

As in the other studies reviewed here, the specific causal agent has not yet 
been isolated. Perhaps it never will be, because the intervention effect is most 
likely the result of a great many small, varied, and unrelated events with ben­
eficial effects that saturate the child’s experience throughout an extended period 
during early development. And perhaps the critical factor is a certain combi­
nation of such events. Anything less than very early and intensive intervention, 
including medical and nutritional advantages, during the preschool years (and 
also prenatally), is probably inadequate to cause a lasting increase in the child’s 
level of g.

NOTES
1. A certain type o f test, called a criterion-referenced test, which is most often in­

tended to assess specific achievements (usually scholastic or job-related knowledge and 
skills) does not need to be normed. The subject’s performance is described strictly in 
terms of identifying the types of items that the subject passes or fails. Hence assessment 
o f the subject’s performance need make no reference to the level of performance in any 
reference group (as would a norm-referenced test). A criterion-referenced test o f arith­
metic, for example, would tell us that a given pupil can solve problems that call for 
dealing with addition, subtraction, multiplication, or short division of whole numbers, 
but cannot solve problems that call for dealing with long division, fractions, or decimals.

2. The technique for equating test scores is fully described by Angoff (1984).
3. Hambleton (1989) provides an excellent introduction and extensive references to 

the literature on item response theory.
4. A detailed discussion o f the stability of test scores is presented in Jensen, 1980a, 

Chapter 7.
5. U.S. Department of Labor (1970), pp. 251-276.
6. The eight distinct aptitudes measured by the 16 GATB subtests are Verbal, Nu­

merical, Spatial, Form Perception, Clerical, M otor Coordination, Finger Dexterity, M an­
ual Dexterity.

7. The mean test-retest increments in the aptitude scores are quite reliable, as indi­
cated by the average correlation of + .73 between the vector of increments on the eight
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GATB aptitudes for any one of the test-retest intervals and any other interval within the 
range of intervals in this study (one day to three years).

8. Research on the stability o f IQ across the age range from childhood to maturity 
is reviewed in detail in Jensen, 1980a, Chapter 7.

9. Wilson (1983).
10. Moffitt, Caspi, Harness, & Silva, 1993.
I 1. Flynn, 1884, 1987a, 1994.
12. Lynn & Hampson, 1986; Lynn, Hampson, & Mullineux, 1987.
13. Teasdale & Owen, 1987, 1989.
14. The Danish conscription test (the B0rge Prien Pr0ve) was devised to conform to 

the strict criterion of a unidimensional test imposed by selecting and scaling items for 
difficulty in accord with the Rasch model. The item contents emphasize the kinds of 
relation eduction that maximize g. The Rasch one-parameter logistic model dictates the 
nature of the item characteristic curve (for a brief exposition, see Hambleton, 1989, pp. 
156-157).

15. It should be noted that the reported correlation of +.71 is what is called an “ ec­
ological” correlation, that is, a correlation based not on the measurements of individuals, 
but on the means of a number of large groups, each group measured on two or more 
variables. Since a group mean averages out all of the idiosyncratic factors that cause the 
scores of individuals to vary besides the factor(s) the test was intended to measure, and 
that attenuate the test’s correlation with other variables, ecological correlations are in­
variably much larger than correlations based on individual scores. For example, the cor­
relation between children’s IQs and their parents’ socioeconomic status (SES) is about 
.40. But if we group children into several nonoverlapping groups by IQ level and group 
parents into several nonoverlapping groups by SES level, the correlation between the 
means o f the two sets o f groups (assuming the groups are large) will be close to one 
(assuming a linear relationship throughout the range on both variables).

16. Brand, Freshwater, & Dockrell, 1989.
17. Schaie (1994), Figure 7, p. 308. The PMA tests’ g loadings mentioned in the text 

are based on Thurstone’s 1938 standardization data for the PMA (given in Jensen, 1980a, 
p. 215, Figure 6.11).

18. Lynn, 1990a.
19. ETS Developments, 1986. (ETS, Princeton, NJ).
20. Lynn & Cooper, 1993 (France); 1994 (Japan).
21. Lynn & Hampson (1986); Teasdale & Owen, 1989.
22. Detailed analyses and explanations of the secular decline of scores on the SAT 

and other measures o f scholastic achievement are provided by Jones (1981), Murray & 
Herrnstein (1992), and in a multiauthored book edited by Austin & Garber (1982).

23. Brand, 1987c; Brand et al., 1989.
24. Flynn, 1990.
25. The statistical reason that the average increase in performance on individual items 

greatly underestimates the average increase in total scores (based on a large num ber of 
items) is that single-item performance is far from perfectly correlated with the total score, 
the typical correlation being + .2 0  to + .30. Thus the regression of item scores on total 
scores would predict that a difference between two groups on a single item will be only 
about 20 or 30 percent as large as the group difference on the total score. The average 
item difference and the total score difference between groups could be approximately 
equal only under one of the two following unrealistic conditions: (1) all of the item
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intercorrelations averaged zero (in which case the items would have zero correlation with 
the total score and the internal consistency reliability of the test would be zero, that is, 
the item scores and total scores would be purely random error), or (2) all the item 
intercorrelations were unity (in which case a single item would serve as well as the whole 
test). Neither o f these extreme conditions applies to any actual mental test.

26. (a) Ceci, 1991; (b) Ceci, 1992, p. 8.
27. A simple example of this is that in first grade children are taught, say, that 2 + 

3 is the same as 3 + 2. Later, when the child learns algebra, the rule is made more 
abstract and general: a + b =  b + a. All algebraic formulas and equations are decon- 
textualized statements. Syllogisms can be decontextualized: Which statement (1 or 2) is 
false? (1) All Xs are Y; all Ys are Z; therefore all Xs are Z. (2) All Ps are Q; all Ns are 
Q; therefore all Ps are N. Now notice how much easier equivalent syllogisms seem when 
they are contextualized: (1) All men are persons; all persons are human; therefore all 
men are human. (2) All chickens are fowl; all ducks are fowl; therefore all chickens are 
ducks. A person who is unable to decontextualize a syllogism would most likely declare 
the following syllogism to be false, although in terms of pure logic (but not experience) 
it is true: All apples are fruit; all fruits are green; therefore all apples are green. Syllo­
gisms are no longer used in IQ tests, because syllogisms are uniformly easy for persons 
who solve them by using Venn diagrams. Since knowing or not knowing the “ trick”  of 
using a Venn diagram is the main determinant of passing or failing a syllogism, syllo­
gisms are poor items for an IQ test. Different persons with the same IQ differ much too 
markedly on “ syllogism ability,”  a difference often attributable to their either having 
learned or not having learned the “ trick”  of using Venn diagrams for verifying syllo­
gisms. However, syllogisms would be suitable items in an achievement test, to determine 
whether a student had mastered the use of Venn diagrams after receiving instruction.

28. Lynn, 1987a, 1987b, 1989, 1990a, 1990b; Lynn & Pagliari, 1994.
29. Schoenthaler et al., 1991. A good, though far from comprehensive, article on the 

effects of nutrition on IQ (Ricciuti, 1994) offers a somewhat more conservative assess­
ment than the articles by Lynn1281 and by Schoenthaler. Eysenck (1995) discusses the use 
of nutrients as a means of sudying intelligence differences experimentally. Eysenck and 
Schoenthaler (1997) provide the most recent and comprehensive review o f experimental 
studies of the effects of nutrition on IQ.

30. Jensen (1997a) reviews much of the recent literature on the effects of the biological 
environmental factors (including mother-fetus immunogenic incompatibility factors) on 
mental development. Most of the environmental variance in IQ is attributable to the 
cumulative effect of such biological factors. Jensen (1996a) replies to an article by Flynn 
(in the same book) and summarizes the specific environmental factors hypothesized to 
play some part in the secular rise in IQ.

31. M odern mass-production poultry farms make use o f this phenomenon, by keeping 
chicks under bright electric lighting twenty-four hours a day, to hasten their rate of 
growth and the time needed to reach their maximum egg-laying capacity.

32. (a) Lucas et al., 1992; (b) Ryan et al., 1991.
33. Blake, 1966.
34. Nagoshi & Johnson, 1986.
35. Sundet, Tambs, Magnus, & Berg, 1988, p. 47.
36. (a) Flynn, 1984; (b) 1987b; (c) 1987c; (d) 1996.
37. Tuddenham, 1948.
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38. Humphreys, 1989, p. 198. Humphreys cites no specific study in connection with 

this statement, which may be based on his personal observations.
39. Nichols, 1987a, p. 234.
40. Suppose Group A took a mechanical aptitude test in 1930 and Group B (at the 

same age as Group A was in 1930) took the same test thirty years later, in 1960. Also, 
suppose both groups were measured on the same external criterion (e.g., some job per­
formance, say, widgets produced per hour) at about the same time that they took the 
test. The regression of the criterion measures on the test raw scores for Group B is 
indicated by the regression line Yn. For any subject in Group B, it gives the best pre­
diction of the criterion value, that is, how many widgets he will in fact produce in an 
hour, given that subject's raw score on the mechanical aptitude test (X). If Group A had 
the same regression line as Group B, then a subject in Group A who scored, say, fifty 
on the mechanical aptitude test will have the same predicted widgets per hour production 
as a subject in Group B who also scored fifty on the test. But if Group A has lower 
scores, on average, than Group B, and if the B-A difference in mean scores is nonfunc­
tional (i.e., “ hollow ” , lacking g) then a member of Group A with a test score of, say,
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Figure 10.IV. Regression lines of criterion measures (Y), (e.g., widgets produced per 
hour) on raw test scores (X) (e.g., a mechanical ability test) for Groups A and B, with 
arrows showing the predicted values (YA and Yn) of the criterion for a given raw score 
(e.g., fifty). (See Note 40 for explanation.)
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fifty will predictably produce more widgets than will a member of Group B who also 
has a test score of fifty. This means that Group A has a different regression line 0*A) 
from Group B and that Group B ’s regression line, YB, (W erpredicts the widget- 
producing performance by members o f Group A.

41. Jensen, 1980a, Chapter 10 (“ Bias in Predictive Validity” ); W igdor & Garner, 
1982.

42. Jensen, 1991a.
43. See explanation o f “ regression line”  in Note 40.
44. Lipsey, M. W „ & Wilson, D. B., 1993, Table 1.
45. Brody, 1992.
46. Brown & Campione, 1982.
47. Spitz, 1986, p. 215.
48. Benbow, 1992.
49. Carroll, 1993a. See pp. 669-672.
50. Currie & Thomas, 1995.
51. A child’s statistically expected IQ (nIQc) is given by the regression equation RIQC 

=  rpc(IQp ~  XiQ) +  X,Q, where rlx.is the parent-child correlation for IQ, IQp is the parent’s 
IQ, and XIQ is the mean IQ o f the population from which the child’s parent was sampled. 
The median IQ correlation between a parent and a child (when reared by the parent) in 
thirty-two studies reported in the literature is rpc =  +0.42. For example, assuming IQp 
= 80 and XIQ =  100, the child’s statistically expected IQ is .42(80 — 100) +  100 =  
91.6. This predicted value has a considerable standard error of estimate for any individual 
child whose IQ is predicted by this equation. For a large sam ple of parents all o f whom 
had an IQ of eighty, however, there would be little discrepancy between the predicted 
value (91.6) and the actual mean IQ o f all their children.

52. The original study by Skodak and Skeels (1949) used two different editions of 
the Stanford-Binet IQ test based on different standardization samples (separated by four­
teen years) for testing sixty-three of the biological mothers and for testing all of the 
children. Flynn (1993) has made the proper adjustments in the mean [Q of mothers and 
of children to correct for the differing norms in the two standardizations. This adjustment 
had the effect of considerably reducing the size of the mother-child IQ difference orig­
inally reported by Skodak and Skeels (from 20.55 IQ points to 12.87 IQ points). My 
calculation o f the children’s average expected IQ (see Note 51) is based on Flynn’s 
adjusted means, a mother-child correlation of + .42, and a population mean of 100.

53. Locurto, 1990.
54. Bouchard & Segal, 1985. This is the most comprehensive review and interpretation 

of evidence on environmental influences on mental development and IQ in the psycho­
logical literature.

55. G arber's (1988) book is a large monograph describing the entire Milwaukee Pro­
ject and reporting all of its final results. The originator and first director of the project, 
Rick Heber, died in an airplane crash and was not involved in the production of the final 
report. An extensive analytic review of Garber’s monograph (including references to 
virtually all of the literature on the project) is provided by Jensen (1989b); four other 
critical reviews (by D. Guthrie, D. L. MacMillan & K. Widaman, H. Spitz, and R. A. 
W einberg) and a reply by Garber and his co-workers appear in the American Journal on 
M ental Retardation , 1991, 95, 447-524.

56. Campbell & Ramey, 1990, 1994, 1995.
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57. A general description o f the Abecedarian Project, its main results, and key ref­

erences are given by its principal investigator, C. T. Ramey (1994). Critical reviews of 
the project are provided by Spitz (1992, 1993a, 1993b). For replies to Spitz, see Ramey 
(1992, 1993a, 1993b).



Population Differences in g
Chapter 11

Because IQ is strictly a phenotype, as is every observable or meas­
urable human characteristic, it does not, by itself, support any in­
ference concerning the cause of either individual or group 
differences in IQ. Whatever their cause, IQ differences are related 
to variables of immense practical consequence in the modern world. 
The substantial correlation of IQ with many educational, economic, 
and social criteria has been well established. Largely for this reason, 
there has been a long-standing interest in the IQ differences between 
various populations in the United States that markedly differ, on 
average, on these salient criteria. By far the most extensively re­
searched group differences in IQ are those between the two largest 
populations in the United States: persons of European ancestry who 
are socially identified as “ white”  and persons of some African an­
cestry who are socially identified as “ black”  or African-American.

The approximately normal distribution of IQ, as measured by 
nationally standardized tests, shows that, on average, the American 
black population scores below the white population by about 1.2 
standard deviations, equivalent to eighteen IQ points. (Blacks in sub- 
Saharan Africa score about two standard deviations [approximately 
thirty IQ points] below the mean of whites on nonverbal tests.)

This statistical mean difference between the American black and 
white populations has scarcely changed over the past eighty years 
for which IQ data have been available. However, it varies across 
different regions of the country, being largest in the Southeast and 
decreasing in magnitude on a gradient running north and west. The 
mean difference, which is in evidence by about three years of age, 
increases slightly from early childhood to maturity. These are simply 
the phenotypic, psychometric, and statistical facts. The average dif-
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ference, of course, is relatively small compared to the range of var­
iation within either population and, in fact, is not much greater than 
the average difference between full siblings reared together in the 
same family.

The most visible educational, economic, and social consequences 
of the group difference in IQ arise largely from two effects: (1) the 
statistical characteristics of the normal curve, and (2) the minimum 
probable threshold of the level of ability needed for certain socially 
valued attainments. When two normal distributions of IQ have dif­
ferent means, although the curves largely overlap one another, a 
given cut-score on the IQ scale can make a very large difference 
between the proportions of the lower-scoring group and the higher- 
scoring group that fall below (or above) the cut-score. The further 
the distance of the cut-score from the mean of the higher-scoring 
group, the larger is the group difference between the proportion of 
each group that falls above (or below) the cut-score. Cut-scores on 
the IQ scale that fall at critical thresholds (mental retardation, pass­
ing grades in regular classes, high school graduation, college ad­
mission, college degree, high-level occupation, and the like) 
therefore result in conspicuous disparities between the proportions 
of the higher-and lower-scoring groups that fall into different social 
and occupational categories. Therefore it is reasonable to enquire 
about the nature and causes of these group disparities. Only their 
strictly phenotypic or psychometric aspects are examined in this 
chapter.

Extensive research on test bias has shown that no fraction of the 
white-black (W-B) IQ difference, at least in the United States, is 
attributable to any cultural bias in the tests. Nor is the magnitude of 
the difference a function of the formal characteristics of the tests, 
such as verbal, nonverbal, individual versus group administration, 
culture-loaded, or culture-reduced. For all of their legitimate, prac­
tical, and typical uses, present-day psychometric tests of mental 
ability have the same reliability and validity for native, English- 
speaking blacks (and American-born, English-speaking Hispanics 
and Asians) as they have for whites.

The magnitude of the mean black-white difference, however, var­
ies considerably across tests that have different homogeneous item 
contents. This variation between tests in the size of the standardized 
mean W-B difference is not explainable in terms of test bias or in 
terms of differences in types of item content or other formal or 
superficial characteristics of the tests. Charles Spearman (1927) sug­
gested that the different relative magnitudes of the W-B differences 
on various tests are a function of each test’s g loading. This hy­
pothesis (now called “ Spearman’s hypothesis” ) has since been
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tested in numerous studies based on large, representative samples of 
the American black and white populations. The hypothesis is 
strongly borne out in these studies. The degree to which a particular 
test is g loaded predicts the magnitude of the standardized mean W- 
B difference on that test better than does any other psychometric 
factor yet identified. This implies that the W-B difference consists 
mainly of a difference in g. However, two other factors, independent 
of g, also show a W-B difference: blacks, on average, exceed whites 
on a short-term memory factor while whites, on average, exceed 
blacks on a spatial visualization factor. The effects of these factors, 
however, show up only on tests that involve these factors, whereas 
the g factor enters into the W-B difference on every kind of cog­
nitive test.

Spearman’s hypothesis has also been studied using elementary 
cognitive tasks (ECTs) that measure the time it takes a person to 
process information presented in tasks that are so simple that all 
persons in the study sample are able to perform them correctly in 
only one or two seconds. The chronometric variables derived from 
such ECTs vary in their g loadings and show significant W-B dif­
ferences. The extent to which the different ECT variables are g 
loaded predicts the relative magnitudes of the standardized mean W- 
B differences on the chronometric variables derived from the ECTs. 
Spearman’s hypothesis is thus confirmed even for tasks that do not 
call upon previously acquired knowledge or skills and that scarcely 
resemble conventional psychometric tests.

The g factor is especially germane to the study of group differences in per­
formance on psychometric tests, at least with respect to the populations com­
monly referred to as black and white. These are the only two groups at present 
for which we have massive and definitive data specifically related to the g issue. 
Various psychometric data, including IQ, also exist for Asian and Hispanic 
populations, but scarcely any of these data have been analyzed with respect to 
g per se. Our analysis, therefore, is focused on psychometric data obtained from 
samples of the two largest racial groups in the United States. Blacks presently 
constitute about 13 percent of the U.S. population and are projected to reach 15 
percent by the year 2020.111

My aim here is not to review the vast (and readily accessible) literature2 on 
racial, ethnic, and cultural group differences in IQ (or other psychometric meas­
ures), but to explain why understanding the significance of g is a necessary first 
step for understanding the nature of the observed W-B differences on a wide 
variety of cognitive measures. But first I shall summarize the actual data on 
black and white IQ and indicate the most pertinent conclusions now generally 
accepted by researchers in psychometrics and differential psychology.
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Keep in mind that all of the discussion in this chapter concerns only individ­

uals’ phenotypes and the average phenotypic differences between groups. The 
phenotypes of interest here are test scores (raw or standardized). Test intercor­
relations, factor analyses, and factor scores are all based on these phenotypic 
measurements. As with all measurement and observation in the biological and 
behavioral sciences, test scores per se are strictly phenotypic data. Phenotypic 
variation, of course, is the result of both genetic and environmental variation. 
Each of these sources of variance and their interaction (if any) contributes some 
proportion of the total observed population variance. Given suitable data, the 
analytic methods of quantitative genetics (explained in Chapter 7) can statisti­
cally estimate the proportions of genetic and environmental variance. (For either 
source of variance, genetic or environmental, a value of either zero or one is 
possible, depending on the particular phenotype, but intermediate values are the 
rule for most of the phenotypes of interest to behavioral geneticists.)

There are many important phenotypic differences, both between individuals 
and between groups, and the cause of such differences is always a topic of 
interest and controversy. However, discussion of hypothesized causal factors 
(other than test bias in its strict psychometric sense) is postponed until Chap­
ter 12.

It should be noted that all of the descriptive statistics and studies referred to 
here are based on the social classification of individuals into racial groups as 
black or white, although virtually all American blacks have some degree of 
European Caucasian ancestry (see Chapter 12). American blacks are socially 
defined simply as persons who have some degree of sub-Saharan African an­
cestry and who identify themselves (or, in the case of children, are identified 
by their parents) as black or African-American. Persons of European Caucasoid 
ancestry are classified as whites.

BLACK AND WHITE IQ DISTRIBUTIONS: STATISTICAL 
SUMMARY

M ean an d  S tan d ard  Deviation. When IQ is scaled to a mean of 100 and a 
standard deviation (SD) of 15 in the white population, large representative sam­
ples of the black population of the whole United States (rather than a local 
subgroup) show a mean close to 85. For most samples and tests, the range is 
80 to 90. The black SD of IQ is approximately 12, ranging in most samples 
from 11 to 14. There is some slight, nonsystematic variation for different IQ 
tests and normative samples. For example, the normative sample on one of the 
most widely used individual IQ tests for school-age children (the Wechsler In­
telligence Scale for Children-Revised, or WISC-R), using the same scale (i.e., 
white mean =  100, SD =  15), the black mean is 84.0, with SD of 13.6. On the 
same scale, the black normative mean and SD of IQ are 86.5 and 13.5 on another 
popular IQ test (the 1986 Stanford-Binet-IV).
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The mean W-B* differences based on a number of different studies or dif­

ferent tests can be cumulated or averaged most precisely when the mean 
differences are expressed in units o f the averaged standard deviation within each 
group.3 This measure is known both as the sigma difference (a  diff) or as the 
effect size (d). This standardized scale permits direct comparisons of mean dif­
ferences regardless of the original scale of measurement or the characteristic 
measured. A meta-analysis of 156 independent studies of the W-B difference, 
based on many different IQ tests given to American samples, yields an overall 
mean sigma difference of 1.08a. The a  differences have a SD  of 0.36, which 
means that about two-thirds of the mean W-B differences in these 156 studies 
fall between 0.12a  and 1.44a, or roughly equivalent to mean IQ differences 
between ten and twenty points, with an overall average difference of 16.2.4

The meaning of a a  difference might be elucidated by looking at a physical 
scale that is familiar to everyone, such as human stature. The height (without 
shoes) of a sample of 8,585 British adult males (measured in 1883) showed a 
mean of 67.46 inches (5 ft., 7 V2 in.) and a SD of 2.57 inches. The distribution 
of height in this sample is close to normal. Six-footers, therefore, are (72 — 
67.46)/2.57 =  1.8a above the mean. The height of men who are l a  below the 
mean is 67.46 — 2.57 65 inches (5 ft., 5 in.). The total range in this sample 
goes from 57 inches (4.1a below the mean) to 77 inches (3.7a  above the mean). 
Thus the heights of 57 and 77 inches in this distribution correspond to scores 
of 39 and 156, respectively, on the IQ scale.

A difference between the means of two population groups has a quite different 
kind of consequence than does the very same size difference when obtained 
between two individuals on the same scale. For groups, the most important 
consequence of a group difference in means is of a statistical nature. This may 
have far-reaching consequences for society, depending on the variables that are 
correlated with the characteristic on which the groups differ, on average, and 
how much society values them. In this statistical sense, the consequences of 
population differences in IQ (irrespective of cause) are of greater importance, 
because of all the important correlates of IQ, than are most other measurable 
characteristics that show comparable population differences.

When two readily distinguishable populations have different means on a so­
cially significant trait (or a trait, like g, that correlates with, and therefore reliably 
predicts, one or more socially significant behaviors), and if that trait has an 
approximately normal distribution in each population, there are significant social 
consequences that are readily apparent, even to casual observers who may have 
no direct method of measuring the trait in question. Because the percentage of 
individuals who fall in a given a  range decreases so rapidly as one moves away 
from the mean and toward either tail of the normal distribution (see Figure 11.1),

’"Throughout the text, W -B or B-W  alw ays signifies “ white minus b lack”  or “ black minus 
w hite,”  respectively. The two variables are m ade the minuend and subtrahend so as alw ays to yield 
a  difference with a positive sign.
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it quickly becomes obvious that the populations are disproportionately repre­
sented in the high (“ desirable” ) and in the low (“ undesirable” ) tails. This can 
lead to a misconception, or even an institutional policy, that elevates all members 
of the former population as being “ superior”  in terms of the desirable trait (or 
the behaviors that correlate with it) and lowers all members of the latter popu­
lation as being “ inferior.”  This can in turn result in understandable cries for 
policies that will redress this statistical inequity.

Consider the fact that the mean difference in IQ between members of the two 
racial groups (white and black) is little different from the average difference 
between full siblings reared in the same family. But because “ brighter”  and 
“ duller”  siblings are not immediately recognizable and therefore categorized as 
such, there has been neither widespread nor institutionalized discrimination 
against the latter and in favor of the former, nor policies enacted in the hope of 
redressing the statistical inequity that does in fact exist between these two 
groups.

This statistical consequence of the mean W-B difference in IQ is seen in 
Figure 11.1. Although perfectly normal curves do not exist in reality, the two 
curves shown here are made to be perfectly normal to permit precise percentages 
in each segment o f the two curves. It also facilitates explanation to make the 
SD of IQ equal to fifteen in each group and to set the mean difference precisely 
equal to la . This picture, in fact, comes reasonably close to the actual population 
statistics and, if anything, slightly underestimates the true statistical conse­
quences o f the group difference.

The crucial point in Figure 11.1 is the disparity in percentiles for the two 
groups, which, given the mean difference of la , is a consequence o f the nor­
mality of the distributions. To the extent that there are different selection thresh­
olds' for the level of IQ needed for ccrtain levels of educational attainment, or 
for selection into colleges, occupations, or specialized training programs, pop­
ulation groups that differ in mean IQ will be represented unequally in the se­
lection outcome. This is a direct consequence of the correlation between IQ and 
these socially significant variables within each population. For example, many 
school systems place children with IQ below seventy in special classes for the 
“ educable mentally retarded”  (EMR). The percentages of blacks and whites 
below IQ seventy are 15.9 percent and 2.3 percent, respectively— a ratio of 
about seven to one. Highly selective colleges admit students largely from that 
segment of the population distribution with IQ above 115. Calculated from Fig­
ure 11.1, the ratio of white to black percentages above this level is about seven 
to one. The ratio becomes increasingly disparate the farther above (or below) 
the IQ level of the selection criterion (or cut-score) is from the mean of the 
higher-scoring group. Some school systems, for example, place children with 
IQ above 130 in special classes for the academically gifted. As determined from 
Figure 11.1, the ratio of percentages of whites to blacks with IQ above 130 is 
about twenty to one. (Since blacks constitute about 13 percent of the U.S. pop­
ulation, the actual numerical ratio of white/black IQ above 130 is about 150 to
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DisnunrrioN
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F ig u re  1 1 .1 . IQ distributions in white and black populations shown as normal curves, 
with the percentile ranks given at each level of IQ marked off at l a  (= 1 5  IQ points) 
intervals above and below the white mean (=100). The percentile rank indicates the 
percentage of the total distribution of IQ that falls below a given cut-score on the IQ 
scale for the given group.

one.) Ultimately it is these disparate percentage ratios and their commonly per­
ceived consequences for IQ-correlated educational and occupational thresholds 
that are at the root of the public concern over IQ and race.

The pernicious notion that IQ discriminates mainly along racial lines, how­
ever, is utterly false. This can be demonstrated most clearly in terms of a sta­
tistical method known as the analysis o f  variance. Table 11.1 shows this kind 
of analysis for IQ data obtained from equal-sized random samples of black and 
white children in California schools. Their parents’ social class (based on edu­
cation and occupation) was rated on a ten-point scale.

In the first column in Table 11.1 the total variance of the entire data set is of 
course 100 percent and the percentage of total variance attributable to each of 
the sources6 is then listed in the first column. We see that only 30 percent of 
the total variance is associated with differences between race and social class,

White Black

97.7%

50.0%

2.3%

84. 1%

2.3%
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Table 11.1
Percentage o f Variance and Average Difference in IQ A ssociated Independently 
with Race (Black or White), Social Class, Between-Families, Within-Families, 
and M easurement Error

S o u r c e %  o f  V a r i a n c e
A v e r a g e  I Q  

D i f f e r e n c e

B etw een races (w ith in  social classes) h ) 12

B etween social classes (w ith in  races ) 8 )  3 0 % 6
In te ra c t io n  of racc a n d  social class 8 )

B etw een families (w ith in  race a n d
social class) 2 6 ) 9

W ith in  families (s iblings) 3 9  ) 6 5  7o 11

M e a s u r e m e n t  e rr o r 5 4
T o ta l 1 0 0 17

whereas 65 percent of the true-score variance is completely unrelated to IQ 
differences between the races and social classes, and exists entirely within each 
racial and social class group. The single largest source of IQ variance in the 
whole population exists within fam ilies , that is, between full siblings reared 
together in the same family. The second largest source of variance exists be­
tween families of the same race and the same social class.

The last column of Table 11.1 shows what happens when each of the vari­
ances in the first column is transformed into the average IQ difference among 
members of the given classification. For example, the average difference be­
tween blacks and whites of the same social class is 12 IQ points. The average 
difference between full siblings (reared together) is 11 IQ points. Measurement 
error (i.e., the average difference between the same person tested on two oc­
casions) is 4 IQ points. (By comparison, the average difference between persons 
picked at random from the total population is 17 IQ points.) Persons of different 
social class but of the same race differ, on average, only 6 points, more or less, 
depending on how far apart they are on the scale of socioeconomic status (SES). 
W hat is termed the interaction of race and social class (8 percent of the variance) 
results from the unequal IQ differences between blacks and whites across the 
spectrum of SES, as shown in Figure 11.2. This interaction is a general finding 
in other studies as well. Typically, IQ in the black population is not as differ­
entiated by SES as in the white population, and the size of the mean W-B 
difference increases with the level of SES.

C onstancy O ver T im e. The mean W-B IQ difference has remained fairly 
constant at about l a  for at least eighty years, with no clear trend upward or 
downward since the first large-scale testing of representative samples of blacks 
and whites in the United States. It is important that the secular increase in IQ
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Socioeconomic Status
Figure 11.2. Mean IQ for random samples of white and black Californian children in 
each of ten SES categories (lowest =  1, highest =  9). The interaction  of race X social 
class shown in Table 11.1 reflects the increasing B-W difference as the level of SES 
increases, thus constituting a source of variance (8 percent) associated jointly with race 
and  SES. Source: Bias in mental testing by Arthur R. Jensen, Fig. 3.1, p. 44. Copyright 
® 1980 by Arthur R. Jensen. Reprinted with permission of The Free Press, a Division 
of Simon & Schuster, and Routledge Ltd.

(known as the Flynn effect, discussed in Chapter 10) has affected the black and 
white populations equally. Although both groups have shown a gradual rise in 
raw scores on IQ tests over the past several decades, the mean W-B difference 
of about lo  has remained virtually constant over the same period.

R egional V ariation . The mean IQ of blacks varies between different regions 
of the country, being generally lower in the Southeastern states, with an increas­
ing gradient of IQ going toward the Northern and Western states. Whites show 
a similar, though less pronounced, regional gradient. As this gradient already 
appears in children’s IQ measured before school age, it is not entirely attribut­
able to regional differences in the quality of schooling. The regional differences, 
some as much as ten to fifteen IQ points, are associated with earlier patterns of 
migration, the population densities in rural and urban areas, and the employment 
demands for different educational levels in various regions.

Age V ariation . Black infants score higher than white infants on develop­
mental scales that depend mainly on sensorimotor abilities. Scores on these
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infant scales have near-zero correlation with IQ at school age, because the IQ 
predominantly reflects cognitive rather than sensorimotor development. Between 
ages three and five years, which is before children normally enter school, the 
mean W-B IQ difference steadily increases. By five to six years of age, the 
mean difference is about 0.70c  (eleven IQ points), then approaches about l a  
during the elementary school years, remaining fairly constant until puberty, 
when it increases slightly and stabilizes at about 1.2a. The latest (1986) Stan- 
ford-Binet IV norms show a W-B difference in prepubescent children that is 
almost five IQ points smaller than the W-B difference in postpubescent children. 
(The W-B difference is 0 .80a for ages 2 through 11 as compared with 1.10a 
for ages 12 through 23.) This could constitute evidence that the mean W-B 
difference in the population is decreasing. Or it could simply be that the W-B 
difference increases from early to later childhood. The interpretation of this age 
effect on the size of the W-B mean difference remains uncertain in this instance, 
as it is based entirely on cross-sectional rather than longitudinal data. Both kinds 
of data are needed to settle the issue. The cause of variation in the mean IQ of 
different age groups all tested within the same year (a cross-sectional study) 
may not be the same as the cause of variation (if any) in mean IQ of the same 
group of individuals when tested at different ages (a longitudinal study).

T ypes o f  T ests. The average W-B difference is about the same for verbal 
and for nonverbal IQ tests, provided the nonverbal tests do not include a sub­
stantial spatial-visualization factor (which slightly increases the W-B difference). 
The mean W-B difference, however, varies considerably across many different 
kinds of cognitive tests, if each test is composed of homogeneous items (for 
example, each of the subtests of well-known batteries, such as the Wechsler 
Intelligence Scales, the General Aptitude Test Battery [GATB], and the Armed 
Services Vocational Aptitude Battery [ASVAB]). Variation between subtests in 
the magnitude of the W-B difference is not predictable from simple inspection 
of the tests as to their item content (e.g., verbal, nonverbal, or performance), or 
as to the type of test (e.g., paper-and-pencil, free response or multiple-choice, 
individual or group administration, culture loaded or culture reduced). The mag­
nitude o f the W-B difference on a given test is best described in terms of the 
Spearman hypothesis, discussed later in this chapter.

G enerality . The W-B difference in IQ is not confined to the United States, 
but is quite general and in the same direction, though of varying size, in every 
country in which representative samples of the white and black populations have 
been tested. The largest differences have been found in sub-Saharan Africa, 
averaging about 1.75a in 11 studies.|7ilb| The largest difference between white 
and African groups (equated for schooling) is found on the Raven matrices (a 
nonverbal test of reasoning). In one large study the mean difference averaged 
about 2 .0a  for Africans with no apparent European or Asian (East Indian) an­
cestry and about 1.1a for Africans of mixed ancestry.181 The East Indians in 
Africa averaged about 0 .5a  below Europeans with the same years of schooling.

Studies in Britain have found that the mean IQ difference between the white
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and the West Indian (mainly African ancestry with some [unknown] degree of 
Caucasian admixture) populations is about the same as the W-B difference in 
the United States.191 Recent immigrant East Indian children score, upon arrival 
in Britain, about as far below the British mean as do the West Indians, but, 
unlike the West Indians, the East Indians, after spending four years in British 
schools, score at about the same level as the indigenous white Britishers. A 
longitudinal study1101 of this phenomenon concluded, “ The most striking result 
of the longitudinal IQ test results was the declining scores of the West Indians 
and the rising scores of the Indian children, in comparison to the non-minority 
children in the same schools. It appeared that the Indian children were acquiring 
the reasoning skills expected of children in the 8-12-year period, while the West 
Indians were not keeping pace in reasoning skills with most British children” 
(p. 40). The most recent British study1111 presents a somewhat different and more 
complex picture, to the effect that the most recent East Indian and Pakistani 
immigrants and those born in Britain within the last decade or so have scored 
less favorably on IQ tests and in scholastic performance than the earlier immi­
grants from the Indian subcontinent, although the Indian children were still on 
a par with the British in tests of reasoning and mathematics. It was only in the 
language area that they tested below the British children. Inexplicably, the Pak­
istanis performed conspicuously less well than the Indians. As these effects most 
likely reflect secular shifts in the particular self-selected segments of the home 
country’s population that emigrated to Britain, they would seem to be only of 
local interest and of questionable general significance.

IS THE W-B DIFFERENCE DUE TO CULTURE-BIASED TESTS?
It is now well established and widely accepted by those familiar with the

evidence that the W-B difference on cognitive tests is not attributable to test
bias (as defined in psychometrics). This is not to say that the difference couldn’t
be due to bias, but it so happens that it is not. It is entirely possible to devise 
tests that are biased, just as it is possible to devise tests that are not biased. It
is fair to say that, with respect to all legitimate uses of mental tests, the profes­
sionally produced tests in wide use today are not biased for any native-born, 
English-speaking racial or ethnic subgroups in the U.S. population. A now vast 
but rather technical body of research literature"21 fully supports this conclusion, 
and although it has been one of the most critically examined conclusions in all 
of contemporary psychology, no effective contradiction based on evidence has 
come forth.

In psychometrics, bias is defined as a systematic error of measurement, as 
contrasted with random  measurement error. A measurement is said to be biased 
if it consistently either overestimates or underestimates the true value of the 
variable that was measured. A number of independent statistical methods are 
used to detect the presence of bias in mental tests with respect to group differ­
ences. These methods are fully capable of revealing such bias if it is in fact
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present. Each of these methods statistically decides whether the test behaves in 
the same way for different groups on some essential psychometric property. If 
the test behaves differently in the two groups on any important psychometric 
property, it is considered biased. Obviously, since tests are expressly intended 
to measure individual differences, and because groups are aggregates of indi­
viduals, a finding that test scores reveal individual differences or mean differ­
ences between groups cannot itself be evidence of bias. Bias is suspected, 
however, if a test shows signs of not measuring the same thing in different 
individuals (or in different groups) who differ on some characteristic (such as 
sex, race, or ethnicity) that has no prima facie relation to the construct nominally 
measured by the test. If shown, this would imply that the test scores do not have 
the same meaning for the different groups. Test publishers, such as the Educa­
tional Testing Service and the Psychological Corporation, have invested heavily 
in research on bias detection to ensure that their tests are not biased. In the 
tryouts of a new (or revised) test, these methods permit any particular source of 
psychometric bias to be spotted and eliminated. The same is true for the tests 
developed by the armed services and the U.S. Employment Service.

Countless studies have applied these methods for detecting such bias to the 
test performance of American blacks and whites, and with overwhelmingly con­
clusive results. As it would take us too far afield to explain all the technical 
details of research on test bias, I will only list the main psychometric criteria 
used to study test bias.

P red ic tive  va lid ity  is crucial for assessing bias: Do test scores show the same 
correlation with some independent criterion variable (e.g., job performance, 
grade-point average, etc.) in both groups? Does the criterion variable have the 
same regression on test scores in both groups? (That is, throughout the range 
of scores and criterion measures does the same test score predict the same level 
of criterion performance for both groups?) Meta-analyses of innumerable studies 
based on many different selection tests and a wide variety of criterion measures 
answer both of these questions in the affirmative. There is no evidence of either 
s in g le -g ro u p  va lid ity  or d iffe ren tia l va lid ity  for black and white groups, as would 
be indicated if a test was valid in one group but had no validity in the other 
group, or had significantly different degrees of validity for each group. Using 
these criteria, differential validity is simply nonexistent. Black and white groups 
not only have the same validity coefficient for a given test, but usually also 
have the same regression line. When the regression lines for blacks and whites 
differ significantly, it is usually an artifact of there being the same degree of 
random measurement error within each group. Typically, the true-score regres­
sion is the same for both groups. When there is a real exception to this gener­
alization, it typically consists of what is termed in te rcep t bias. In virtually all 
instances of such bias, however, the test scores for blacks overestimate their 
actual level of criterion performance when prediction is based on either the white 
regression line or the common regression line (see Figure 11.3). Intercept bias 
results when the groups differ not only on the factors measured by the test but



362 The g  Factor

C r i te r io n  (Y )

Figure 11.3. An example of intercept bias with respect to hypothetical groups A and 
B. The asterisk on X and on Y means that these are actually measured variables, in this 
case test scores (X*) and criterion measures (Y*). ^  is the regression line (i.e., the line 
of best prediction of values of Y* from values of X*) for each group and for the com ­
bined groups (A + B). The precise position of the regression lines is determined mathe­
matically from the data on variables X and Y. The regression lines here are parallel (i.e., 
they have the same slope), but their intercepts are seen to differ (i.e., they cross Y* at 
different points). As a consequence, for each group (and for the combined groups) the 
same value on the criterion (Y*) is predicted by a different test score (X*A, X*B, and 
X*a+b)- Conversely, a given test score predicts different values of Y* for each group, 
which means that the common regression line overpredicts the lower-scoring group 
(B) and iW erpred ic ts the higher-scoring group (A). The usual remedy for intercept 
bias is simply to base prediction on each group’s own regression line. Source: Bias in 
mental testing by Arthur R. Jensen, fig. 9.10, p. 416. Copyright ® 1980 by Arthur 
R. Jensen. Reprinted with permission o f The Free Press, a Division o f Simon & 
Schuster, and Routledge Ltd.

also on other factors that are uncorrelated with the test scores but are correlated 
with the criterion. These other factors may be abilities not sampled by the test 
or personality traits such as conscientiousness, dependability, emotional stability, 
energy level, dominance, and the like.

Order o f  item difficulty is a completely internal indicator of bias. If the in­
dividual items in a test measure the same factor(s) in the black and white groups, 
then one should expect the rank order of item difficulty levels to be the same 
for both groups. If item #6 is harder (i.e., more difficult as indicated by the 
greater percentage of the sample who fail it) than item #5 in one group, item
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#6 should also be harder than item #5 in the other group. Thus we can rank the 
item difficulties in each group and look at the rank-order correlation between 
the two sets of ranks. This correlation can be compared with the rank-order 
correlation within each sample (or between two comparable sized samples each 
selected at random from the same racially homogeneous population). Item bias 
is indicated if the first correlation is significantly smaller than the second (mean­
ing that the rank ordering of item difficulties is less alike in the two groups than 
it is in the same group). This method has been applied in many studies based 
on almost every widely used mental test, including the Wechsler scales and the 
Stanford-Binet. Invariably, the rank order of item difficulty for blacks and for 
whites is correlated over + .95 and is as high as the reliability of the rank order 
within each sample. Hence there is no evidence of bias by this internal criterion.

A stringent test of this criterion was performed1 on a test intentionally com­
posed of two types of items as judged by a group of psychologists: items judged 
to be either “ culture-loaded”  (C) or “ noncultural”  (NC). The mean W-B dif­
ference was actually smaller on the C group of items than on the NC items.

Here is the specific test for item bias: Relative item difficulty, separately for 
the black and the white groups, and separately for the C and NC items, was 
expressed for each of the items on an interval scale of difficulty known as the 
delta (A) scale.14 The results are shown as a scatter diagram in Figure 11.4. The 
correlation (r) between the black and white A values for the 37 C items is +.96, 
for the 37 NC items r =  + .95, and for all 74 items r = + .96. (The correspond­
ing rank-order correlations are + .98, + .97, and + .97.) Hence, even in a test 
intentionally made up of items that are commonly expected to accentuate cul­
tural item bias, no evidence of bias was found.

Item  X  total score correlation is another internal indicator of item bias. Be­
sides measuring something in common (usually g), each of the items in a test 
also measures some group factors that are shared with only a limited number 
of other items as well as something that is specific to the particular item. Because 
the particular mix of these three sources of variance varies across items, there 
is considerable variation in each single item’s correlation with the total test 
score. If the items are rank-ordered by these item X  total score correlations 
(designated by rIT) separately for each of two groups that had taken the same 
test, a correlation between the rank order of rIX values for the two groups close 
to 1.0 indicates that the items and the test as a whole measure the same factors 
in both groups, hence ruling out bias. When applied to the W-B difference on 
various tests this criterion shows no evidence of bias. The rank-order correlation 
between the item rIT values in black and white samples is typically over +.95.

Similarity o f  fac tor structure o f  diverse tests would be unlikely if a battery 
of tests measured different things in each group. Factor analyses of different test 
batteries each composed of highly diverse tests show the same factor structure 
for blacks and whites when the samples are large and representative of their 
respective populations. Congruence coefficients (a measure of factor similarity), 
are typically above .95, indicating virtually identical factors, usually with the
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Figure 11.4. Bivariate scatter diagram of the index of relative item difficulty (scaled 
as A) for the thirty-seven “ cultural”  (C) and thirty-seven “ noncultural”  (NC) items for 
the black and white samples. (The A values have a mean of thirteen and SD  of four in 
each sample for both the C and NC items. The overall scatter diagram o f seventy-four 
data points represents a correlation (r) o f + .96  between the black and white A values. 
Reprinted from Personality and Individual Differences, 8, A. R. Jensen and F. C. J. 
McGurk, Black-white bias in “ cultural”  and “ noncultural” test items, 295-301, Copy­
right 1987, with kind permission from Elsevier Science Ltd, The Boulevard, Langford 
Lane, Kidlington 0X5 1GB, UK.

highest congruence for the g factor. This outcome is in fact inevitable if the 
matrix of test intercorrelations does not differ significantly between blacks and 
whites, as is generally true. In those cases where there is a significant difference 
between the black and white correlation matrices, g and the large-group factors 
usually remain unaffected. (The effects of the correlational differences show up 
only in the smaller principal components, with eigenvalues less than one.)

Congruence o f item characteristic curves (ICC) for different groups is prob­
ably the most rigorous means for the fine-grained detection of item bias, al­
though its use is rather restricted to very large samples, such as are available to 
test publishing firms and the armed services. For each item in a test, the ICC 
shows the percentage of individuals in a given sample who pass the item, as a
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function of the total score. (The ICC is shown graphically in Figure 10.1, p. 
314.) Item bias is indicated if two groups yield significantly different ICCs. In 
recent years a variety of methods for detecting item bias has sprung from the 
ICC approach.1151

Error distractors in multiple-choice answers are of interest as a method of 
discovering bias. When a person fails to select the correct answer but instead 
chooses one of the alternative erroneous responses (called “ distractors” ) offered 
for an item in a multiple-choice test, the person’s incorrect choice is not random, 
but is about as reliable as is the choice of the correct answer. In other words, 
error responses, like correct responses, are not just a matter of chance, but reflect 
certain information processes (or the failure of certain crucial steps in infor­
mation processing) that lead the person to choose not just any distractor, but a 
particular one. Some types of errors result from a solution strategy that is more 
naive or less sophisticated than other types of errors. For example, consider the 
following test item:

If you mix a pint of water at 50° temperature with two pints of water at 80°
measured on the same thermometer, what will be the temperature of the mix­
ture? (a) 65°, (b) 70°, (c) 90°, (d) 130°, (e) Can’t say without knowing
whether the temperatures are Centigrade or Fahrenheit.

We see that the four distractors differ in the level of sophistication in mental 
processing that would lead to their choice. The most naive distractor, for ex­
ample, is D, which is arrived at by simple addition of 50° and 80°. The answer 
A at least shows that the subject realized the necessity for averaging the tem­
peratures. The answer 90° is the most sophisticated distractor, as it reveals that 
the subject had a glimmer of the necessity for a weighted average (i.e., 50° + 
8072 =  90°) but didn’t know how to go about calculating it. (The correct 
answer, o f course, is B, because the weighted average is [1 pint X 50° +  2 
pints X 80°]/3 pints =  70°.) Preference for selecting different distractors changes 
across age groups, with younger children being attracted to the less sophisticated 
type of distractor, as indicated by comparing the percentage of children in dif­
ferent age groups that select each distractor. The kinds of errors made, therefore, 
appear to reflect something about the children’s level of cognitive development.

This kind of developmental trend in choice of distractors shows up distinctly 
in the Raven matrices test, in which all of the items consist of figures repre­
senting different kinds of logical relationships that the subject must induce in 
order to deduce the correct answer and select it from among a number of dis­
tractors. W hat we have found in analyses of distractor choices in large black 
and white samples is that both groups show much the same percentages choosing 
the different distractors, but this is true only when the groups are roughly 
matched on mental age, not on chronological age. For example, age ten whites 
and age twelve blacks are much more alike in distractor choices than are white 
and black children of the same chronological age. The same developmental 
offset has also been found on tests on which subjects actually produce the an­
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swers or responses rather than select the correct response from multiple-choice 
alternatives. The Gesell Figure Copying test, Piaget’s tests of developmental 
stages, and even free drawing all show highly distinctive performance charac­
teristics at different ages, thus indicating a clear and uniform developmental 
trend. Although black children show exactly the same age sequence of perform­
ance characteristics as whites in these developmental measures, they are on a 
different time line, reaching each stage of development at a later age. Their lag 
in attaining these developmental milestones is equivalent to an average cognitive 
developmental rate (beyond age two) of about 80 percent of that for white 
children. Thus, on average, a black six-year-old, for example, performs about 
like a white five-year-old on these developmental tasks. This disparity in de­
velopmental level is the basis of the typical W-B difference in school readiness, 
which, absent tests, is usually brought to light by the cognitive demands of the 
first-grade curriculum.

Noncognitive correlates o f  mental tests, if not significantly different between 
groups, provide ancillary evidence that the test behaves the same in both groups, 
although it is seldom as compelling as evidence based on cognitive correlates. 
The noncognitive variables for which the W-B differences in correlations have 
been studied are the correlation of IQ with chronological age, body measure­
ments (height, weight, head circumference), the IQ correlations between twins 
and between full siblings, and the coefficient of heritability for IQ.

Unlike IQ itself, which is a standardized score with a mean of 100 and SD 
of fifteen for every age group, the raw scores of IQ tests increase steadily and 
almost linearly with age from early childhood up to about age fifteen years, 
after which they rapidly approach asymptote at a negatively accelerated rate of 
increase. The fact that the raw scores on each of the twelve subscales of the 
WISC-R tests do not show significant differences between blacks and whites in 
their correlations with age is presumptive evidence that the tests are measuring 
the same latent variables in both groups.1161 The regressions of scores on age, 
however, do differ in slope, with blacks showing a lower slope, indicating a 
slower rate of mental growth, with a lower asymptote.

That the correlation of IQ with either age-adjusted height or weight is not 
significantly different between very large samples of blacks and whites (ap­
proximately 12,000 in each sample) measured at ages four and seven years also 
suggests that IQ measures the same construct in both groups.'171 In the same 
samples there was a slight but significant W-B difference (W >  B by about 
.05) in the correlation of IQ with age-adjusted head circumference. (The overall 
average correlations at ages four and seven years were .12 and .21, respectively.)

A number of studies of the correlation between twins (both MZ and DZ) and 
between full siblings on a variety of tests show no consistent significant differ­
ences between the black and white twin or sibling correlations. From this evi­
dence and a review of the heritability coefficients for IQ, estimated from three 
studies of black and white MZ and DZ twins, Loehlin et al. concluded there 
was “ appreciable and similar heritability of IQ within the U.S. black and white
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populations.” 1181 However, each of these studies of heritability provides only 
weak evidence for any conclusion, because of the very large standard errors1181 
of h2 for the sample sizes used, so that even rather large W-B differences in h2 
could not show up as significant. O f course, the obtained differences probably 
reflect nothing more than the large sampling error associated with the twin 
method for estimating h2, but this must remain in doubt until much larger black 
and white twins samples are obtained. In the four twin studies in which the 
black and white samples were both part of the same study and took the same 
tests under the same conditions, the /V-weighted average values of the h2 esti­
mates in the black and the white samples (totaling 964 black pairs and 788 
white pairs) are .49 and .38, respectively. These values of h2 are unusually low 
for IQ generally, but are not much out of line for these samples, which consist 
mostly of young children. The heritability of IQ, in fact, increases from early 
childhood to later maturity; that is, the genotypic variance becomes increasingly 
expressed in the phenotypic variance throughout most of the human life span. 
(A predominantly environmental theory of IQ variation would have to predict 
the opposite.)

Race o f  examiner, for individually or group-administered tests, has no con­
sistent or significant effect on the average level of performance for either blacks 
or whites.1191

T w o T yp es o f  M ental R etardation  M istaken as T est B ias. This is a matter 
I have not seen mentioned in the literature on test bias. It was brought to my 
attention in discussions with schoolteachers who have taught classes for the 
mentally retarded.

Mental retardation is generally defined as an IQ of — 2o or more below the 
population mean, or IQ below seventy. (Placement in a special class in school 
depends also on other characteristics in addition to low IQ, such as exceptionally 
poor progress in regular classes and persistent failing grades in the basic sub­
jects.) W hat originally drew me into research on test bias was that teachers of 
retarded classes claimed that far more of their black pupils seem to look and 
act less retarded than the white pupils with comparable IQ. This was especially 
apparent in social interactions and playground activities observed by teachers 
during recess and recreation periods.

Their observations were indeed accurate, as I later confirmed by my own 
observation and testing of pupils in special classes. In social and outdoor play 
activities, however, black children with IQ below seventy seldom appeared as 
other than quite normal youngsters— energetic, sociable, active, motorically well 
coordinated, and generally indistinguishable from their age-mates in regular clas­
ses. But this was not so for as many of the white children with IQ below seventy. 
More of them were somehow “ different”  from their white age-mates in the 
regular classes. They appeared less competent in social interactions with their 
classmates and were motorically clumsy or awkward, or walked with a flat- 
footed gait. The retarded white children more often looked and acted generally 
retarded in their development than the black children of comparable IQ. From
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such observations, one gets the impression that the IQ tests are somehow biased 
against the black pupils and underestimate their true ability.

In most of the cognitive tasks of the classroom that call for conceptual learn­
ing and problem solving, however, black and white retarded children of the 
same IQ do not differ measurably either in classroom performance or on objec­
tive achievement tests. Trying out a variety of tests in these classes, I found one 
exception— tasks that depend only on rote learning and memorization through 
repetition. On these tasks, retarded black pupils, on average, performed signif­
icantly better than white pupils of the same IQ.20

The explanation for these differences cannot be that the IQ test is biased in 
its predictive validity for the children’s general scholastic learning, because pre­
dictive validity scarcely differs between black and white groups. Nor is the test 
biased according to any of the other standard criteria of bias (reviewed above). 
Rather, the explanation lies in the fact that IQ per se does not identify the cause 
of the child’s retardation (nor is it intended to do so).

There are two distinguishable types of mental retardation, usually referred to 
as endogenous and exogenous or, more commonly, as fam ilial and organic. The 
lower tail (IQ <  70)) of the normal distribution of IQ in the population com­
prises both of these types of retardation.

In familial retardation there are no detectable causes of retardation other than 
the normal polygenic and microenvironmental sources of IQ variation that ac­
count for IQ differences throughout the entire range of IQ. Although persons 
with familial retardation are, on average, lower in IQ than their parents and 
siblings, they are no lower than would be expected for a trait with normal 
polygenic inheritance. For example, they score (on average) no lower in IQ 
compared with their first-order relatives than gifted children (above + 2 a )  score 
higher than their first-order relatives. Parent-child and sibling correlations for 
IQ are the same (about + .50) in the families of familial retardates as in the 
general population. In other words, the familial retarded are biologically normal 
individuals who deviate statistically from the population mean because of the 
same factors that cause IQ variation among all other biologically normal indi­
viduals in the population. Traits that are not associated with IQ in the general 
population do not distinguish the familial retarded from the rest of the biolog­
ically normal population. An analogy with stature, also a normally distributed 
polygenic trait, would be a physically strong, well-proportioned, well-nourished, 
healthy person of very short height. Such a person is neither a dwarf nor a 
midget, nor stunted by malnutrition or illness. (In the population distribution of 
adult male height, —2a  is about 5 ft., 2 in.).

Organic retardation, on the other hand, comprises over 350 identified etiolo­
gies, including specific chromosomal and genetic anomalies and environmental 
prenatal, perinatal, and postnatal brain damage due to disease or trauma that 
affects brain development. Nearly all of these conditions, when severe enough 
to cause mental retardation, also have other, more general, neurological and 
physical manifestations of varying degree. These are in fact among the behav­
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ioral and physical signs used for the differential diagnosis of familial and organic 
retardation. The IQ of organically retarded children is scarcely correlated with 
the IQ of their first-order relatives, and they typically stand out as deviant in 
other ways as well. In the white population, for example, the full siblings of 
familial retarded persons have an average IQ of about ninety, whereas the av­
erage IQ of the siblings o f organic retardates is close to the general population 
mean of 100.

Statistical studies o f mental retardation based on the white population find 
that among all persons with IQ below seventy, between one-quarter and one- 
half are diagnosed as organic, and between one-half and three-quarters are di­
agnosed as familial. As some 2 to 3 percent of the white population falls below 
IQ seventy, the population percentage of organic retardates is at most one-half 
of 3 percent, or 1.5 percent of the population. Studies of the percentage of 
organic types of retardation in the black population are less conclusive, but they 
suggest that the percentage of organic retardation is at most only slightly higher 
than in the white population, probably about 2 percent.21 However, based on 
the normal-curve statistics of the distribution of IQ in the black population, about
16 percent fall below IQ seventy. Assuming that organic retardation has a 2 
percent incidence in the entire black population, then in classes for the retarded 
(i.e., IQ <  70) about 2%/16% =  12.5 percent of blacks would be organic as 
compared to about 1.5%/3% =  50 percent of whites— a white/black ratio of 
four to one. Hence teachers of retarded classes are more apt to perceive their 
white children as more generally handicapped by low IQ than are the black 
children.

VARIABILITY OF THE W-B DIFFERENCE: SPEARMAN’S 
HYPOTHESIS

IQ tests are seldom composed of homogeneous items. (The Raven matrices 
is the best-known example of one that is.) For most IQ tests the total score is 
typically based on an amalgam of heterogeneous item types or of subtests that 
differ in the particular types of knowledge or skill they demand and in their 
factor composition. Unfortunately, the almost exclusive emphasis on the black- 
white IQ difference in discussions of population differences has eclipsed the 
telling fact that the size of the group difference varies greatly across different 
(homogeneous) cognitive tests. This is especially regrettable from a research 
standpoint, because the great variability of the W-B difference across various 
tests can help us discover the psychometric basis of that difference.

By about 1980, the massive research on test bias had established that the 
variability of the mean W-B difference cannot be explained adequately in terms 
of some tests being more culturally biased than others. Besides the lack of 
objective evidence for bias, there is no connection between the differences in 
tests’ apparent potential for bias and the size of the W-B mean differences on 
these tests. Nor is the size of the W-B difference systematically related to the
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test’s specific type of information content (e.g., verbal/nonverbal, culture-loaded/ 
culture-reduced), or to the mode of test administration (e.g., individual/group, 
subject-produced response/multiple-choice, written/oral, timed/untimed). None 
of these test characteristics gives a clue as to why the size of the W-B difference 
varies markedly and consistently across diverse tests. It is on this question es­
pecially that all the conjectural explanations of the W-B difference that rely on 
such broad noncognitive notions as poor motivation in test taking, low self­
esteem, vulnerability to racial stereotypes, fear of failure, lower-caste status, and 
the like, so clearly founder.

Looking for a valid answer to this question, I focused first on the tests of 
digit span memory found in the Stanford-Binet and the Wechsler Scales. The 
W-B difference (in standard score units) was almost twice as large for backward 
digit span (BDS) as for forw ard digit span (FDS). Why should there be as large 
and consistent a difference between the W-B difference on FDS versus BDS? 
The contents of both tests are identical, namely, single random digits spoken by 
the examiner at the rate of one digit per second. In FDS, the examiner recites, 
say, four digits, and the subject is asked to repeat the digits in the same order. 
Then five digits are given, and so on, until the subject is unable to repeat all n 
digits correctly on two successive trials. The procedure for BDS is exactly the 
same, except that the subject is asked to repeat the series of digits in the reverse 
order to that presented. (The average adult can recall seven digits forward, five 
digits backward.)

Several studies1221 showed, in every age group, that the W-B difference on 
the FDS test is smaller (usually by about 0.5a) than on the BDS test. Also, 
when black and white groups were matched on mental age (thus the blacks were 
chronologically older than the whites), the black and white means did not differ, 
either on FDS or on BDS. These results are not easily explained in terms of a 
qualitative cultural difference or some motivational factor. Rather, the results 
are most parsimoniously explained in terms of a difference in the black and 
white rates of development of whatever abilities enter into FDS and BDS. BDS 
obviously makes a greater demand on mental manipulation of the input in order 
to produce the correct output than does FDS. Hence BDS can be characterized 
as a more complex cognitive task than FDS. Further, a factor analysis of FDS 
and BDS scores obtained at five grade levels clearly showed (in separate anal­
yses for blacks and whites) that two distinct factors are reflected in these tests, 
with the most salient loadings of FDS and of BDS found on different factors.

The interpretation of these digit span factors is elucidated by observing the 
correlations of FDS and of BDS with the WISC-R Full Scale IQ and the Raven 
IQ.1221 For both tests, the correlation between BDS and IQ is almost twice as 
large as the correlation between FDS and IQ. A factor analysis of FDS and 
BDS among a large battery of other tests showed that while both FDS and BDS 
are loaded on a memory factor and on g, BDS has the much larger g loading.

Although these findings on the interaction of the W-B difference with FDS 
and BDS are interesting in their own right, their broader theoretical significance
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did not strike me fully until a short time later, as I was rereading (after about 
twenty years) Spearman’s major work, The Abilities o f  Man. I came upon a brief 
passage that had not previously caught my attention enough to have been re­
membered— undoubtedly because I had not before had in mind the question to 
which the passage was finally to prove so germane. Following a reference to an 
early study1231 by psychologists at the University of Indiana that compared 2,000 
white and 120 black schoolchildren on a battery of ten diverse tests, Spearman 
(p. 379) noted that the blacks scored, on average, about two years behind the 
whites in mental age, but the amount of the W-B difference varied across the 
ten tests, and was most marked in those tests that were known to be most 
saturated with g.

The key point that struck me, of course, was that the W-B difference not only 
on digit span tests, but on many other kinds of cognitive tests, possibly on all 
cognitive tests, varies in magnitude directly with the size of the tests’ g loadings. 
It seemed as scientifically and aesthetically satisfying an answer to the question 
as one could imagine. Spearman’s hypothesis provides a parsimonious expla­
nation of a wide range of psychometric facts for which previous explanations 
were purely ad hoc suppositions, most of them mutually inconsistent.

Spearman presented no further analysis of his hypothesis, nor was any pos­
sible, since the authors of the cited study did not present the correlations that 
would have permitted a factor analysis of the tests. Spearman could only have 
surmised the tests’ relative g loadings, based on his extensive experience in 
factor analyzing and examining the g loadings of a great variety of tests. The 
authors of the original study, Pressey and Teter, had also noted that the size of 
the W-B difference showed distinct variation from test to test; the black children 
did best in a test of rote memory, poorest in a test of verbal ingenuity (unscram­
bling disarranged sentences). It was also noted that the rote memory test was 
the poorest of the ten tests in identifying the mentally retarded, while the dis- 
arranged-sentences test was the best. From such sketchy information, apparently, 
Spearman made the important conjecture that the relative size of the W-B mean 
difference across a group of diverse tests is a positive function of each test’s g 
loading. I have termed this conjecture Spearman’s hypothesis. Although Spear­
man may never have intended it to be a formal hypothesis, the potential theo­
retical implications of his offhand comment called for its being treated as an 
empirically testable hypothesis— a task I took up immediately.

Why is Spearman’s hypothesis so important? Because, if proven true, not 
only would it answer the question, at least in part, of why the magnitude of the 
W-B difference varies across different tests, but, of greater general importance, 
it would tell us that the main source of the W-B difference across various cog­
nitive tests is essentially the same as the main source of differences between 
individuals within each racial group, namely, g. This proposition would imply 
that a scientific understanding of the nature of the W-B difference in fact de­
pends on understanding the nature of g.

F orm aliz in g  S p ea rm a n ’s H ypothesis. For a hypothesis to be scientifically
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useful it must be specified in such a way that it can be rigorously tested. Spear­
man him self did not formulate his conjecture as a testable hypothesis, and 
therefore his conjecture implies more than a single form of the hypothesis.

The strong form  of Spearman’s hypothesis states that variation in the size of 
the mean W-B difference across various tests is solely a positive function of 
variation in the tests’ g loadings— the larger the g loading for a given test, the 
greater is the mean W-B difference on that test. No factor other than g is related 
to the size of the W-B differences on tests. A corollary of the strong hypothesis 
is that blacks and whites, on average, should not differ on any factor scores that 
are statistically independent of g. That is, the total score on any battery of diverse 
subtests from which the g factor has been regressed out of all of the subtest 
scores should not show a significant mean difference between representative 
samples of the black and white populations. Also, the “ profile”  of W-B differ­
ences on the various subtests, with g regressed out, should be flat overall, with­
out any significant peaks or troughs.

The weak form  of Spearman’s hypothesis states that variation in the size of 
the mean W-B difference across various tests is mainly a positive function of 
variation in the tests’ g loadings, but certain lower-order group factors (or subtest 
specificities) may also contribute some smaller part of each W-B difference. A 
corollary is that when g is regressed out of a battery of subtests, the resulting 
profile of W-B differences on the various subtests will have one or more peaks 
or troughs. That is, there will remain small but consistent and significant W-B 
differences on some subtests to the degree that they are loaded on certain non-g 
factors (or on the specificity of one or more of the subtests). (Specificity is that 
part of a test’s true-score variance that is unrelated to the variance of any other 
test entered into the same factor analysis.)

The contra hypothesis to Spearman’s hypothesis states that the W-B differ­
ence resides entirely or mainly in the tests’ group factors and specificity (in­
dependently of g), while the g factor contributes little or nothing to the 
difference.

The distinctions between the strong, weak, and contra hypotheses are depicted 
in Figure 11.5.

M ethodology for T esting S p earm an ’s H ypothesis. Spearman’s hypothesis 
states, in effect, that the differing size of the W-B difference on various tests is 
a direct function of (i.e., positively correlated with) the various tests’ g loadings. 
The test of Spearman’s hypothesis is accomplished by the method of correlated 
vectors (described in Appendix B). Briefly, one determines the correlation be­
tween the column vector of standardized mean W-B differences on a number 
of tests and the column vector of the tests’ g loadings. For a proper statistical 
test of Spearman’s hypothesis, the method of correlated vectors ideally must 
observe several prerequisite conditions:

1. The black and the white samples must be fairly representative of their 
respective populations and should be sufficiently large that the sampling error
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Figure 11.5. Diagrammatic representation of the strong and weak forms of Spearm an's 
hypothesis and the contra hypothesis in terms of the factor structure of nine supposed 
tests (vertical lines) giving rise to three first-order group factors A, B, C, and a g factor, 
for both black and white groups. The mean W-B difference is represented by A, with its 
subscript indicating the one (or more) factor(s) that enter into it. Dashed lines signify a 
weaker relationship o f the factor to A than do solid lines. In the contra hypothesis, test 
specificity (of any number o f the tests) could also contribute to the An„„.s.

of the correlations among tests is small enough to yield unambiguous and reli­
able factors.

2. The black and the white samples should not have been selected on any 
variables related to cognitive abilities, such as educational or occupational level, 
that might significantly restrict the range-of-talent (or variance) with respect to 
performance on the battery of tests subjected to factor analysis.

3. The factor analysis should be based on a large enough number of tests to
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permit the extraction of a stable and reliable g factor, as would be indicated by 
a very high coefficient of congruence between the g factor obtained in inde­
pendent samples from the same population.

4. Any test that is demonstrably biased (in the psychometric/statistical sense) 
with respect to the groups of interest should be excluded.

5. The tests must be sufficiently diverse in content, task demands, and factor 
structure to allow significant differences between the g loadings of the various 
tests.

6. The tests’ reliability coefficients should be known so that each test’s g 
loadings (and also the standardized mean group difference) can be corrected for 
attenuation (i.e., measurement error).

7. The factor analysis must be carried out separately within either the white 
or the black sample or separately for both, but certainly not in the combined 
samples, so that any psychometric differences between them cannot possibly 
enter into the factor analysis. (If the factor analysis were performed on the 
combined group, then, to the extent that the two groups differ on g, each sub­
test’s g loading would be inflated and there would be a “ built-in”  correlation 
between the vector of subtests’ g loadings and the corresponding vector of the 
mean differences between groups, hence positively biasing the correlated vectors 
in favor of Spearman’s hypothesis.)

8. The vector of g loadings extracted separately from each group must be 
sufficiently similar across groups to assure that the same factor is represented 
for both, as indicated by a congruence coefficient of above .95 (which is the 
conventional criterion for virtual identity of the factors). A failure of this con­
dition obviously precludes a test of Spearman’s hypothesis, because two groups 
cannot be compared meaningfully on a nominal factor unless it is, in fact, the 
same factor for both groups.

The statistical test of Spearman’s hypothesis, then, is the correlation24 between 
the vector of the tests’ g loadings25 and the vector of standardized mean differ­
ences between the groups on each of the tests, taking the tests’ reliability co­
efficients into account.26 (Notes 24, 25, and 26 concern technical details on the 
statistical procedures.)

It should be apparent that Spearman’s hypothesis and the method for testing 
it do not concern the absolute magnitude of the W-B difference on any test, but 
depend only on the relative magnitudes of the W-B difference across various 
tests that differ in their g loadings. Therefore, it is conceptually independent of 
secular trends in absolute test scores, now known as the Flynn effect (discussed 
in Chapter 10).

Is the g  F actor the Sam e in B lack and W hite G roups? This is a basic 
precondition for testing Spearman’s hypothesis and has been observed for every 
set of data so far used for this purpose. I have calculated the congruence coef­
ficient between the g factors obtained in black and white samples in every study 
that reports the intercorrelations of six or more psychometric tests separately for 
large representative samples of blacks and whites that I could find in the liter­
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ature.1271 The number of diverse tests in each factor analysis ranges from 6 to
24, averaging 12.5. The study samples are all independent and the correlation 
matrices are based on a variety of cognitive tests used in schools, employment 
selection, and the armed services. The studies were published between 1971 and 
1996. All of the g factors are represented either by the first principal factor (in 
a common factor analysis) or by the highest-order factor of a hierarchical factor 
analysis.

Over the seventeen studies, the congruence coefficient between the g factors 
extracted from the black and the white samples ranges from .976 to .999; the 
mean and median are both equal to .995. Clearly, we must conclude that factor 
analysis yields essentially the same g factor for both the black and the white 
samples on each of these seventeen different test batteries. In most cases, the 
residualized group factors (i.e., lower-order factors independent of g) show 
nearly as high a degree of black/white congruence, with congruence coefficients 
over .990 when samples are very large (which decreases the sampling error). In 
a study1281 of 212,238 white and 32,798 black applicants who took the seventeen 
diverse subtests of the U.S. Air Force Officer Qualifying Test, a hierarchical 
factor analysis yielded g and five first-order factors. The black/white congruence 
coefficients were .99+ for each of the factors. (The Pearson correlations between 
the vectors of factor loadings ranged between .97 and .99, and the groups did 
not differ in the average size of the g loadings.)

The g factor of a given battery also remains consistently the same factor 
across different age groups. Probably the best data that can be examined for this 
purpose are those based on the Kaufman Assessment Battery for Children (K- 
ABC), as this battery contains thirteen highly diverse tests representing at least 
three distinct factors besides g. Using the national standardization data to com­
pare the g factor obtained in two age groups (ages 7 to 8 years versus 11 to 
12.5 years), the g congruence coefficient for black children is .991; for white 
children, .998. (The black/white g congruence within each age group is at least 
.99.) The g factor (first principal component) accounts for about the same per­
centage of the total variance (averaging 58 percent) among the K-ABC subtest 
scores for different age groups (between 7 and 12.5 years) and for blacks and 
whites.1291

The fact that the g factor (the square of which yields a proportion of variance) 
is fairly constant across different age groups says nothing, of course, about 
changes with age in the level of performance on highly g-loaded tests. Nor is it 
informative about possible changes with age in the size of the W-B difference 
in the level of g-loaded performance. There are no data at present that are ideal 
for answering this question. The best we can do is to compare the size of the 
W-B difference in IQ across different age groups. To this end I have used the 
data in Audrey Shuey’s compendium1301 of all the published data on W-B IQ 
differences from 1920 to 1965.

For seventeen studies of young children (aged 3 to 6, averaging 5.2 years) 
published between the years 1922 and 1965, the mean W-B IQ difference on
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individually administered IQ tests was 10.76 (SD 8.0). The year of the study 
and the W-B IQ difference are correlated + .55, showing that the W-B difference 
for this age group has increased over time.

For thirty-three studies of elementary school children (aged 5 to 15, averaging 
9.61 years) published between the years 1920 and 1964, the overall mean W-B 
IQ difference was 14.63 (SD  6.8). For thirty-one studies based on nonverbal 
group tests, the mean W-B IQ difference was 14.32 (SD  5.9). For 160 studies 
of elementary school children based on verbal group tests, the mean W-B dif­
ference was 14.51 (SD 7.9). For elementary school children, then, the average 
W-B difference on all three types of tests is 14.5 IQ points. The year of the 
study and the W-B IQ difference are correlated + .29, showing an increased B-W 
difference over time for this age group also.

IQ data obtained from students enrolled in high school are no longer very 
representative of the black and white populations at that age, because of the 
differing school dropout rates associated with IQ. The probability of a student’s 
dropping out of high school is negatively correlated with IQ, and blacks have 
had much higher dropout rates than whites1311 during the period covered by 
Shuey’s review. This should produce a decrease in the W-B IQ difference if 
measured for students actually in high school. In fact, 117 studies of high school 
students showed a mean W-B IQ difference of 10.40 (SD 6.4). A more repre­
sentative estimate of the IQs of youths between ages eighteen and twenty-six 
can be obtained from the immense samples of enlisted men in the armed services 
during World W ar II. These subjects took the Army General Classification Test 
(AGCT), which is as highly correlated (r .80) with various IQ tests as the 
IQ tests are correlated with each other. The mean W-B difference on the AGCT 
was 1.25g, which is equivalent to 18.7 IQ points. More recent data are provided 
by the national standardization of the 1986 Stanford-Binet IV, which shows a 
W-B difference of 1.13a (or 17.4 IQ points) for youths twelve to twenty-three 
years of age.1321

In summary, the cross-sectional data show an increasing mean W-B IQ dif­
ference from early childhood (about 0.7a), to middle childhood (about lo ) , to 
adolescence and early maturity (about 1.2c). The same data provide no evidence 
to indicate a decrease in the mean W-B difference in IQ over the last 20 years 
or so.33 There is, however, considerable evidence of a significant decrease in 
the W-B difference on some scholastic achievement tests, largely due to edu­
cational gains by blacks— probably because of blacks’ increased attendance 
rates, years of schooling, and special services in recent decades. (See Chapter
14, Figure 14.2, p. 562.)

T ests o f  S p earm an ’s H ypothesis. My early research on Spearman’s hypoth­
esis is based largely on data that had already been reported in the literature and 
that reasonably met all of the previously enumerated criteria for testing Spear­
man’s hypothesis, although those data had not been collected for this purpose. 
Most studies used well-known test batteries that were administered to very large, 
nationally representative samples of the black and white populations in the



Population Differences in g 377

United States. The eleven such independent data sets provide samples totaling 
10,783 blacks and 29,712 whites who were given various test batteries of from 
6 to 13 diverse subtests (73 different tests in all). Included are all of the subtests 
of the W echsler Intelligence Scale for Children-Revised (WISC-R), the Kaufman 
Assessment Battery for Children (K-ABC), the General Aptitude Test Battery 
(GATB), the Armed Services Vocational Aptitude Battery (ASVAB), as well as 
several ad hoc batteries made up of a various published tests. Descriptions and 
summary tables for all of these tests and data, as well as the statistical results 
of the tests of Spearman’s hypothesis, appear in my “ target”  article in The 
Behavioral and Brain Sciences, followed by the “ peer reviews”  by thirty-one 
commentators selected by the journal’s editor, along with my reply.[34“'bl A later 
issue of this journal contained four more commentaries and my reply.[34° Since 
then several new studies (and a few more commentaries and replies) have been 
added to this collection.1341 Robert Gordon, a sociologist at The Johns Hopkins 
University, has written what is perhaps the most far-reaching and in-depth crit­
ical discussion of my research on Spearman’s hypothesis.134"1

Since the evidence for Spearman’s hypothesis and the many commentaries 
on it have all been published in great detail and are referenced in the notes, I 
will here only summarize the main findings. In sixteen independent studies 
(without correction for the effect of differences in the tests’ reliability coeffi­
cients), the median rank correlation between tests’ g loadings and the W-B 
differences is + .60; the mean correlation is + .59 (SD .12). With tests’ reliability 
coefficients partialed out, both the median and mean of the correlations are + .62 
(SD  .23). All but three of the correlations are significant beyond the .05 level. 
Combining the probabilities of the significance levels of all the independent 
studies, we may reject the null hypothesis (that is, that Spearman’s hypothesis 
is wrong) with an overall probability of less than 10~10. Finally, we can test 
Spearman’s hypothesis on all of the data sets combined. Figure 11.6 shows the 
scatter diagram for the correlation between the mean group difference (D in o  
units) and the g loadings of 149 psychometric tests obtained in fifteen inde­
pendent samples totaling 43,892 blacks and 243,009 whites. The correlation 
(with the effects of differences in tests’ reliability coefficients partialed out) is 
highly significant (t = 9.80, d f  = 146, p  <  .000). Hence there can be little 
doubt that Spearman’s hypothesis is borne out. Assiduous search of the literature 
has not turned up a single set of data with six or more diverse tests given to 
representative samples that contradicts Spearman’s hypothesis.35

A further validating feature of these data is revealed by the linear regression 
of the standardized W-B differences on the tests’ g loadings. (The regression 
equation for the W-B difference, shown in Figure 11.6, is D =  1.47g — .163). 
The regression line, which indicates the best estimate of the mean W-B differ­
ence on a test with a given g loading, shows that for a hypothetical test with 
zero g loading, the predicted mean group difference is slightly below zero 
( - .1 6 3 o ) , and for a hypothetical test with a g loading of unity (g =  1), the 
predicted mean group difference is 1.31a. The latter value is, in fact, approached
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Figure 11.6. Scatter diagram of the correlation (rsD) between the g loadings and the 
standardized mean W-B differences (D) on 149 psychometric tests. With the tests’ reli­
ability coefficients partialed out, the correlation is + .63  ip <  .000).

or equaled by the average difference found for the most highly g-loaded test 
batteries using highly representative samples of black and white Americans 
twelve years of age and over. In the black and white standardization samples of 
the Stanford-Binet IV, for example, the mean difference is 1.11a; for the WISC- 
R, 1.14a; and the most precisely representative large-scale sampling of the 
American youth population (aged fifteen to twenty-three), sponsored by the De­
partment of Defense in 1980, showed a W-B difference of 1.3a on the AFQT.36

The strong form of Spearman’s hypothesis, however, is not supported by a 
more fine-grained examination of all the data. That is to say, there are other 
factors, in addition to g, that contribute to the mean group difference, although 
their contribution is comparatively small next to g. There are also certain non- 
g factors that tend to cancel each other to some extent when they are combined 
in a test battery’s total score.

Tests that rather consistently show a larger W-B difference (in favor of 
whites) than is predicted by their g loadings are those that, besides being loaded 
on g, are also loaded on a spatial visualization factor. Examples are tests such
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as paper folding, block counting, rotated figures, block design, object assembly, 
and mazes. When groups of blacks and whites are perfectly matched on the 
WISC-R Full Scale IQ (which is nearly equivalent to a g score), whites still 
exceed blacks, on average, by as much as V20 on the most spatially loaded 
subtests.|34c,i| The tests that rather consistently show a smaller W-B difference 
than is predicted by the tests’ g loading (and, in fact, favor blacks) are those 
that are also loaded on a short-term memory (STM) factor. Examples are tests 
such as the Digit Span and Coding subtests of the WISC-R. When black and 
white groups are matched on Full Scale IQ, blacks exceed whites by as much 
as 0 .62a on Digit Span and 0 .49a on Coding, the two tests with the highest 
loadings on the STM factor. In the WISC-R Full Scale IQ, therefore, the whites’ 
average advantage on the spatial factor more or less balances the blacks’ ad­
vantage on the STM factor. Almost all of the remaining group difference on the 
test as a whole is therefore attributable to g.

To further examine the weak form of Spearman’s hypothesis, I compared 
nine typical test batteries in terms of the amount of the mean W-B difference 
attributable to g versus the amount of the difference attributable to non-g com­
mon factors (without regard for whatever abilities are reflected by the non-g 
factors).134" The aim was not to identify psychologically the abilities represented 
by these common factors that are independent of g , but only to determine just 
how much they contribute to the W-B difference. The g factor alone accounts, 
on average, for over four times as much of the total between-groups variance 
as do the three largest non-g factors combined.37 Clearly, in typical test batteries, 
g is the predominant factor in the W-B difference.

The fact that tests that are heavily loaded on either the spatial factor or STM 
factors consistently cause small but statistically significant deviations from the 
result predicted by the strong form of Spearman’s hypothesis dictates that the 
strong form of Spearman’s hypothesis must be rejected. The weak form of 
Spearman’s hypothesis, however, is confirmed. Rather than being just hypoth­
esis, it is now an empirical fact.

T he E ffect o f  T est Specificity. Next we should consider the effect of test 
specificity on our tests of Spearman’s hypothesis. Specificity, it will be recalled 
from Chapter 2, is that proportion of a test’s true-score variance that is not 
accounted for by any common factor. In other words, a test’s specificity is 
whatever that test measures reliably that is uncorrelated with anything measured 
by any of the other tests included in the same factor analysis. As much as 50 
percent or so, on average, of the subtests’ variance in some well-known test 
batteries (e.g., the W echsler IQ scales) consists of test specificity. This means 
that, on average, about half of the variance on each subtest is specific to that 
test. This source of variance, of course, does not enter into g or any of the group 
factors.

Within any given battery, specificity (along with measurement error) may be 
regarded as unwanted “ noise.”  Being uncorrelated with the common factors or 
with any other sources of variance measured by the subtests, most of the sub­
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tests’ specificity (like measurement error) tends to “ average out”  in the total 
score on the test battery as a whole. It should not be overlooked that the basic 
units of analysis in the tests of Spearman’s hypothesis reviewed so far are the 
g loadings and the standardized mean W-B differences on each o f the single, 
relatively homogeneous subtests in a battery. The single tests’ non-g common 
factors (particularly those representing spatial and memory abilities) and their 
specificities are, in effect, perturbations in our tests of Spearman’s hypothesis. 
Even the weak form of the hypothesis, which recognizes the separate non-g 
effects of the spatial and memory factors on the W-B differences, is not com­
pletely accurate. There are still perturbations due to subtest specificity.

In every test battery in which the effect of test specificity has been examined, 
the vector of specificity coefficients is negatively correlated with the vector of 
mean W-B differences. That is, the larger a test’s specificity, the smaller is the 
W-B difference. W hatever is specific to each of the subtests tends, in general, 
to reduce the W-B difference, or to favor blacks. On the WISC-R, for example, 
the average correlation between the W-B differences and the subtest specificities 
is — .46.[34cI This is not a surprising result, because, in accord with Spearman’s 
hypothesis, g accounts for most of the W-B difference, and specificity is simply 
a residual component of the non-g variance. Therefore, a negative correlation 
between the W-B differences and the specificities of the various tests in a battery 
is inevitable. Because the roughly complementary relation between g and spec­
ificity is a mathematical necessity, it would be improper in our test of Spear­
man’s hypothesis to partial out the vector of specificities from the correlation 
between the vector of g loadings and the vector of W-B differences. A better 
way to virtually eliminate the effects of specificity is to determine the group 
differences on each of the statistically independent (i.e., uncorrelated) factor 
scores derived from a test battery. When this was done for the WISC-R, based 
on the standardization samples of blacks and whites, the standardized mean W-B 
difference on each of the four factors in this battery of thirteen subtests was: g 
(1.14a), Memory ( —0.32a), Verbal (0.20a), and Performance (nonverbal and 
spatial) (0.20a). The composite of the scores on all four factors yields a mean 
W-B difference of 1,22a.|34cl The g component thus accounts for 93 percent of 
the groups’ total factor score difference on the WISC-R. Although the Wechsler 
tests were not expressly designed to maximize g (as was, for example, the Raven 
matrices test), they have a very large g saturation because they were pragmati­
cally constructed so as to have high validity for predicting a wide range of 
important criteria.1381

C onditions T hat A ttenuate T ests o f  S p earm an ’s H ypothesis. Critics have 
argued that if Spearman’s hypothesis (even in its weak form) is true, one should 
expect much higher correlations between tests’ g loadings and W-B differences 
than the correlations that have in fact been demonstrated, which, though fully 
significant, average only about + .60. This criticism, however, fails to take ac­
count of the conditions that markedly attenuate the correlation between these 
two sets of variables, but are not at all intrinsically related either to tests’ g
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loadings or to the magnitudes of group differences. The most critical of these 
attenuating variables is the restriction of range of g loadings in most of the 
standard test batteries. This results from the fact that the subtests have been 
expressly selected so as to maximize the g saturation of the composite score. 
The most highly g-loaded batteries, therefore, tend to have the smallest range 
of variation in the subtests’ g loadings. Also, in accord with Spearman’s hy­
pothesis, if there is a restriction of range of the tests’ g loadings, there will be 
a concomitant restriction of range of the W-B differences across the various 
subtests. A restriction of range of either one or both of two imperfectly corre­
lated variables diminishes the magnitude of the correlation from what it would 
be without such range restriction.

Because the restriction of range is not at all intrinsic either to g or to the 
group difference on any test, we should correct for the attenuating effect of 
range restriction on our tests of Spearman’s hypothesis. The usual statistical 
technique for doing this is to correct the obtained correlation for restriction of 
range. But this procedure presupposes that we have a good population estimate, 
or some theoretically derived value, of the unrestricted standard deviation as a 
basis for adjusting the restricted standard deviation of either one of the observed 
variables in the correlation. (Correction for restriction of range simultaneously 
for both of the correlated variables is statistically problematic.) For example, if 
we made the unwarranted assumption that the g loadings in the total universe 
of all possible psychometric tests ranged from 0 to 1 and were normally dis­
tributed, with a mean of .50 and SD  o f .20, the obtained correlation of + .60  in 
Figure 11.6 after correction for range restriction would be raised to +.75. How­
ever, because we have no rationale for assuming the form of the distribution of 
g loadings for the hypothetical universe of all possible cognitive tests from 
which we could derive the value of the unrestricted standard deviation, we must 
take a different approach.

We can determine how much the amount of variation in g loadings and in 
group differences in a number o f independent studies (based on various batter­
ies) affects each study’s degree of conformity to Spearman’s hypothesis. Con­
formity is indicated by the magnitude of the correlation between the vector of 
g loadings and the vector of W-B differences (d) for a given battery. (For no- 
tational convenience, the correlation between these two vectors, which consti­
tutes the test of Spearman’s hypothesis, can be labeled rglJ.) In a multiple 
regression analysis, we can regress the dependent variable, which is the n values 
of rga (obtained from each of n test batteries) on the following two independent 
variables: (1) the SD  of the g  loadings, and (2) the SD of the mean W-B dif­
ferences. The squared multiple correlation (R2) between the dependent variable 
rs<l (with reliability coefficients partialed out of rgd) and the two independent 
variables indicates the effect of the independent variables on the test of Spear­
m an’s hypothesis. For twelve test batteries, this R2 =  .22.39 In other words, over 
a fifth of the variance in the statistic rgd, which tests Spearman’s hypothesis,
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Figure 11.7. Histograms showing the frequency distributions of the g loadings (g) and 
of the standardized mean W-B differences (D) for 149 subtests from twelve different 
psychometric batteries each administered to independent black and white samples totaling 
286,901 individuals.

is a result of variation that is conceptually unrelated to the hypothesis, but which 
is unavoidable in any realistic test of the hypothesis based on rgd.

The theoretically ideal conditions for this test of Spearman’s hypothesis un­
fortunately are mutually contradictory: large g loadings on the subtests and max­
imum variation among the subtests’ g loadings; also, large mean group 
differences on the subtests and maximum variation among the group differences. 
Within the necessarily limited range of values from zero to one for g loadings, 
it is impossible to maximize the mean and the standard deviation simultaneously. 
As is evident from the data I have analyzed, the constructors of test batteries 
have selected mostly subtests with fairly large g loadings in order to maximize 
the g of the battery as a whole, hence a necessarily restricted variation among 
the subtests’ g loadings. In the 149 subtests in Figure 11.6, for example, the g 
loadings range from + .26 to +.89, with a mean of + .60  and SD of .13; the g 
loadings are concentrated in the upper part of the range, as shown in the left 
panel of Figure 11.7. The right panel shows the distribution of the standardized 
mean W-B differences on 149 subtests.

Still another condition that attenuates the rsd test of Spearman’s hypothesis is 
the reliability of the vector of g loadings and of the vector of the group differ­
ences for a given battery. The vectors are subject to sampling error, as are the 
statistics on the single subtests. These two sources of sampling error, though 
statistically somewhat related because they are both based on one and the same 
subject sample, can be quite different. In large samples (as have been used to 
test Spearm an’s hypothesis), the reliability of each of the correlated vectors is 
generally lower than the reliability of the factor loadings and the group differ­
ences on any single subtest.
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Since we have data on the twelve subtests of the WISC-R obtained in three 
large independent representative samples of blacks and whites, we can determine 
the average correlation between the g vectors obtained for each sample and also 
the average correlation between the vector of group differences (<i). The average 
correlation is an estimate of the reliability of each vector. For the g vector it is 
.86; for d  it is .78. For the test of Spearman’s hypothesis based on the WISC- 
R, if we use these reliability coefficients to disattenuate the average correlation 
rgA =  .61, the correlation is raised to ,61/,/(.86)(.78) =  .74. It seems likely that 
if the values o f rga obtained for all the other batteries used to test Spearman’s 
hypothesis could be disattenuated in this way, the overall average value of rga 
would be increased by some . 10 to .20 points, thus putting it somewhere between 
.70 and .80.

Besides the attenuating effect of subject sampling error, each of the batteries 
from which a g factor has been extracted is also liable to psychometric sampling 
error. The g extracted from a given battery is not exactly the same as the g 
extracted from a similar battery composed of different subtests. Although each 
battery gives an estimate of the hypothetical “ true”  g (as explained in Chapter
4, p. 87), estimates of g based on different test batteries typically correlate about 
+ .80 with each other. If one also disattenuated the grand average rgd for the 
effect of psychometric sampling error (in addition to subject sampling error), 
the fully corrected rga would rise to about ,90.40

C ritic ism s o f S p earm a n ’s H ypothesis. The two main technical criticisms 
that have been made against Spearman’s hypothesis or of the method for testing 
it have been answered in detail elsewhere.l:,4r-81

The first criticism is based on the mistaken notion that various psychometric 
tests either do or do not measure “ intelligence,”  and that the positive outcomes 
of the tests of Spearman’s hypothesis are simply the result of including in the 
same battery a number of subtests that measure “ intelligence”  along with a 
number of subtests that do not. Since blacks and whites are already known to 
differ on “ intelligence”  tests, it is argued, the inclusion of tests that do not 
measure “ intelligence”  in a battery makes the correlation rga inevitable. Pre­
sumably, it is further argued, if the battery were composed only of subtests that 
measured “ intelligence,”  any differences in their g loadings would not be cor­
related with the magnitudes of the W-B differences. These arguments are clearly 
refuted by three facts: (1) over all subtests there is a perfectly continuous and 
nearly normal distribution of g loadings, which have an almost perfectly linear 
regression (r = .97) on their rank order of magnitude; (2) the distribution of 
standardized W-B differences is perfectly continuous throughout; and (3) there 
is a linear relationship (r =  +.60) between g loadings and W-B differences 
throughout the entire range of both variables, without the least trace of any 
nonlinearity. In other words, Spearman’s hypothesis holds throughout the entire 
range o f g loadings ( +  .26 to + .89) used to test it. This has been most strikingly 
demonstrated in the analysis of various reaction time (RT) measures discussed 
later in this chapter. These RT measures have quite small g loadings compared
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to the conventional psychometric tests, but the rank order of their g loadings 
and their W-B differences manifest Spearman’s hypothesis to an even higher 
degree than do most of the psychometric batteries.

The second criticism is the claim that the evidence supporting Spearman’s 
hypothesis is somehow a mathematical necessity or tautology, rather than an 
empirical discovery, and that confirmation of the hypothesis is an inevitable 
result of the methodology used to test the hypothesis and is therefore just an 
artifact. That is to say, it is claimed that a correlation between g loadings and 
groups’ differences is guaranteed by the very process of factorization. This claim 
is fallacious and, in fact, wholly impossible, for the following obvious reason: 
When Pearson correlations between tests are calculated (always separately for 
blacks and whites), all information about the means and standard deviations of 
the tests (or their rank order of magnitudes) is rendered completely absent from 
the correlations. Consequently, absolutely nothing about the test score means or 
their rank order of magnitude can possibly be gleaned from the matrix of test 
intercorrelations. Ipso facto, nothing can be inferred about the rank order of the 
tests’ means from their loadings on g (or on any other factors extracted from 
the correlation matrix). Therefore, the results of the method used here for testing 
Spearman’s hypothesis cannot possibly be a mathematical artifact or merely a 
tautology. If Spearman’s hypothesis is borne out by finding a significant value 
of rga, as indeed is the case, it must necessarily be an empirical reality. The only 
theoretically possible exception to this assertion would be in the unrealistic con­
dition where the total variance of every test in the battery consisted exclusively 
of variance in g and variance due to random errors of measurement, in which 
case a significant group difference would necessarily be a difference in g and 
any variation in the standardized mean group differences on the various subtests 
would reflect nothing but variation in the subtests’ reliability.

S p ea rm a n ’s H yp othesis with SES C ontrolled . Countless studies have 
shown that school-age children’s IQs are correlated with their parents’ socio­
economic status (SES), as determined mainly by their occupational and educa­
tional level. Most of the IQ/SES correlations fall in the range of .35 to .45. 
(This implies a similar degree of correlation between g and SES.) Several facts 
indicate that the causal direction of the IQ/SES correlation is largely from IQ 
to SES: Adoption studies show near-zero correlations between adoptees’ IQs 
and the SES of their adoptive parents; there is a virtual absence of between- 
families, or shared, environmental variance in IQ; and IQ is more highly cor­
related (about .70) with individuals’ own attained SES (as adults) than 
individuals’ IQs are correlated with their parents’ SES (about .40). In the sim­
plest terms, with arrows indicating the direction o f predominant causality,

educational attainment
^  I .  7 .—■— occupation / income

~  SES.
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Because blacks and whites differ, on average, in SES, it could be claimed that 
Spearman’s hypothesis simply reflects this fact, and nothing more. The IQ/SES 
relationship, of course, makes it practically inevitable that (within either racial 
group) the vector of subtests’ correlations with SES would be correlated with 
the vector of subtests’ g loadings. In fact, this correlation, based on thirteen 
subtests of the WISC-R standardization data, is + .84 for whites and + .39 for 
blacks.1341:1 It appears that blacks are much less differentiated in IQ by SES than 
are whites, which is consistent with the picture in Figure 11.2 (p. 358) based on 
W ISC-R data from an independent sample.

The possibility that Spearman’s hypothesis simply reflects the W-B difference 
in SES was studied with eighty-six matched pairs of black and white fourth- 
and fifth-graders from three schools.[34hl Each black child was matched with a 
white child on a five-point scale of SES, and also on age, school, and sex. Each 
child was individually administered the WISC-R (11 subtests) and the K-ABC 
(13 subtests). The test of Spearman’s hypothesis was based on the combined 
batteries, 24 subtests in all. A hierarchical (second-order) g factor was extracted 
from this battery and the vector of the 24 subtests’ g loadings was correlated 
with the vector of standardized mean W-B differences. The Pearson r is +.78, 
the Spearman rs is +.75 (p  <  .01), and the partial correlation (with the subtests’ 
reliability coefficients partialed out) is +.85. The scatter diagram is shown in 
Figure 11.8.

Spearman’s hypothesis is substantiated even more clearly by these data on 
SES-matched groups than by black and white groups that differ in SES. All the 
other studies that have substantiated Spearman’s hypothesis obviously cannot be 
explained in terms of SES. The SES-matched black and white groups in this 
study showed the following differences (W-B in a  units) on the orthogonalized 
factor scores derived from the twenty-four subtests: g .77a , Verbal .20a, Spatial 
.39a, Memory ,01a. (In IQ units these differences are 12, 3, 6, and < 1 , re­
spectively.) The significant W-B differences on two of the group factors (Verbal 
and Spatial) independent of g is consistent with the weak form of Spearman’s 
hypothesis.

S p ea rm a n ’s H yp othesis in P reschoolers. Only one study134'1 has reported a 
test of Spearman’s hypothesis based on preschoolers. These physically normal, 
healthy children, drawn from lower, lower-middle, and middle-class areas of 
Cleveland, were between the ages of 3.0 and 3.4 years. The thirty-three black 
and thirty-three white children were matched on age, sex, birth order, and 
mother’s education (which averaged 13.58 for the black mothers and 13.24 years 
for the white). The groups differed significantly in birth weight (B <  W), but 
within each racial group the children’s birth weights were not significantly re­
lated to their IQs on the Stanford-Binet IV (SB-IV). Despite matching black and 
white children for maternal education, the children’s mean W-B IQ difference 
was 15.2 IQ points (in terms of the recent SB-IV norms) and 1.39a in terms of 
the study group’s SD. Maternal education was significantly related to IQ inde-
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Figure 11.8. Mean B-W differences (expressed in units of the average within-groups 
standard deviation) on W ISC-R and K-ABC subtests as a function of each subtest’s 
loadings on g. WISC-R subtests: I— Information, S— Similarities, A— Arithmetic, V—  
Vocabulary, C— Comprehension, DS— Digit Span, PC— Picture Completion, PA— Pic­
ture Arrangement, BD— Block Design, OA— Object Assembly, Cd— Coding. K-ABC 
Mental Processing (MP) subtests: HM— Hand M ovements, GC— Gestalt Closure, NR—  
Number Recall, T— Triangles, WO— Word Order, MA— Matrix Analogies, SM— Spatial 
Memory, PS— Photo Series. K-ABC Achievement (Ach) subtests: FP— Faces and Places, 
Ar— Arithmetic, R— Riddles, RD— Reading/Decoding, RU— Reading/Understanding. 
(From Naglieri & Jensen, 1987. Used with permission o f Ablex.)

p en d en tly  o f  race; th a t is, m aterna l ed u catio n  and  c h ild ’s IQ  are co rre la ted  w ith in  
each  racia l group.

T he g ro u p s also  d iffe red  s ign ifican tly  (B <  W ) on each  o f  the e ig h t subtests 
(v o cab u la ry , co m p reh en s io n , ab su rd itie s , p attern  an a ly sis , co p y in g , qu an tita tiv e , 
b ead  m em o ry , m em o ry  fo r  sen ten ces). T he ran k -o rd er co rre la tio n  b etw een  the 
v ec to r o f  the su b te s ts ’ d isa tten u a ted  g  lo ad ing s and  the vec to r o f  the d isa tten-
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uated mean W-B differences is rs =  +.71 (significant beyond the .05 level), 
which strongly bears out Spearman’s hypothesis among three-year-olds.

Two other features of this study are also relevant to Spearman’s hypothesis: 
(1) The column vector of standardized mean W-B differences on each of the 
subtests is correlated rs =  0.00 with the column vector of the magnitudes of the 
standardized difference (averaged within groups) in the effect of maternal edu­
cation on each subtest.41 (2) The vector of the subtests’ g loadings is correlated 
rs =  .26 (nonsignificant) with the vector of magnitudes of the effect of maternal 
education on the children’s performance on each subtest. In other words, there 
seems to be no relationship between the relative magnitudes of the W-B differ­
ences on these subtests and the effects of maternal education on each of the 
subtests, and no relationship between the subtests’ g loadings and the effects of 
maternal education. In accord with Spearman’s hypothesis, the subtests’ g load­
ings significantly predict the rank order of W-B differences. But the effect of 
maternal education on the subtests does not predict the rank order of the W-B 
differences on the subtests or the subtests’ g loadings.

S p ea rm an ’s H yp othesis and C riterion  Perform ance. The U.S. Air Force 
selects pilot trainees partly on the basis of the Air Force Officer Qualification 
Test (AFOQT). The AFOQT consists of sixteen subtests, twelve of which are 
from the ASVAB battery. Spearman’s hypothesis was tested on AFOQT data 
from 212,238 white and 32,798 black applicants. The hierarchical (second order) 
g factor for blacks and for whites are virtually identical (congruence coefficient 
=  .999), and therefore were averaged for each of the sixteen subtests. The 
column vector of average g loadings and the column vector of standardized 
mean W-B differences have a rank-order correlation of .610; with the vector of 
subtests’ reliability coefficients partialed out, the correlation is .603, which is 
significant (p <  .01) and consistent with Spearman’s hypothesis.1421 We can 
convert the W-B difference on each subtest to a point-biserial correlation (i.e., 
the correlation of each subtest scores with race expressed as a dichotomized 
variable [B =  1, W =  2]), which can then be regarded as the W-B difference 
factor for the battery. The congruence coefficient between this W-B difference 
factor and the g factor of the battery indicates how similar these two factors are. 
It is +.987, or virtual identity.

But does this fact have any relevance to the training outcome of those appli­
cants who score high enough on the AFOQT to be selected for pilot training? 
Do the subtests’ g loadings predict who will or will not make the grade in 
qualifying as an Air Force pilot? Selectees take a one-year training program in 
flying, consisting of a ground school phase and a jet plane training phase that 
includes some 190 hours of aircraft flying. Based on tests of job knowledge and 
ratings of actual flying performance, the final training outcome (FTO) is graded 
simply pass or fail. Some 66 to 80 percent of the trainees succeed; most attrition 
occurs because of deficiencies in actual flying performance.

The overall validity of the composite score on the AFOQT battery for pre­
dicting the final training outcome (pass =  1/fail =  0) is about + .70  (corrected
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for range restriction; the uncorrected value is +0.50).43 To determine the con­
tribution of each of the AFOQT’s sixteen subtests for predicting the FTO, the 
scores on each of the sixteen subtests can be correlated with the FTO. This has 
been done separately for black (N = 186) and for white (N  =  8,955) trainees 
to yield the validity coefficients of the separate subtests. The rank-order corre­
lation between the vector of the validity coefficients and the vector of subtests’ 
g loadings (with the vector of subtest reliability coefficients partialed out) is 
+  .70 for blacks and + .66 for whites. Hence the various tests’ g loadings are a 
strong indicator of the tests’ validity for predicting real-life criteria such as the 
probability of success in pilot training.

S p ea rm a n ’s H yp othesis T ested w ith  P opulation s O utside the U nited  
States. One studyi34k| has tested Spearman’s hypothesis on groups of secondary 
school students in South Africa. Each of the three study groups (white, black, 
and East Indian) had over one thousand students who were given the Junior 
Aptitude Test (JAT), a group-administered paper-and-pencil test consisting of 
ten subtests (four verbal, six nonverbal). Factor analysis of the JAT subtests 
reveals g and three group factors: verbal, spatial, and memory.

Unfortunately, an unusually thorough and technically sophisticated study of 
the JAT with respect to test bias led the study’s author (Owen) to conclude that 
the JAT was not psychometrically satisfactory for black pupils.1441 Three of the 
subtests had unusually low reliability coefficients(<.34) for blacks as well as 
extremely large W-B differences (>2.5cr). Two of these subtests call for verbal 
ability, the other one calls for mechanical knowledge. The problem with these 
three tests (and to a lesser degree most of the other JAT subtests) for our pur­
poses seems to be that most of the items were overly difficult for most of the 
black sample, so many items apparently elicited either no response or mere 
guessing, probably in large part because English was not the primary language 
of a majority of these children. For this reason (and others that are evident in 
Owen’s highly detailed monograph on bias in the JAT), a test of Spearman’s 
hypothesis based on the JAT in this sample of South African blacks seems 
questionable. With this caution in mind, the authors’ analysis, based on the 
disattenuated mean differences and g loadings, showed the vector of W-B subtest 
differences to be correlated r = + .624 with the vector of subtest g loadings for 
blacks. Because of the problematic psychometric properties of the JAT in the 
South African black sample, however, this finding can hardly be regarded as a 
true test of Spearman’s hypothesis.45

A more unique (and valid) contribution of this South African study is based 
on the East Indian sample (resident in South Africa). It allows more confidence 
in its results than do the data on blacks, because the problematic test bias and 
related psychometric shortcomings of the JAT evident for the black group were 
not a problem for use of the JAT in the East Indian group, whose subtest 
reliabilities and subtest intercorrelations were similar to those for the white 
group. Because the average of the white-Indian difference (W-I) of the JAT 
subtest scores was 0.96c, these data can be used to answer the question “ Does
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Spearman’s hypothesis hold for any two populations that differ by approxi­
mately l c  on the total score of a test battery?”  With the mean differences and 
g loadings corrected for attenuation, the vector of standardized mean W-I subtest 
differences and the vector of subtest g loadings were correlated r = + .129 (for 
g based on the white group) and +0.081 (for g based on the Indian group). 
Neither correlation differs significantly from zero. (In fact, the proper test of 
significance is based on the rank-order correlation with the vector of reliabilities 
partialed out, which is even a negative correlation [—.30], though nonsignifi­
cant.) Evidently some groups may have a test score difference even as large as 
l a  that does not consist primarily of a difference in g.

SPEARM AN’S HYPOTHESIS TESTED WITH ELEMENTARY 
COGNITIVE TASKS

R ationale. As explained in Chapter 8, elementary cognitive tasks (ECTs) can 
be used to measure individual differences in the speed and efficiency of infor­
mation processing. The subjects being tested find most ECTs so simple that the 
only aspects of performance that measure individual differences with high re­
liability are the speed of task performance and the variability in the subject’s 
speed across trials. Much recent research showing that individual differences in 
these ECT-based measures are systematically related to psychometric g (see 
Chapter 8). Given these findings, it is reasonable to expect that ECTs would 
also be useful for studying the nature of observed population differences in g. 
ECTs are vehicles of g, as are conventional psychometric tests. But ECTs are 
vastly different vehicles, with virtually no resemblance to ordinary IQ tests be­
yond the basic requirement that all subjects must attend to the task and respond 
according to simple instructions.

A d van tages o f  E C T s. The relative simplicity of ECTs is an obvious advan­
tage in testing individuals who differ in cultural and educational background. 
Virtually all subjects immediately grasp the task requirements. No specialized 
background knowledge is called for and the ECTs can be performed with little 
or no practice. Giving subjects a number of practice trials is, however, a routine 
part of the ECT testing procedure. It allows the subject to learn how to perform 
on the testing apparatus and allows the experimenter to make certain that the 
subject fully understands the task. Subjects who, for whatever reason, cannot 
grasp the essential task requirements or who lack the sensory or motor capability 
needed for performance are excluded. If the ECT requires any specific prior 
knowledge, such as the ability to read words or numbers, subjects are given a 
pretest for this prerequisite knowledge and those who achieve less than perfect 
performance (regardless of response time) are excluded.

E C T s and G roup D ifferences. It was not until a body of systematic research 
and generally consistent findings on individual differences in ECTs and their 
relationship to g had accumulated sufficiently to form a somewhat theoretically 
coherent picture of this domain (see Chapter 8) that mental chronometry could
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become a useful tool in the study of group differences. As I have reviewed a 
number of such studies elsewhere,1461 I will here consider only the question 
whether response time (RT) on various ECTs is related to psychometric g in 
much the same way for different populations as it is for different individuals.

With respect to individual differences, we know, for example, that, within 
limits, reaction time (RT) is less correlated with g for relatively simple ECTs 
than it is for relatively complex ECTs (such as the difference in information- 
processing demands even between such easy tasks as simple reaction time and 
discrimination reaction time). Also, intraindividual variability in RT across a 
number of trials (n ) usually reflects individual differences in g more strongly 
than does the median RT over the same n trials. RT is more g loaded than is 
movement time (MT), which is the time interval between lifting a finger from 
a “ home”  button when the reaction stimulus is first detected (i.e., RT) and 
pressing another button (typically just a few inches from the home button) that 
terminates the reaction stimulus (i.e., MT).

Factor analysis reveals that RT and MT reflect different processes, as they 
have their salient loadings on different factors. Median RT and intraindividual 
variability in RT (measured by the individual’s standard deviation of RT over 
n trials, hence labeled RTSD) reflect, in part, a cognitive or information- 
processing factor and therefore have their major loadings on the same factor as 
psychometric g. The salient MT loadings, on the other hand, appear on a sep­
arate factor best characterized as motor speed and coordination. Since the chron­
ometric apparatus used in some studies does not provide for separate 
measurements of RT and MT, what is sometimes called RT in these studies is 
actually a combination of both RT and MT. What I here term RT is often 
referred to by some researchers as decision time (DT) to distinguish it from MT 
or from measures that combine RT and MT.

Having separate measurements of RT and MT is especially important in the 
study of group differences for two reasons: (1) As RT is more related to g than 
is MT, a composite of RT + MT attenuates any correlation with g\ (2) as RT 
and MT represent different processes (cognitive and motor, respectively) group 
differences could go in opposite directions on each variable. If measured as a 
composite, their effects would cancel each other and obscure the detection of a 
difference between groups. In fact, there is some evidence for this kind of effect 
in studies of elementary school children, which show that on tasks more complex 
than simple RT (SRT), whites have shorter RT than blacks, on average, while 
blacks have shorter MT than whites.1471 Because this phenomenon does not ap­
pear in samples of blacks and whites as young adults,1481 it seems to reflect W-B 
differences in the rate of cognitive development and of motor development dur­
ing childhood.

In general, mean W-B differences on various ECTs show effects similar to 
those found for individual differences within either group. For example, the W- 
B difference increases with task complexity or difficulty when complexity is 
objectively measured by the average RT for each task in the combined groups.



Population Differences in a 391

Mean Latency of Processing Task (Msec.)
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Figure 11.9. Mean B-W difference (in milliseconds) in response latency (RT) to various 
information-processing tasks as a function of task complexity as indicated by mean re­
sponse latency on each task in the combined groups. Detailed descriptions of the infor­
mation processing tasks are given in Vernon & Jensen (1984). Reprinted from 
Personality and Individual Differences, 5, P. A. Vernon & A. R. Jensen, Individual and 
group differences in intelligence and speed of information processing, 411-423, Copy­
right 1984, with kind permission from Elsevier Science Ltd, The Boulevard, Langford 
Lane, Kidlington 0X5 1GB, UK.

In a study1491 based on black and white male students in a vocational college, 
the mean B-W difference in RT on each of eight ECTs of differing information 
processing complexity was significantly correlated with the mean RT of each 
task in the combined groups, as shown in Figure 11.9. Note that even the most 
difficult of these tasks had a mean RT of only 1.3 to 1.4 seconds. Also there 
was a high correlation (r =  +.96, rs =  + .88) between the complexity of the 
eight tasks (as measured by the mean RT for each task in the combined groups) 
and the tasks’ g loadings (i.e., their correlation with g factor scores derived from 
the ASVAB battery). The mean W-B difference was 0 .7a on psychometric g 
(derived from the ten ASVAB subtests) and 0 .2a on the general factor of the 
eight processing tasks. The group difference on the processing tasks was the 
same as the average difference between two individuals (of the same race) who 
differ by 0 .7a  in psychometric g. The data of this study bear out the prediction 
of Spearman’s hypothesis: The B-W difference in RT on each of the eight 
processing tasks has a rank-order correlation with the tasks’ g loadings of rs =  
+ .86 (p <  .01).
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A n A frican  Study. A study by Dutch psychologist Y. H. Poortinga50 based 
on white and black African university students (both groups in South Africa) 
showed virtually no differences on either simple or two-choice RT to visual and 
auditory stimuli, but showed quite large and significant B-W differences, meas­
ured in standard deviation (a) units, on four-choice and eight-choice RT, as 
shown below (the mean RT differences are B minus W):

Reaction Stimulus
Auditory Visual

Simple RT 0.13a 0 .02a
2-Choice RT - 0 .0 3 a 0.00a
4-Choice RT 1.36a 1.53a
8-Choice RT 1.30a 1.26a

Although the four-choice and the eight-choice auditory RTs were significantly 
correlated (—.45 and —.38) with the highly g-loaded Raven’s Advanced Pro­
gressive Matrices (APM) for the white sample, there was no significant corre­
lation for the black sample (probably because of the restricted range of scores). 
The study’s author noted that the APM was too difficult for the black students, 
whose average APM score was 2 .2c below that of the white students. (On two 
other psychometric tests the groups differed by 2.3o and 1.5a.)

The failure o f these RT tasks to show significant correlations with highly g- 
loaded psychometric tests in the African sample could indicate either that the 
RTs do not reflect g in this group of African blacks or that these psychometric 
tests do not accurately measure g in this group. The fact that the three psycho­
metric tests are substantially correlated with each other (.64, .73, and .59) in­
dicates a good deal of common variance. But it could be that in the African 
sample the largest common factor is something other than the g factor51 (which 
is the largest common factor in such tests for the white sample). As the average 
correlation between scores on highly g-loaded tests and eight-choice RT tasks 
is about .25 (based on several studies that do not include African blacks), and 
as the African W-B difference on the APM was 2.2a, the predicted B-W dif­
ference on choice RT would be .30 X 2 .2a =  0.66a, which is only about half 
as large as the mean difference actually found between the black and white 
students in Africa.

The Raven APM therefore greatly uwcferpredicts the W-B difference in eight- 
choice RT. This could be because for this sample of African blacks the relation 
between RT and psychometric g is not the same as in the white samples studied. 
Poortinga suggests his findings were probably a result of using a test that was 
too difficult for this group of black students. The APM probably has too little 
variance and too serious a “ floor effect”  (i.e., a piling up of scores near the 
chance guessing level) to serve as an adequate measure of g in this African 
group. The mean and SD of the APM in the African sample were 9.2 and 5.66, 
respectively. On American norms, this corresponds to an IQ of 92 (SD = 6),
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but chance guessing on the APM produces a score equivalent to an IQ of 90. 
Thus the APM scores obtained by the nearly one-half of the black sample who 
scored below IQ 90 do not reflect reliable variance in g. The Standard Progres­
sive Matrices (SPM), which was designed for the middle range of ability, would 
have been more suitable for the African sample than was the APM, which was 
designed for testing in the upper half of the distribution of g in the white Eur­
opean and North American populations.52

A C ritical T est o f S p earm an ’s H ypothesis. The following study1531 clearly 
shows that the phenomenon predicted by Spearman’s hypothesis is not restricted 
to typical psychometric tests. It tested Spearman’s hypothesis with variables 
derived from elementary cognitive tasks (ECTs) at three levels of complexity: 
(1) simple reaction time (SRT), (2) choice reaction time (CRT), and (3) dis­
crimination reaction time (DRT). The aim was to use ECTs that were so easy 
to perform that the modal number of errors would be zero in both the black and 
white samples and the most complex task could be performed without error (i.e., 
pressing the wrong button) in less than one second. Both of these criteria were 
in fact realized for every task in this experiment. The computerized apparatus 
was programmed so that every subject’s median RT for each task was based on 
the same number of error-free trials.

Figure 11.10 shows the subject’s response console for each of the three tasks. 
Console A is used for SRT. A trial begins with the subject placing the index 
finger of the preferred hand on the h o m e  button (large black dot at the lower 
center of the figure). This is followed by a preparatory stimulus (an auditory 
“ beep”  o f one second duration), to alert the subject of the imminent onset of 
the reaction stimulus (RS), which occurs at any random time within the next 
four seconds. The RS is the illumination of a translucent push-button located 
six inches above the home button. The subject’s task is simply to remove the 
index finger from the home button and touch the illuminated push-button as 
quickly as possible, thereby turning off the light. Subjects were given eight 
practice trials and n =  20 error-free test trials.

Console B is used for CRT. The procedure is exactly the same as for SRT, 
except that the subject is here confronted by eight push-buttons, any one of 
which can illuminate following the preparatory “ beep.”  The uncertainty as to 
which one of the eight buttons will go “ on”  increases the subject’s RT. Subjects 
were given eight practice trials and n = 30 error-free test trials.

Console C, called the “ odd-man-out” paradigm, is used for DRT. The pro­
cedure is exactly the same as for CRT, except that three of the buttons light up 
simultaneously. Two of the lighted buttons are always closer together than is 
the third lighted button (the “ odd-man-out” ). The subject’s task is simply to 
touch the “ odd”  button as quickly as possible, thereby turning off the light. 
Subjects were given eight practice trials and n = 36 error-free test trials. With 
eight push-buttons, there are forty-four possible odd-man-out patterns. Because 
the DRT task requires discrimination of the distances between the lighted but­
tons, it is more complex and therefore has a longer RT than does the CRT task.
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Figure 11 .10 . The subject’s response console for (A) SRT, (B) CRT, (C) DRT (odd- 
man-out). The black dot in the lower center of each panel represents the home button. 
The open circles, six inches from the home button, are green underlighted, translucent 
push-buttons. In the SRT and CRT conditions (i.e., A and B) only one button lights up 
on each trial; on the DRT task, three buttons light up simultaneously on each trial, with 
unequal distances between them (shown in C), the remotest button from the other two 
being the odd-man-out, which the subject must touch.

For children of age eleven, the average reaction times (in milliseconds) for these 
tasks are: SRT'347, CRT'440, DRT-730.

Four different time measurements (in milliseconds) were obtained from each 
of these tasks:

Reaction Time (RT)— the subject’s median value (over n error-free trials) of the 
interval between the onset of the reaction stimulus (RS) and the subject’s releasing 
the home button.
M ovem ent Time (MT)— the subject’s median value (over n error-free trials) of the 
interval between releasing the home button and touching the RS.
Intraindividual variability in R T  (RTSD)— the standard deviation (SD ) of the sub­
je c t’s RTs (over n error-free trials).
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Intraindividual variability in M T  (M TSD)— the SD of the subject's MTs (over n 
error-free trials).

This yields 3 ECTs X 4 types of measurements =  12 ECT variables for each 
subject.

The subjects were 585 white and 235 black children in regular classes in 
grades four through six from schools in predominantly middle-class neighbor­
hoods. The black pupils attended white-majority schools. Black majority inner- 
city schools were not represented in the study sample. Raven’s Standard Pro­
gressive Matrices (SPM), a highly g-loaded nonverbal test of inductive and 
deductive reasoning, typically shows a mean W-B difference of lo  (or more) 
in representative samples. In the present black and white samples, however, the 
W-B difference was only 0.7a.

To estimate their g loading, each of the twelve ECT variables was correlated 
with the subject’s score on the highly g-loaded Raven SPM. Each correlation is 
an estimate of that variable’s g loading, uncontaminated by any non-g factors 
peculiar to the ECT variables.

Because g loadings reflect the cognitive complexity of a task, the cognitively 
simple ECT variables were expected to have quite small g loadings. The tasks 
were intentionally made very simple to ensure that the ECTs would be easy and 
fun to do, as well as being within every child’s capability for nearly error-free 
performance. We also did not want the tasks to look anything at all like con­
ventional psychometric tests. Subjects were told simply that the apparatus meas­
ured their reaction speed. However small the ECT variables’ g loadings (i.e., 
their correlations with the SPM), provided they could be reliably rank ordered, 
they could test Spearman’s hypothesis.

Evidence of the reliability of the pattern of the ECT variables’ g loadings is 
the correlation between the vector of g loadings for blacks and the corresponding 
vector of g loadings for whites. Both the Pearson correlation and the rank-order 
correlation are + .85; the congruence coefficient is +.97. This shows that the 
ECT variables represent one and the same g for both the black and the white 
groups. Therefore, each variable’s g loadings could be averaged across the black 
and white groups, yielding a single vector of twelve g loadings.

The construct validity of the rank order of the ECT variables’ g loadings is 
shown by their correlation with the theoretically expected rank order of their 
loadings on psychometric g. The theoretical rank order of these ECT variables’ 
g loadings is based on a number of general principles derived from many pre­
vious studies (which, in fact, correspond to our everyday notions of how “ com­
plex”  the tests are).54 Figure 11.11 shows the rank-order correlation of rs =  
+  .89 between the obtained g loadings (averaged over blacks and whites for each 
variable) and the theoretically expected g loadings. The fit between the theoret­
ical and the obtained rank orders is quite good and is far beyond chance prob­
ability (p  <  .001).

As a test of Spearman’s hypothesis, then, this column vector of (average) g 
loadings for each of the twelve ECT variables was correlated with the vector of
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Theoretical Rank Order of g Loadings

Figure 11 .11 . Scatter diagram of the rank-order correlation between the obtained g 
loadings of the twelve ECT variables and their theoretically expected rank order.

the twelve standardized mean B-W differences on each of the ECT variables. 
The Pearson r =  + .81, the rank-order rs =  + .79, p  <  .01. The rank-order 
correlation scatter diagram between the vector of g loadings and the vector of 
B-W differences is shown in Figure 11.12. It bears out Spearman’s hypothesis 
even more strongly than do most of the studies performed with conventional 
psychometric tests.

The mean B-W difference on each of the ECT variables increases as a func­
tion of the ECT’s g loading. The SRT and the MT for all three ECTs had the 
smallest g loadings and were among the smallest B-W differences. The three 
variables with both the largest g loadings and the largest B-W differences were 
DRT, CRTSD, and DRTSD. It is especially noteworthy that intraindividual var­
iability, which is not a speed variable (and strictly speaking, perhaps not even 
an ability), is the most g-loaded variable of all (consistent with many other 
studies1551) and also shows the largest B-W difference (with blacks, on average, 
having the greater variability in RT across trials).

The idea that the B-W difference on these tasks reflects a difference in mo­
tivation is disconfirmed by the fact that although the whites had faster RT than 
the blacks, the blacks had faster MT than the whites. It is implausible that 
motivation or effort would be thus divided, to work in opposite directions, on 
the RT and MT phases of a speeded task that can be performed in about one 
second. Subjects perceive the task as that of making a single ballistic response
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Figure 11.12. Scatter diagram of the rank-order correlation between the rank order of 
the ECT g loadings and the rank order of the mean standardized B-W differences on 
each of the ECTs.

as quickly as they can, rather than as making two distinct responses— first RT, 
then MT. The fact that MT is g loaded (though to a lesser degree than RT) and 
that blacks had shorter M T than whites means that blacks performed faster on 
the motor component of the task than did whites. The RT part of the task also 
has some slight motor component, which is increasingly outweighed by the 
task’s more highly g-loaded information-processing component as the complex­
ity of the task increases (for example, in going from SRT to DRT). We see that 
even the subject’s RT reflects both a cognitive, or g, component and a motor 
component, with the influence of each component being a function of task com­
plexity. SRT and DRT, for example, have about the same motor component, 
but DRT has a larger cognitive component. Hence the difference score, DRT- 
SRT, which removes the motor component from the total DRT, is generally 
more highly correlated with psychometric g than is DRT.1561 That is, the motor 
component in SRT (and also in every type of RT that involves any motor re­
sponse) has no common variance with the typical psychometric test, and acts as 
what psychometricians refer to as a suppressor variable in the correlation be­
tween RT and scores on psychometric tests.

That RT and MT involve different processes is shown by the fact that when 
the whole battery of measurements used in the present study is factor analyzed, 
RT and M T consistently have their salient loadings on different orthogonal fac­
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tors, which can be characterized as cognitive and motor, respectively. The same 
kind of clear-cut factorial separation between the cognitive and the motor com­
ponents of RT and MT and their respective relationships to psychometric g was 
shown most definitively by John B. Carroll in his hierarchical factor analysis of 
a large and diverse battery of twenty-seven ECTs and eleven conventional psy­
chometric tests.1571

S p earm a n ’s H yp othesis T ested w ith  South  A fricans. The very same vari­
ables and apparatuses designed to be as much like those used in the previously 
described study were used by Lynn and Holmshaw1581 to test Spearman’s hy­
pothesis on samples consisting of nine-year-old black schoolchildren in South 
Africa (N  =  350) and white schoolchildren of comparable age in Britain (N = 
239). The testing procedures were virtually identical to those in the American 
study based on children averaging about eleven years of age. Because of the 
difference in subjects’ ages in the South African and American studies, a direct 
comparison on the actual time measurements of RT and MT would not be 
relevant here. However, the Lynn and Holmshaw study showed much the same 
pattern of B-W differences (in a  units) across the twelve ECT variables as was 
found in Jensen’s American study, the main difference being in the size of the 
differences, which are generally much larger in the South African study. The 
South African blacks were markedly slower than the British whites in RT and 
also markedly faster in MT. But note that the same phenomenon was present 
in both studies; that is, whites outperformed blacks on the RT component of the 
task (which is correlated with g) while blacks outperformed whites on the MT 
component.

The greater B-W differences on the RT and RTSD components of the ECTs 
in the South African study is best explained by the fact that this group of South 
African blacks scored, on average, about 2o  below British (or South African) 
whites, while there is only about l a  difference between American blacks and 
whites.59 In the Lynn and Holmshaw study, the W-B difference on Raven’s 
Standard Progressive Matrices (SPM) was about 2.5a. But we cannot be very 
confident of this value, because the SPM appeared to be too difficult for the 
African blacks. Their mean raw score on the SPM was only about three points 
above the chance guessing score, which casts doubt on the reliability and validity 
of the SPM as a measure of individual differences in g for this sample.

The questionable SPM scores for the South African blacks showed much 
lower correlations and a quite different pattern of correlations with the ECTs 
than were found in the white sample. Therefore, it is hardly surprising that the 
data of this study do not accord with Spearman’s hypothesis. A proper test of 
the hypothesis was not even possible, because the vector of the correlations 
between the ECTs and the SPM, which estimates the g loadings of the ECTs, 
showed too little congruence between blacks and whites to represent the same 
vector of factor loadings for the two groups in this study. (The congruence 
coefficient is only .45, which falls far below the generally accepted minimum 
value of .90 needed to claim that the factors are similar. The corresponding
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congruence coefficient in all of the other studies of Spearman’s hypothesis 
ranges from .98 to 1.00, with a mean of .995.)

However, it is noteworthy that the ECTs yielded meaningful data for the 
South African blacks. The vector of B-W differences on the twelve ECT vari­
ables does, in fact, conform to Spearman’s hypothesis when it is compared with 
the vector of g loadings based on the American data. (For a highly detailed 
analysis of the limitations of the statistical data reported in the Lynn and Holm- 
shaw study, see Note 60.)

The E C T  V ariab les in a C h inese-A m erican  Sam ple. Exactly the same tests 
and procedures as were used in the test of Spearman’s hypothesis based on 
black and white children in California were used in a parallel study of Chinese- 
American children and white children in elementary school (grades four through 
six).W11 Most of the Chinese-American children (some of them recent immi­
grants) were of considerably lower SES than most of the white children, yet the 
Chinese, on average, outscored the whites by a highly significant 0 .32c (equiv­
alent to five IQ points) on the Raven SPM.

Although Spearman’s hypothesis was originally concerned only with W-B 
differences on psychometric tests, it is of interest to determine if the mean test- 
score differences between other groups show the same phenomenon. In the case 
of the Chinese-white comparison, the rank-order correlation of rs =  +.01 ob­
tained between the vector of the ECT variables’ g loadings and the vector of 
Chinese-white differences on each of the ECT variables is obviously not 
significantly greater than zero. The vector of the twelve ECT variables’ g load­
ings (i.e., their correlations with Raven's SPM) had satisfactory congruence 
across the two racial groups (congruence coefficient =  +.92), indicating that 
the ECT variables were similarly related to psychometric g in both groups. The 
Chinese had as fast or faster CRT and DRT than the whites, but had very 
markedly slower M T than whites on every task. The Chinese were slower than 
whites on SRT, probably because of its relatively large motor component com­
pared to its cognitive, or g , component. It seemed likely that the motor aspect 
of RT was relatively larger than the cognitive part of RT for the Chinese chil­
dren. This would attenuate the Chinese-white difference in speed of information 
processing as measured by RT. To test this conjecture, for every subject, SRT 
was subtracted from CRT and from DRT, thus ridding CRT and DRT of their 
motor component. The resulting scores showed the Chinese to be about 0.4a 
faster than the whites in information-processing time, a slightly larger difference 
even than was found on Raven’s SPM. The Chinese-Americans were faster than 
the whites in information-processing time on CRT and DRT by twenty-seven 
and fifty-two milliseconds, respectively. These seemingly small differences in 
information-processing speed when brought to bear on much more complex 
tasks operating over considerable periods of time could result in quite noticeable 
differences in overall intellectual achievement.

S p ea rm a n ’s H yp othesis T ested w ith  S im ple A rithm etic. The ECTs used in 
the studies reviewed above reflect only three basic information processes— stim­
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ulus apprehension, decision (or choice), and discrimination. Another basic proc­
ess is the retrieval of items of previously acquired information that is stored in 
long-term memory (LTM). An important aspect of cognition consists of relating 
incoming new information to relevant old information already stored in LTM. 
The act of looking up a person’s number in the telephone directory, for example, 
involves knowledge of how the person’s name is spelled, the identification of 
alphanumeric symbols, and a knowledge of alphabetic order, all of which are 
stored in LTM and must be retrieved for performing this act. Many experiments 
(some described in Chapter 8) have shown that the speed with which individuals 
can retrieve information from LTM is related to g. This is true even when the 
information held in LTM is so highly overlearned as to be retrieved automati­
cally on presentation of the eliciting stimuli. Individual differences in the speed 
of something so seemingly simple and automatic as recognizing the letters of 
the alphabet by name is correlated with highly g-loaded nonverbal tests, even 
in samples of university students.

This well-established relationship between g and the speed of retrieval of 
information from LTM formed the basis for another test of Spearman’s hypoth­
esis. The same variables of RT, RTSD, MT, and MTSD used in the previous 
experiments were used to measure the speed of accessing well-learned infor­
mation held in LTM. The information to be retrieved consisted of what are 
called simple number facts (i.e., the knowledge required to answer such ques­
tions as 2 +  2 =  ?, or 3 -  2 =  ?, or 2 X 5 =  ?). The problems always 
consisted of the addition, subtraction, or multiplication of the single-digit num­
bers from one to nine. To permit a binary response to each item by means of 
the subject’s touching one of two push-buttons labeled YES or NO, each number 
fact was presented on the computer monitor with an answer that was either 
correct (YES) or incorrect (NO); e.g., 2 +  3 =  5 (subject should press YES) 
or 2 +  3 =  6 (subject should press NO). This task was therefore called the 
Math Verification Test (MVT). Each type of problem (addition, subtraction, or 
multiplication) was presented separately in a block of five practice trials and 
twenty test trials. The subject’s response console is shown in Chapter 8, Figure 
8.3 (p. 215). The reaction stimuli appeared on a computer monitor. The task 
was self-paced. A trial began with the subject pressing the home button. One 
second after the subject pressed the home button, a preparatory stimulus, a small 
square, appeared at the center of the monitor screen. In order to direct the 
subject’s attention, the square occupied the same location that was to be occu­
pied by the mathematical operation sign ( +  , —, or X). After a random interval 
of one to four seconds, the reaction stimulus appeared (e.g., 2 X 3  = 8). The 
subject responded by releasing the home button and pressing either the YES or 
the NO button. The subject’s response was immediately followed by corrective 
feedback, which appeared on the screen as C orrect or Incorrect. The simplicity 
of the task is attested by the fact that among 191 pupils in grades four to six, 
the modal number of errors (in sixty test trials) was zero and the mean number 
of errors was less than two.
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On each trial, the subject’s RT and MT were measured in milliseconds. Each 

subject’s overall scores were the median RT, RTSD, median MT, and MTSD, 
separately for addition, subtraction, and multiplication, yielding twelve scores 
in all. Subjects were also tested on Raven’s SPM to measure psychometric g.

The subjects in this experiment were seventy-three white and 118 black chil­
dren in grades four through six. The W-B difference on Raven’s SPM was
0.72a. These subjects were selected from a larger number of pupils in regular 
classes, all of them screened on a test of their knowledge of the very same 
number facts that were used in the Math Verification Test. The screening test 
consisted of a group-administered, unspeeded paper-and-pencil test on which 
subjects wrote the answers to problems presented in the form, for example,
3 +  4 = ________ Only those pupils who obtained a perfect score on the
screening test were included in the experiment. Thus the MVT was not a test 
of whether the subject possessed the knowledge of certain arithmetic facts and 
operations. Rather, it measured only the speed with which the subject accessed 
this information, which every subject had long since acquired and stored in 
LTM.

The twelve MTV variables were factor analyzed for the black and the white 
groups separately. Besides a general factor, only two significant group factors 
emerged: one on which the RT and RTSD variables were loaded, the other on 
which the MT and MTSD variables were loaded. The factor structure of the 
twelve MVT variables was virtually identical for blacks and whites, with con­
gruence coefficients around +.99. It should be noted that the three types of 
arithmetic operations did not emerge as factors in this analysis. The various 
chronometric variables “ read through,”  so to speak, these purely formal aspects 
of the problems and mainly reflected individual differences in the speed of 
accessing whatever knowledge was needed to make correct responses to the 
MVT. The overall mean RT on the MVT for blacks was 1,800 msec; for whites, 
1,480 msec. (In standardized units this is a mean difference of 0.42a.) There 
were no appreciable differences between the RTs for addition, subtraction, and 
multiplication problems within either racial group.

As before, the test of Spearman’s hypothesis was the correlation between the 
vector of the twelve MVT variables’ estimated g loadings (i.e., each variable’s 
correlation with Raven’s SPM) and the vector of B-W differences on each of 
the MVT variables. The correlation between the two vectors (with the effect of 
the differing reliability coefficients of the MVT variables partialed out) is the 
same for the Pearson r and the rank-order rs; both are + .70 (p  <  .05). Thus 
Spearman’s hypothesis was borne out by these chronometric data that reflect the 
speed and efficiency of information processes rather than merely the possession 
of particular items of knowledge.

The M ath V erification  T est in a C h inese-A m erican Sam ple. In another 
study162' the MVT was applied to samples of Chinese-American (N  = 155) and 
non-Hispanic white pupils (N = 73) in regular classes of grades four through 
six. The whites scored 0 .32a below the Chinese-Americans on Raven’s SPM.
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All of the MVT procedures and variables were the same as in the study of 
blacks and whites.

All of the RT and RTSD variables had highly significant correlations with 
the SPM (average r = —.25, p <  .001); none of the MT and MTSD variables 
was significantly correlated with the SPM (mean r = + .01). On RT and RTSD, 
the overall standardized mean white-Chinese difference was 0.34g, about the 
same as the 0 .32a difference they showed on Raven’s SPM. (The actual overall 
mean RT for the whites was 1,480 msec; for the Chinese, 1,204 msec.) But 
note: The overall average white-Chinese difference on MT and MTSD was in 
the opposite direction, —0.19ct.

When the vector of the twelve MVT variables’ g loadings was correlated with 
the vector of the white-Chinese standardized mean differences on each of the 
MVT variables, the Pearson r =  —.93 and the rank order rs =  —.90 (p <  .01). 
This indicates that the larger the MVT variable’s estimated g loading (i.e., its 
correlation with the SPM), the more the Chinese outperform the whites on the 
MVT. On this test, the whites compared with the Chinese in much the same 
way that the blacks compared with the whites in the previous study. It should 
be noted that these Chinese children were mostly of lower SES than the white 
children. The three racial groups— Chinese, white, and black— score in the same 
rank order both on the SPM and on untimed paper-and-pencil tests of mathe­
matical problem solving.

C onclusion . What these ECT studies clearly demonstrate regarding the group 
difference on mental tests is that Spearman’s hypothesis applies not only to 
conventional psychometric tests (as proved in many studies using such tests), 
but also to a quite different type of mental measurement, namely chronometric 
variables derived from tasks that involve the most elemental aspects of infor­
mation processing (such as speed and consistency of stimulus apprehension, 
choice decision, discrimination, and retrieval of information stored in LTM). As 
shown in many other studies, individual differences in these chronometric var­
iables are correlated to varying degrees with psychometric g. The fact that the 
relative sizes of these correlations are directly related to the variable sizes of 
the standardized mean black-white or Chinese-white differences on the chron­
ometric variables means that such differences on conventional g-loaded tests are 
not solely attributable to one group’s advantage in the specific information con­
tent of LTM, or to strategies of reasoning and problem solving, or to other 
metaprocesses of the kind presumably involved in complex mental tests.

NOTES
1. The book edited by Jaynes & Williams (1989) provides comprehensive demo­

graphic information and statistics on the social and economic conditions of blacks in 
America.

2. Entree to virtually the whole literature on race and IQ, including the descriptive 
statistics of IQ (and other mental tests) in blacks and whites is accessible through the 
following key references: Eysenck (1984b), Hermstein & Murray (1994), Jensen (1973),
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Jensen (1980a), Loehlin, Lindzey, & Spuhler (1975), Lynn (1991), Nichols (1987b), 
Osborne & McGurk (1982), Rushton (1995), Shuey (1966). The literature on the IQ of 
Asians (Chinese and Japanese) in North America is reviewed by P. E. Vernon (1982); 
Flynn’s (1991) review of the literature on the achievement of Asian Americans in relation 
to their IQ finds that their level of educational and occupational achievement is higher 
than would be predicted by IQ alone, when prediction is based on the regression of 
achievement on IQ in the majority white population.

3. The generalized formula for the o  diff between two groups, A and B, is:

a diff = (XA -  XbV M I W  + NdV )/(N a + Nn)],

where X is the mean, N is the sample size, s is the standard deviation.
4. Assuming two normal distributions of scores with unequal means, and given the 

mean and SD  deviations of each distribution, Kaiser (1987) gives a general formula for 
determining the probability that the “ score”  of a randomly selected individual from the 
distribution with a lower mean exceeds the “ score”  of a randomly selected individual 
from the distribution with the higher mean. This formula shows that for two normal 
distributions, A and B, where A has a mean = 100 and SD = 15 and B has a mean =  
85 and SD  =  12 (thus corresponding to typical IQ statistics for the white and black 
populations) the probability that the “ score”  of a randomly selected individual from 
distribution B will exceed that of a random individual from distribution A is precisely 
22 percent (i.e., the chances fall between 1 in 5 and 1 in 4). Kaiser found that when 
forty-seven professional PhD-level psychologists were asked to guess this probability, 
their guesses ranged from 2 to 27 percent, with a mean of only 13 percent! (If the two 
distributions had the same mean, of course, the probability would be 50 percent.)

5. It is useful to distinguish between an explicit selection threshold and a natural 
selection threshold. An explicit threshold is a definite criterion, such as a specific cut- 
score in the distribution of test scores or grade-point averages, or any other quantified 
variable. Or it may consist of a specific cut-score on a distribution based on the weighted 
average o f a number of variables. Although an explicit threshold or cut-score may be 
arbitrary, it may also be justified on statistical grounds, for example, because of its 
demonstrated predictive validity. A natural threshold is always probabilistic. It is not a 
point estimate, but a region o f the distribution (of the critical characteristic) below which 
the probability of “ success”  on a given criterion is so low as to effectively exclude the 
vast majority of individuals who are below the selection threshold. Examples of such 
low probabilities of success would be a person under 5'5" aspiring to stardom in profes­
sional basketball, a person who can’t even “ carry a tune”  aspiring to sing at the M et­
ropolitan Opera, or a person with an IQ of 100 aspiring to a career in mathematics. The 
population IQ distribution exerts its influence in education and the world o f work more 
via natural than via explicit selection thresholds.

6. The term “ source”  in the context of the analysis of variance (ANOVA) is a 
strictly nominal and neutral term, without any implication of causality. It refers only to 
the nominal classes of variables that are included in the analysis, from which it is possible 
to determine the percentage of the total variance associated with (but not necessarily 
caused by) each of the nominal variables that are listed in an ANOVA table as “ sources” 
of the total variance based on all the measurements that were subjected to analysis.

7. (a) Lynn, 1991a; (b) Zindi, 1994.
8. Owen, 1992.
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9. M ackintosh & M ascie-Taylor, 1983.

10. Scarr, Caparulo, Ferdman, Tower, & Caplan, 1983.
11. West, Mackintosh, & Mascie-Taylor, 1992.
12. Jensen (1980a) gives a comprehensive account of the statistical methodology and 

findings of research on test bias, with the exception o f research based on item response 
theory, nearly all o f which was published after 1980. A pr6cis of this 800-page book is 
given in Jensen (1981b); also see Jensen (1984b) followed by the commentaries of nu­
merous experts. In Modgil & Modgil (1987, pp. 77-212) four experts (R. A. Gordon, S. 
Osterlind, J. D. Scheuneman, and L. A. Shepard) debate the issue. Reynolds & Brown 
(1984) edited a collection of pro and con essays regarding test bias, all of which I have 
responded to in the same volume. The report o f  an extensive investigation of test bias 
by a panel o f nineteen experts commissioned by the National Academy of Sciences and 
the National Research Council is edited by W igdor & Garner (1982). A completely 
nontechnical explanation o f the methods and research findings on test bias is given by 
Jensen (1981a, Chapter 4). A more recent and technically advanced general treatment of 
test bias methodology is by Cole & Moss (1989). Recent methods in item bias research 
are in books by Camilli & Shepard (1994) and Holland & W ainer (1993).

13. Jensen & McGurk, 1987.
14. The A scale of item difficulty has a mean of thirteen and a standard deviation of 

four within each group. It places item difficulties on an interval scale, based on the 
assumption that the sample percentages of pass and fail on each item divide the normal 
curve. Thus an item ’s A value is obtained from the z transformation o f the percentile of 
the normal curve that corresponds to the percentage o f the subject sample failing the 
item: A =  4Z +  13.

15. Camilli & Shepard, 1994; Holland & Wainer, 1993.
16. Reynolds (1980).
17. Jensen & Johnson (1994).
18. Loehlin, Lindzey, & Spuhler (1975, p. 133). Formulas for approximating the stan­

dard error of h2 are given on pp. 288-89.
19. Graziano, Varca, & Levy (1982) review the total literature o f over thirty studies 

on the effect o f race of examiner on black and white test scores. (Reprinted in Osborne 
& McGurk, 1982, pp. 158-188.)

20. My research on this point, in the 1960s, led me to formulate what became known 
as the Level I-Level II theory, which is not really a theory but rather a set of generali­
zations about the nature of the W-B difference on various cognitive tests. The details of 
Level 1-Level II would be an unnecessary digression, as I have since concluded that this 
formulation is subsumed under the considerably broader generalization I have termed 
“ Spearm an’s hypothesis,”  explained later in this chapter. An explanation of the Level 
I-Level II idea and my reasons for abandoning it can be found in Jensen (1993b, pp. 
185-192). In brief, Level I ability requires little mental manipulation of the information 
input, such as short-term memory (e.g., forward digit span) and rote learning. Level II 
ability requires mental manipulation or transformation of the information input in order 
to arrive at a correct response. Especially in mildly retarded groups (IQ fifty to seventy- 
five), the W-B difference is markedly smaller for Level I than for Level II. Vernon 
(1981b, 1987b) provides a fairly comprehensive review o f the research literature on the 
Level I-Level II generalization.

21. Nichols (1984), reporting on the incidence of severe mental retardation (IQ <  50) 
in the white (A' =  17,432) and black (N = 19,419) samples of the Collaborative Perinatal
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Project, states that at seven years of age 0.5 percent of the white sample and 0.7 percent 
of the black sample were diagnosed as severely retarded. However, 72 percent of the 
severely retarded whites showed central nervous system pathology (e.g., Down’s syn­
drome, posttraumatic deficit, Central Nervous System malformations, cerebral palsy, ep­
ilepsy, and sensory deficits), as compared with 54 percent o f the blacks. Nichols 
comments, “ The data support the hypothesis that the entire IQ distribution is shifted 
downward in the black population, so that ‘severely’ retarded black children with IQs in 
the 40s are sim ilar to the mildly retarded in terms of central nervous system pathology, 
socioeconomic status, and familial patterns”  (p. 169).

A recent sociodemographic study by Drews et al. (1995) of ten-year-old mentally 
retarded children in Metropolitan Atlanta, Georgia, reported (Table 3) that among the 
mildly retarded (IQ fifty to seventy) without other neurological signs the percentages of 
blacks and whites were 73.6 and 26.4, respectively. Among the mildly retarded with 
other neurological conditions, the percentages were blacks =  54.4 and whites =  45.6. 
For the severely retarded ((IQ <  50) without neurological signs the percentages were 
blacks =  81.4 and whites =  18.6, respectively; for the severely retarded with other 
neurological conditions the percentages were blacks =  50.6 and whites =  49.4.

22. Hall & Kleinke, 1971; Herrnstein & Murray, 1994, p. 718, Note 34; Jensen & 
Figueroa, 1975; Jensen & Osborne 1979; M eeker, 1966.

23. Pressey & Teter, 1919.
24. Both the Pearson r and Spearman’s rank-order correlation, rs, are suitable measures 

of the degree of relationship between the two vectors. It is most informative to report 
both; rs is much less affected by outliers that can spuriously inflate r. A statistical test 
of whether the obtained correlation differs significantly from zero should be based on rs 
rather than on r, because r is a parametric statistic for which the calculation of its standard 
error rests on the assumption of normality of the population distributions of each of the 
correlated variables. But there is no proper basis for assuming anything at all about the 
form of either the distribution of g loadings or the distribution o f standardized mean W- 
B differences for the total “ population”  o f all cognitive tests. In such a case, a nonpar- 
ametric statistic is called for, as its standard error is not based on any assumption about 
the population distributions of the correlated variates. Spearman’s rs is such a nonpara- 
metric measure of correlation; its level of statistical significance is based simply on a 
permutation test, that is, the probability that the degree of agreement between the rank 
orders (from one to n) of the two sets of n variates would be as great as (or greater than) 
the value o f the obtained rs in all possible permutations of the n ranks. (The total possible 
permutations o f n different numbers is «!.) The test of significance of rs is always an 
exceedingly stringent statistical test of Spearman’s hypothesis, because the n (the number 
of different psychometric measures that can be feasibly administered to groups in any 
one study) is typically a rather small n. (The total range of n in all of the studies of 
Spearm an’s hypothesis to date goes from six to seventy-four different psychometric 
tests.)

The fact that the test of significance of rs depends only on n (the number of measure­
ments in each o f the correlated vectors) does not mean that the number of subjects (N) 
in the study is unimportant. The larger the N , the smaller will be the standard error of 
the g loadings and the larger will be the standardized mean W-B differences, and hence 
the more reliable will be their vectors and so the more likely that there will be a signif­
icant correlation between the two vectors, if Spearman’s hypothesis is true.

25. As the tests’ g loadings are obtained separately in each group, Spearm an’s hy­
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pothesis can be tested separately for each group’s vector o f g loadings. However, if the 
g vector is not virtually identical (i.e., congruence coefficient >  .95) for both groups, a 
statistical test of Spearm an’s hypothesis is precluded. But if  the groups show virtual 
identity o f the g factor, the reliability of the vector of g loadings can be increased by 
combining the two vectors. (Note: It is important that the two vectors be obtained sep­
arately in each group, so as not to contaminate the factor loadings with any between- 
groups source of variance.) The two groups’ factor loadings (say, a , and a2) on a given 
test are averaged as follows: ,

Average loading =  J(a +  a )/2.

It seldom makes a substantial difference whether g is represented by the highest-order 
factor in a hierarchical factor analysis (the preferred method) or by the first (unrotated) 
principal factor in a principal factor analysis (also termed principal axes analysis). These 
typically have a congruence coefficient o f .99 or more (Jensen & Weng, 1994). Although 
the first principal component generally gives highly similar results, it is the least desirable 
representation of g, because the loadings are slightly (but unequally) inflated by some 
portion o f the variance that is unique to each test, which is by definition a non-g con­
taminant of the test’s true g loading.

26. Test unreliability must be considered because it has the effect o f decreasing both 
the g loadings and the standardized mean W-B differences. If the various tests’ reliability 
coefficients differ significantly, being higher on some tests than on others, then, because 
they affect each test’s factor loading and standardized mean group difference to the same 
relative degree, a correlation between the vector of loadings and the vector of differences 
could be entirely an artifact of differences in the reliability of the various tests. On the 
other hand, if the vector of the tests’ reliability coefficients were negatively correlated 
with either the vector of factor loadings or the vector o f mean differences, this fact could 
obscure or counteract the possibility of a significant correlation between the two vectors 
for which Spearm an’s hypothesis predicts a positive correlation. Clearly, the vector of 
the tests’ reliability coefficients has to be dealt with to remove its potentially distorting 
effect on the test of Spearman’s hypothesis. (There would be no problem, of course, if 
the tests all had the same reliability.)

The two methods for controlling for the effect of the tests’ unequal reliability coeffi­
cients are partial correlation  and correction fo r  attenuation. They are not mathematically 
redundant, but complementary, although they both serve much the same purpose.

The partial correlation between the vector of g loadings and the vector of mean 
differences (with the vector of reliability coefficients partialed out) remove the influence 
of test reliability from the test of Spearman’s hypothesis. W hatever the partial correlation 
is, one knows that it cannot possibly be the result of the two key vectors being in any 
way linked by common measurement error that affects the paired elements of both vec­
tors. The resulting partial correlation may be larger or smaller than the zero-order (non- 
partialed) correlation, depending on the sign of the correlation of the key vectors with 
the vector o f reliability coefficients.

D isattenuation of the factor loadings and the standardized mean differences for atten­
uation (by dividing each test’s loading and the standardized mean group difference by 
the square root o f the test’s reliability coefficient) is probably less definitive than the 
partial correlation method, as it depends so much on the reliability of the reliability 
coefficients themselves. They should be based on a large sample, preferably larger than 
the study sample used to test Spearman’s hypothesis. Otherwise their use may add error
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to the disattenuated variables. For most tests, the reliability coefficients based on the 
test’s standardization sample are adequate. Usually, when the elements in the key vectors 
are disattenuated. the correlation between the vectors is made somewhat smaller than 
before, because the originally smaller g loadings usually are disproportionately increased 
by disattenuation, thus making all the loadings more alike and restricting the variance 
among them, which lowers the correlation between the key vectors.

At least one of these methods (partialing or disattenuation) to control for the effect of 
variation in test reliability was used in all of the tests of Spearman’s hypothesis reported 
in this chapter.

27. Nine of these studies are summarized and referenced in Jensen, 1985a, Table 3, 
p. 207. Others are: Caretta & Ree, 1995; Fan et al, 1995, Faulstich et al., 1987; Jensen, 
1994f; Naglieri & Jensen, 1987; Peoples et al., 1995; Scarr-Salapatek, 1971; Silverstein, 
1973.

28. Carretta & Ree, 1995. This study also found that on g and the five residualized 
group factors extracted from the Air Force Qualifying Test the congruences were all very 
high (indicating virtual identity of the factors) between males and females, and between 
different ethnic groups (white, black, Hispanic, Asian-American, and Native-American).

29. Fan. W illson, & Reynolds, 1995.
30. Shuey, 1966.
31. Jaynes & Williams, 1989; see book’s Index: “ High school dropouts.”
32. Thorndike et al., 1986.
33. An article by Vincent (1991), which has gained rather favorable notice recently 

as a result o f its being cited in a popular book, The Bell Curve (Herrnstein & Murray, 
1994, pp. 290 and 720, Note 51), suggests that in recent years the W-B IQ gap has been 
shrinking. V incent based this surmise on about a dozen previously published studies that 
seem to show a smaller W-B IQ difference for children tested after 1980, as compared 
with children tested before 1980 or with persons who were adults when tested. All of 
the post-1980 groups consist of children of preschool or elementary school age (two to 
twelve years). But a comprehensive review of earlier data (Shuey, 1966) on this age 
group indicates a smaller mean W-B IQ difference than is found in older groups, even 
on IQ tests in the period from 1920 to 1965. Moreover, with the exception o f the nor­
mative data on the 1986 Stanford-Binet IV, none of the four other studies cited by 
Vincent is at all suitable for testing the hypothesis in question. The Raven scores cited 
by Vincent, which were obtained from relatively high SES areas, are not based on rep­
resentative samples, particularly of the black population (Dr. John Raven, personal com ­
munication, July 23, 1995). Other data came from children enrolled in Head Start, for 
which the black, and especially the white, children are unrepresentative samples of their 
respective U.S. populations. Still other data were from black and white groups matched 
on SES and other social and scholastic variables. Yet another data set was based on the 
K-ABC, a test that is less g loaded than the WISC-R (and probably than most other IQ 
tests). Therefore, consistent with Spearman’s hypothesis, the K-ABC shows a somewhat 
smaller W-B IQ difference than do other IQ tests (Jensen, 1984c). The only appropriate 
data for the author’s purpose are the Stanford-Binet IV norms, which show the following 
mean W-B differences, both in IQ units and in o  units for each age group: ages 2 through 
6 years: 13.7 IQ, 0.95o; ages 7 through 11 years: 9.9 IQ, 0.65o; ages 12 through 18 
years: 17.4 IQ, 1.1 l o  (the last group not reported by Vincent, but in Thorndike et al., 
1986, Table 4.5, pp. 34-36). Only the age group 7 to 11 is out of line with all the other 
data summarized in the text. It is the one and only legitimate item of evidence that
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would appear to support V incent’s suggestion that the W-B IQ gap may have narrowed 
in recent years due to improved educational and economic opportunities for blacks. But 
if so, why does the even younger group (ages 2 to 6) show a W-B difference of 13.7 IQ 
points (incorrectly reported by Vincent as 12 IQ points)? It cannot be the effect of 
schooling on raising the IQ in the school-age blacks, because the black IQ in the pre­
school age group is only 1.7 lower than in the school-age group. (The white and black 
IQ means for ages 2 through 6 are 104.7 and 91.0, respectively; for ages 7 through 11, 
102.6 and 92.7, respectively; and for ages 12 through 18, 103.5 and 86.1, respectively.)

Other recent evidence, in fact, suggests that the mean W-B IQ difference is not de­
creasing but is more probably increasing. Since at least 1970, U.S. Census data have 
indicated that among all women between ages 15 and 44 years (regardless of their marital 
status) there is a negative relationship between years of schooling and number of off­
spring (Jensen, 1981a, pp. 252-253). This negative relationship is more pronounced for 
black women than for white women. In 1970, for example, black women with less than 
8 years of education had 1.3 more children than black women who graduated from high 
school and 1.8 more children than black women with 1 to 3 years o f college. The 
corresponding numbers o f children for white women were 0.8 and 1.3, respectively. 
Further, for both blacks and whites, there is a positive correlation between children’s IQ 
and their m other’s level of education. In the large representative sample selected for the 
National Longitudinal Study of Youth (NLSY) the percentage of black children born to 
mothers with IQ <  90 is 69 percent as compared with 2 percent for mothers with IQ >
110; the corresponding figures for whites are 19 percent and 22 percent. The conjunction 
of these demographic conditions suggests the widening of the W-B IQ difference in 
successive generations. This prediction is borne out, so far, by the NLSY data on the 
IQs o f those children (tested at over six years of age) whose mothers were tested in the 
original NLSY sample. The mean W-B IQ difference for the mothers was 13.2; for their 
children it was 17.5 IQ points (Herrnstein & Murray, 1994, pp. 352-356). These statistics 
showing an average lowering of the mean black IQ vis-3-vis the mean white IQ, it should 
be emphasized, are not necessarily the result of anything that happened directly to the 
children in the course of their individual development, but rather they probably result 
from the different birth rates of blacks and whites within different segments of the IQ 
distribution of the children’s parents, as described above. Even supposing there was no 
racial IQ difference whatsoever in previous generations, then given the continuance of 
the present condition of birth rates that are differentially associated with IQ within each 
racial group, the inevitable result would be a racial IQ difference in subsequent gener­
ations. The resulting group difference would occur irrespective of the basic cause either 
o f individual differences or of group differences in IQ. W hether the cause is environ­
mental, or genetic, or both, would not alter the well-known educational, social, and 
economic correlates of IQ differences, which have been most fully spelled out by Herrn­
stein & Murray (1994).

34. (a) Jensen, 1985a; (b) Jensen, 1985b; (c) Jensen & Reynolds, 1982; (d) Hum­
phreys, 1985a, 1985b; Jensen, 1985d; (e) five critiques by (and exchanges among) six 
psychometricians (Guttman, Roskam & Ellis, Schonemann, Loehlin, Gustafsson) in M ul­
tivariate Behavioral Research , 1992, 27, 173-267; (f) Jensen, 1987g; (g) Jensen, 1992f; 
(h) Naglieri & Jensen, 1987; (i) Reynolds & Jensen, 1983; (j) Peoples et al., 1995; (k) 
Lynn & Owen, 1994; (1) Jensen & Faulstich, 1988; (m) Jensen, 1994f; (n) Gordon, 1987b, 
pp. 120-139.

35. In the only analysis (Gustafsson, 1992; reply by Jensen, 1992g) that has claimed
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to not support Spearman’s hypothesis, the same WISC-R data used in the study by Jensen 
& Reynolds (1982) were factor analyzed by a method (performed with LISREL) that 
was not clearly specified. Based on this method, the vector of the subtests’ g loadings 
was not significantly correlated with the vector of W-B differences on the subtests, 
whereas the correlations reported by Jensen & Reynolds, 1982 (based on a Schmid- 
Leiman hierarchical factor analysis) were + .75  for whites and + .64  for blacks (both 
with p <  .05). Another type of analysis conclusively shows that the W-B difference on 
the WISC-R battery is indeed mainly attributable to g. The W-B difference on each of 
the twelve subtests was expressed as a point-biserial correlation (rpbs) between test scores 
and race (quantitized as white =  1, black =  0); these point-biserial correlations were 
entered into the matrix of Pearson correlations among all of the subtests. A principal 
factor analysis o f the whole matrix showed that the loading of race on the g factor 
(represented as the first principal factor) was much larger than its loading on any of the 
three next largest factors. The ratio of g variance to non-g variance (the sum of squares 
of the race loadings on the three next largest factors) was 2.90 when the analysis was 
based on the correlation matrix for whites and 3.54 when based on the correlation matrix 
for blacks (Jensen, 1987g, Table 1). This means that most of the between-race variance 
on the W ISC-R is more attributable to g than to all of the other factors combined.

36. Office of the Assistant Secretary o f Defense, 1980. The AFQT consists of the four 
most highly g-loaded subtests of the ASVAB (Word Knowledge, Paragraph Compre­
hension, Arithmetic Reasoning, and Mathematics Knowledge). The AFQT subtests have 
an average g loading of .84 when factor analyzed among the twelve subtests of the 
ASVAB. AFQT scores have an approximately normal distribution in the population and 
are correlated about .80 with standardized IQ tests, which are generally less g loaded 
than the AFQT.

37. This determination was made by converting the mean W-B differences on each 
test to a point-biserial correlation, which expresses the W-B difference as a product- 
moment correlation coefficient between test scores and the racial dichotomy quantitized 
as black =  1, white =  2. The point-biserial correlation is monotonically related to the 
mean difference; in the range of the correlations obtained in the present data, the relation 
is very nearly linear. The quantitized race variable can then be included in a principal 
factor analysis with all the other tests in a given battery. The squared factor loadings of 
the race variable on the g factor (PF1) were compared with the three principal factors 
that showed the largest non-g loadings on the B/W racial variable. The ratio of g/non-g 
variance averaged over all nine test batteries equaled 4.31; that is, the g factor accounted 
for more than four times as much of the common factor variance as did the total of all 
the non-g factors. (Details o f this analysis are given in Jensen, 1987g, pp. 513-514 and 
Table 1.)

38. M atarazzo, 1972; Thorndike & Lohman, 1990.
39. One can also test Spearm an’s hypothesis by using the mean g and the mean D 

(i.e., W-B difference) on each of a number of test batteries as the units of analysis. Hence 
across twelve batteries, the correlation between the mean g loadings of the subtests in 
each of the batteries and the mean W-B difference on the subtests in each of the batteries 
is r  =  + .53; partialing out the SDs of these variables (g and D) in each battery, the 
partial correlation is +.61. O f course, the batteries as a whole have much less variation 
in their mean g loadings and mean D values than do the individual subtests within each 
battery. (For the whole batteries, the SD  of the mean g loadings is .07; the mean and SD  
of the mean D values are .75 and .24, respectively.)



410 The g  Factor
40. Gordon (1987b, pp. 126-131) has argued that the proof o f Spearm an’s hypothesis 

should be based not on the Pearson or Spearman rank-order correlation coefficient be­
tween the vector of g loadings and the vector o f group differences, but on the congruence 
coefficient, when the mean group difference on each subtest is expressed as a point- 
biserial correlation between test score and race (quantized as black =  1, white =  2). The 
vector of point-biserial correlations can be interpreted as the W-B difference factor. Thus 
degree of similarity o f the W-B difference factor to the g factor o f the same battery can 
be assessed by the coefficient o f congruence. For the twelve batteries reported in Jensen 
(1985a), Gordon finds an average congruence coefficient of + .97  between the W-B factor 
and the g factor (whether based on black or on white samples). Thus, Gordon’s use of 
the congruence coefficient would support a conclusion that the black-white difference on 
mental tests is almost entirely a difference in g. I believe this conclusion would be true 
only on the condition that none of the group factors is overrepresented in the battery 
from which the g is extracted; most importantly, neither of the two major group factors 
on which blacks and whites are known to differ independently of g (viz., spatial and 
memory factors) should markedly predominate in the selection o f subtests.

41. Table 3 in Peoples et al. (1995) gives the F  test for the independent effect of 
maternal education (dichotomized as low £  12 years versus high >  12 years) on chil­
dren’s scores for each of the eight SB-IV subtests. As F  is monotonically related to the 
magnitude o f the effect on children’s scores of the high-low  difference in maternal ed­
ucation, the values of F  for each of the subtests can be used instead o f the corresponding 
mean differences in computing the rank-order correlation rs between the vector of ma­
ternal education effects and the other vectors (subtest g loadings and mean W-B differ­
ences). This method was necessary because only the F  values, not the means and SDs, 
for the effect of maternal education on the children’s subtest performance were reported 
by Peoples et al. (1995).

42. The statistics for this study were obtained from three separate articles based on 
the very same large (black N  =  32,798, white N  =  212,238) samples o f applicants for 
the U.S. Air Force who were given all sixteen subtests o f the Air Force Qualifying Test 
battery. The hierarchical factor analyses o f these tests are in Carretta & Ree (1995a); the 
subtest reliability coefficients and the subtests’ validity coefficients are in Carretta & Ree 
(1995b); the means and SDs of the black and white samples are in Carretta (1997).

43. The correction for restriction o f range is necessary because the trainees were highly 
selected on the basis of AFOQT score and are therefore an elite group that is not rep­
resentative o f the much wider “ range-of-talent”  that exists in the total pool o f applicants 
for Air Force training as pilots. The correction of the validity coefficient for range re­
striction estimates what the validity of the AFOQT would be for predicting the Final 
Training Outcome if all trainees had been randomly selected from the applicant pool.

44. Owen, 1989.
45. The correlation of + .624 in this case seems to depend more on some of the 

peculiarly low subtest reliability coefficients used to disattenuate the W-B differences 
and the g loadings than on the intrinsic properties with which Spearman’s hypothesis is 
concerned. For example, on the three subtests with the lowest reliability coefficients for 
blacks (whose average internal consistency reliability [KR20] was .31) the mean W-B 
differences (uncorrected) are among the largest, averaging 2.48a. (The corresponding 
disattenuated values average 2.81a.) For blacks, the uncorrected g loadings of these three 
subtests (averaging .467) are smaller than the mean g (.525) of all 10 subtests. When 
disattenuated, however, these three g loadings were increased to an average of .834. So
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the net effect of disattenuation on the subtests with abnormally low reliability is to greatly 
increase the W-B mean difference on these subtests and to greatly increase each subtests’ 
g loadings. The effect of disattenuation based on excessively low reliability creates an 
outcome which, though apparently favoring Spearman’s hypothesis, may be considered 
spurious, because test reliability per se is not intrinsic to Spearman’s hypothesis. M eas­
urement error (i.e., unreliability) is merely unwanted “ noise”  that, from a methodological 
standpoint, should be “ filtered out”  (either by disattenuating the essential variables or 
partialing out the vector of reliability coefficients). But when the “ noise”  (error variance) 
is greater than the “ signal”  (true score variance), as is the case for the black group’s g 
loadings on at least three subtests in this study, disattenuation is highly suspect. The 
effect of disattenuation on the test of Spearm an’s hypothesis on the South African black 
group (with a resultant correlation o f + .624) is revealed by the corresponding correlation 
when the data are not disattenuated (i.e., measurement error has not been removed); then 
the Pearson correlation is negligible ( +  .011) and the rank-order correlation is even neg­
ative ( - .1 7 6 ).

46. Jensen (1988a) reviews some of the earlier cross-cultural and cross-racial studies 
that have used chronometric techniques, and describes recent ECTs that show promise 
for the study o f population differences in information processes.

47. Jensen, 1993d; Lynn & Holmshaw, 1990.
48. Jensen, 1987d, Tables 3 and 7.
49. Vernon & Jensen, 1984.
50. Poortinga, 1971. A brief review of this study is given in Jensen, 1988a.
51. Poortinga (1971) found that a questionnaire designed to assess the A fricans’ de­

gree of acculturation to a W estern European rather than to an African orientation showed 
a substantial correlation (.59 for the Advanced Progressive Matrices) with three psycho­
metric tests. This further suggests the inappropriateness o f the psychometric tests (or at 
least the particular ones used in Poortinga’s study) for the African blacks. However, the 
degree to which Africans had become psychologically acculturated to European ways 
might itself be intrinsically related to g. Not all groups that have lacked exposure to 
Western culture necessarily perform below Western norms on the Raven. Certain groups 
that show little evidence of acculturation to a European life-style, such as Eskimos living 
in remote regions above the Arctic Circle, nevertheless perform on a par with European 
and North American norms on the Raven matrices. (References to these studies in Jensen, 
1973, pp. 302-303).

52. In research using the Raven tests in the United States, we have found that the 
Advanced Progressive Matrices (APM) is usually too difficult (i.e., there is a floor effect, 
with scores piling up near the chance guessing level) to be a suitable measure for some 
junior college samples, while the Standard Progressive Matrices (SPM) is wholly satis­
factory for groups at this level. On the other hand, we have found that the SPM is 
unsuitable (i.e., there is a ceiling effect, with scores piling up near the maximum possible 
score) for students in academically highly selective universities, while the APM is psy- 
chometrically satisfactory for these groups. By means of a psychometric procedure 
known as “ equating,”  it is possible to test various groups that differ rather widely in 
ability, using the one test (SPM or APM) best suited to each group, and then equating 
the scores so that they can be represented on a single IQ scale based on national norms 
for the general population. The equating procedure and tables for converting raw scores 
on the SPM and APM from one scale to the other and to a common, nationally stan­
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dardized IQ scale for the general population are given in Jensen, Saccuzzo, & Larson, 
1988,

53. Jensen, 1993d. This article reports two distinct experiments; the second one is 
described later in this chapter under the heading “ Spearm an’s Hypothesis Tested with 
Simple A rithm etic.”

54. In many previous studies of these and other ECT variables a fairly consistent 
pattern o f relationships between various ECT variables and psychometric g has been 
observed. On the basis o f these regularities, I have induced several generalizations, or 
rules, from which one can “ theoretically”  infer each different ECT variable’s relative 
degree of saturation on psychometric g. The relative magnitude o f the correlation between 
psychometric g and various ECT variables is governed by the following rules (where RT 
>  MT, for example, means that the g loading of RT is greater than the g loading of 
MT):
• More complex task >  less complex task.
• Reaction time >  movement time (RT >  MT).
• Intraindividual variability in RT (or MT) >  median RT (or MT).
• As intraindividual variability is measured by the SD  of the RT (MT) over trials, RTSD 

>  RT and MTSD >  MT.
Each of the ECT variables can be rank-ordered theoretically in terms of a simple algo­
rithm for combining the above-listed task characteristics, with each one assigned the 
following values:
• Simple =  1, Choice =  2, Discrimination =  3
• Median RT =  4, RTSD =  5
• Median MT =  1, MTSD =  2
• For tied ranks, SD >  median.
The theoretical relative magnitude o f a given task’s g loading, then, is determined by 
the product o f the ordinal values assigned to these characteristics. For median of simple 
RT (SRT), for example: 1 X 4 =  4. For RTSD o f Discrimination (Odd-man): 3 X 5  =
15. For median of simple MT: 1 X 1  =  1. And so on, for each variable. The resulting 
values for the twelve ECT variables (which range from 1 to 15) were ranked from 1 
(smallest value) to 12 (to permit calculation of their rank-order correlation with observed 
vectors). The variables with tied ranks (SRT =  CMTSD and SMTSD =  CMT) are then 
rank ordered: SD >  median.

From the above rules, the theoretical rank order of the g saturation o f the twelve ECT 
variables used in this study is (going from highest to lowest g saturation): DRTSD, DRT, 
CRTSD, CRT, DMTSD, SRTSD, CM TSD, SRT, DMT, SMTSD, CMT, SMT. This 
theoretical rank order of these variables correlated +0.73 (p <  .01) with the vector of 
the mean W-B differences (in o  units) on each o f the twelve variables.

55. Jensen, 1992d.
56. Jensen & Reed, 1990.
57. Carroll, 1991b. Carroll’s important analysis is described in more detail in Chapter

8, pp. 230-31, 265.
58. Lynn & Holmshaw, 1990.
59. Owen (1992) found a mean difference of 2o  on Raven’s Standard Progressive



Population Differences in g 413
Matrices in very large and representative samples of blacks and whites, aged fifteen to 
sixteen, in South Africa. O wen’s analyses of the SPM data at the item level show that 
in this age group the SPM is not biased for blacks in terms o f any of the standard 
statistical criteria for detecting test bias.

60. This note is unfortunately lengthy and quite difficult to read because of the una­
voidable com plexities o f the explication, though it is about as clear and simple as I could 
make it. And it may be scarcely meaningful to those who do not already have some 
understanding of principal components (which for this analysis is probably the simplest 
means to make the argument). Readers who are not inclined to wade through these 
technical details should skip to the Conclusion at the end of this note.

The study by Lynn & Holmshaw (1990), although it was methodologically almost 
exactly the same as the study by Jensen (1993d), yielded such markedly different results 
as to call for an attempt at explanation. In fact, the main finding of the Lynn & Holmshaw 
study appears to be almost the opposite of the result of the Jensen (1993d) study. Can 
this discordance be attributed to an extreme difference between the South African sample 
of black children and the black children in the American sample, such that these groups 
do not respond to the elementary cognitive tasks (ECTs) in the same way? To answer 
this seeming “ paradox,”  as Lynn & Holmshaw call it, we can begin by comparing the 
correlations between the key vectors, within each study and across the two studies. For 
economy o f notation, the key vectors are labeled as follows:

G = the column vector of estimated g loadings on each of the twelve variables on 
the elementary cognitive tasks (ECTs) determined separately in the black and in the white 
samples and averaged (for each ECT) across the black and white samples. (The g loading 
of each variable was represented by the variable’s correlation with the highly g-loaded 
Raven’s Standard Progressive Matrices, determined separately for black and white sam­
ples.) This vector for the black sample is labeled G b, and for the white sample G w. 
Subscripts J(Jensen) and L(Lynn) identify the particular study.
D = the column vector o f standardized mean black minus white differences on each 

of the twelve ECT variables. Subscripts J and L identify the study.
The Pearson correlations between the vectors, which indicate the vectors’ degree of 

similarity to each other, are shown in Table ll .N .
Each of the , G vectors in the Lynn & Holmshaw study is negatively correlated with 

all of the vectors in the Jensen study and  is also correlated - .8 7  with the , D vector of 
Lynn & Holmshaw, which is opposite to the corresponding correlation o f + .83  between 
the ,G and ,D vectors in the Jensen study. This peculiar discordance between the two 
studies calls for further examination.

This can be done most efficiently by using the first principal component (PCI) of 
certain subsets o f the variables in the above correlation matrix. In every case the PCI 
accounts for a very large proportion of the total variance. (Only those components with 
eigenvalues >  1 are reported here.) The PCI in this case clearly reveals the source of 
the problem. Because ;G (or LG) is simply the mean vector of g loadings averaged across 
the white and black groups, they are not included in the principal components analysis. 
(In the Lynn & Holmshaw study, LG W and , G„ should not have been averaged, because 
these vectors, which have a congruence coefficient of only + .45, do not represent the 
same factor for blacks and whites. A congruence coefficient above + .90  is required to 
claim the factors are the same.) Here is the PCI of these two sets of only three vectors:
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Table 11. IV
Correlations between Key Vectors in the Jensen (1993d) and Lynn & Holmshaw 
(1990) Studies Testing Spearman's Hypothesis with ECTs

j * 'b . 8 5
. 9 8 .94
. 8 3 . 69 . 81

L*’ W - . 1 4 - . 4 3 - . 2 5 - . 3 2

L ^B - . 6 0 - . 2 2 - . 4 7 - . 5 2 - . 3 6

, « - . 6 8 - . 5 2 - . 6 4 - . 7 1 . 35
lI> . 6 0 . 57 . 61 . 6 8 - . 6 8

Vector Jensen PCI Lynn PCI
G w .966 -.903
G„ .915 -.049
D .905 .930

Theoretically, to accord with Spearman’s hypothesis, all of these PCI loadings should 
have the same sign. The PCI thus highlights a discordance between these sets o f vectors 
in the two studies.

But now let’s look at the PCI and the second principal component (PC2) extracted 
from the following set of vectors:

Vector PCI PC2
,GW .916 -.269
jGb .853 .130
,D .908 .104
,.G» -.453 -.873
lG„ -.53 0 .758

.839 .281
Eigenvalue 3.582 1.515

Clearly, it is Lynn’s G  vectors that are inconsistent with Jensen’s G vectors. Note that 
Lynn’s D has a large positive loading on the PC I, as does Jensen’s D. Theoretically, 
PCI should have all large positive loadings, and PC2 should have all negligible loadings 
(regardless of sign). Hence it appears that Lynn’s G vectors are peculiar, with negative 
loadings on PCI and large loadings (but o f opposite sign) on PC2. Lynn’s G, not his D, 
is contrary to theoretical expectation and seems to be the source of the problem on which 
to focus further analysis.

A closer look at how the data compare with theoretical expectation can be obtained 
by correlating the rank order of each o f the twelve ECT variables with the theoretically
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expected rank order o f the ECT variables’ loadings on psychometric g. (The basis for 
this theoretical expectation is explained in Note 54, above.)

Another clue is afforded by the fact that performance on ECT is related to age, and 
the effect o f the age differences on the twelve ECTs used in the studies by Lynn and by 
Jensen can be used to examine the data for its consistency with theoretical expectation. 
Lynn's sam ple is two years younger (nine years of age) than Jensen’s (eleven years of 
age). Previous research has shown that the magnitude of age changes in performance on 
a given ECT variable is related to the variable’s g loading, reflecting different amounts 
o f mental growth with increasing age, from early childhood to maturity. Therefore, 
younger and older groups show about the same pattern of differences across a number 
of ECT variables, as would groups that are matched on age but that differ in mental age, 
or level of g. Based on this, we can then create two new vectors to enter into our analysis: 
(1) the vector o f standardized differences between the mean of the white (younger) sub­
jects’ scores on each ECT (in Lynn’s study) and the mean of the white (older) subjects’ 
ECT scores on each ECT in Jensen’s study; and (2) the corresponding vector of ECT 
differences between younger and older black subjects. The first of these vectors is labeled 
Dww, the second is Dbh.

Including the vector of the theoretical rank order o f the ECT variables’ g  loadings 
(termed “ Theory” ) and the vector of standardized mean differences between older and 
younger white and black groups on each of the ECT variables in the whole matrix of 
correlations among the other observed vectors, the PCI and PC2 are:

Vector PCI PC2
,GW .920 .186
,G„ .692 .532
,D .852 .296
,G . -.054 -.955
,G„ -.811 .490
,D .682 .548
Dww .844 -.491
r>w. .859 -.353

Theory .927 -.109
Eigenvalue 5.487 2.235

Again, it is amply clear that it is only the , G vectors (for both W and B) that are markedly 
discordant; all of the other vectors have positive loadings on PC I, in accord with Spear­
m an’s hypothesis. The theory-derived vector has the largest loading on PCI and the 
smallest absolute loading on PC2. The positive PCI loading of , D indicates that Lynn’s 
ECT data are in line with Jensen’s and with the theory. Further evidence that Lynn’s 
ECT variables are not at fault is that when they are factor analyzed (retaining only the 
factors with eigenvalues >  1), they have nearly the same communalities as Jensen’s ECT 
variables. (A variable’s communality provides a lower-bound estimate of its reliability.) 
Hence Lynn’s ECT data are in fair accord with Spearman’s hypothesis; but his Raven 
scores, used to estim ate the g loadings o f the ECT variables, are anomalous, especially 
in the South African (black) sample.

Why are the scores on Raven’s Standard Progressive Matrices (SPM) suspect, espe­
cially in the South African sample? As seen in Table 1 l.N , the vector of correlations of
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each o f the ECT variables with the SPM scores for South African blacks (i.e., LG b) is 
negatively correlated ( - .3 6 )  with the corresponding vector for the British whites (i.e., 
, G w). The congruence coefficient between the vectors LG b and ,G W is only + .45, indi­
cating that they are very different factors. (A congruence coefficient must be above .90 
for the two vectors to be regarded as representing the same factor.) The corresponding 
congruence coefficient in Jensen’s data is + .97. (The congruence between ,G W and LG W 
is + .80, indicating barely marginal similarity.) Examination o f the statistics on the Raven 
scores strongly suggests that there exists what is known in psychometrics as a “ floor” 
effect; that is, there are not enough easy items, so the test is much too difficult for many 
individuals in the sample, and beyond the few easiest items most subjects simply resort 
to guessing, which, in a multiple-choice test (which the Raven is), causes a piling up of 
scores near the chance-guessing level of performance. The South African black children 
had a mean score of only 12.7 (SD 4.5), which is at the first percentile (equivalent to an 
IQ of sixty-five) on the British norms and is only slightly above the chance-guessing 
score of 8.5. (As there are 6 multiple choices for 24 items and 8 multiple choices for 36 
items in the SPM, the expected chance score is 24(1/6) +  36(1/8) =  8.5 items.) The 
small SD  (4.5, as compared to about 10 in other comparable age groups) also suggests 
a marked “ floor”  effect in the African sample. Thus the reliability of the African chil­
dren’s scores on the SPM is most probably unacceptably low. (This is not true, however, 
for older black children in South Africa; Owen [1992] has reported satisfactory reliability 
coefficients [about .90] for the SPM given to South African blacks of ages 15 to 16 
years, whose SPM scores averaged about 28 with a SD  of about 11.)

Conclusion : If one looks at just the ECT data in the Lynn & Holmshaw (1990) study 
comparing black schoolchildren in South Africa with white children o f about the same 
age in Britain, the results are in line with the ECT data o f the Jensen (1993d) study 
comparing black and white children selected from the same American schools (even 
from the same classrooms). Insofar as the ECT data of Lynn & Holmshaw are fairly 
consistent with Jensen’s ECT data and are also concordant with theoretical prediction of 
the ECT variables’ g loadings, they lend support to Spearm an’s hypothesis. The ECT 
data certainly do not contradict it. What Lynn & Holmshaw refer to as their “ paradoxical 
result”  (p. 306) is not attributable to any unusual feature of their ECT data per se, but 
appears to be a consequence of the questionable validity o f the Raven Standard Pro­
gressive M atrices test as a measure of g for the subjects in this study, especially in the 
South African black sample, probably because of the “ floor”  effect on the distribution 
of test scores (and hence restriction of range) created by most of the SPM items being 
too difficult for most o f the subjects. The nonsignificant negative correlation ( - .1 4 )  
between the jG w and LG W vectors (i.e., the white group’s vector of ECT variables’ g 
loadings in the Jensen and the Lynn studies), however, is less likely due to a “ floor” 
effect, as the mean SPM score in this group was 36.1 (SD  9.6), which is close to the 
British norm for this age group. Such a discrepancy could be due to the large standard 
error o f the correlation between vectors, because the N  on which these correlations are 
based is only twelve. The confidence limits for correlations based on a small N  are quite 
wide, so that having only one or two of the values in a different rank order in each of 
the vectors can rather drastically alter the correlation between them. (The standard error 
o f an observed rank correlation when the null hypothesis is true is SE, =  1 /JN\ so for 
N  = 12, the SE, = ± .2 9 ) For this reason, testing Spearman’s hypothesis by means of 
correlated vectors is an extremely severe test, because in the existing studies the number 
of variables in each vector is typically about twelve and rarely more than twenty.
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61. Jensen & Whang, 1993. This study also refers to three studies by Lynn and co­

workers based on groups o f the same battery of ECTs given to groups in Japan and 
Hong Kong and points out similarities and differences in the results obtained in the 
American Chinese, Hong Kong Chinese, and Japanese samples.

62. Jensen & W hang, 1994.



Chapter 12
Population Differences in g: Causal Hypotheses

The relationship of the g factor to a number of biological variables 
and its relationship to the size of the white-black differences on 
various cognitive tests (i.e., Spearman’s hypothesis) suggests that 
the average white-black difference in g has a biological component. 
Human races are viewed not as discrete, or Platonic, categories, but 
rather as breeding populations that, as a result of natural selection, 
have come to differ statistically in the relative frequencies of many 
polymorphic genes. The “ genetic distances”  between various pop­
ulations form a continuous variable that can be measured in terms 
of differences in gene f requencies. Racial populations differ in many 
genetic characteristics, some of which, such as brain size, have be­
havioral and psychometric correlates, particularly g. What I term the 
default hypothesis states that the causes of the phenotypic differ­
ences between contemporary populations of recent African and Eur­
opean descent arise from the same genetic and environmental 
factors, and in approximately the same magnitudes, that account for 
individual differences within each population. Thus genetic and en­
vironmental variances between groups and within groups are viewed 
as essentially the same for both populations. The default hypothesis 
is able to account for the present evidence on the mean white-black 
difference in g. There is no need to invoke any ad hoc hypothesis, 
or a Factor X, that is unique to either the black or the white popu­
lation. The environmental component of the average g difference 
between groups is primarily attributable to a host of microenviron­
mental factors that have biological effects. They result from non­
genetic variation in prenatal, perinatal, and neonatal conditions and 
specific nutritional factors.
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The many studies of Spearman’s hypothesis using the method of correlated 

vectors show a strong relationship between the g loadings of a great variety of 
cognitive tests and the mean black-white differences on those tests. The fact 
that the same g vectors that are correlated with W-B differences are also cor­
related (and to about the same degree) with vectors composed of various cog­
nitive tests’ correlations with a number of genetic, anatomical, and physiological 
variables suggests that certain biological factors may be related to the average 
black-white population difference in the level of g.

The degree to which of each of many different psychometric tests is correlated 
with all of the other tests is directly related to the magnitude of the test’s g 
loading. W hat may seem surprising, however, is the fact that the degree to which 
a given test is correlated with any one of the following variables is a positive 
function of that test’s g loading:

Heritability of test scores.
Amount of inbreeding depression o f test scores.
Heterosis (hybrid vigor, that is, raised test scores, due to outbreeding).
Head size (also, by inference, brain size).
Average evoked potential (AEP) habituation and complexity.
Glucose metabolic rate as measured by PET scan.
Average reaction time to elementary cognitive tasks.
Size of the mean W-B difference on various cognitive tests.

The one (and probably the only) common factor that links all of these non­
psychometric variables to psychometric test scores and also links psychometric 
test scores to the magnitude of the mean W-B difference is the g factor. The 
critical role of g in these relationships is shown by the fact that the magnitude 
of a given test’s correlation with any one of the above-listed variables is cor­
related with the magnitude of the W-B difference on that test. For example, 
Rushton1'1 reported a correlation (r -  + .48) between the magnitudes of the 
mean W-B differences (in the American standardization sample) on eleven sub­
tests of the W ISC-R and the effect of inbreeding depression on the eleven subtest 
scores of the Japanese version of the WISC. Further, the subtests’ g loadings in 
the Japanese data predicted the American W-B differences on the WISC-R sub­
tests with r = .69— striking evidence of the g factor’s robustness across different 
cultures. Similarly, the magnitude of the mean W-B difference on each of sev­
enteen diverse psychometric tests was predicted (with r =  .71, p <  .01) by the 
tests’ correlations with head size (a composite measure of length, width, and 
circumference).'21

This association of psychometric tests’ g loadings, the tests’ correlations with 
genetic and other biological variables, and the mean W-B differences in test 
scores cannot be dismissed as happenstance. The failure of theories of group
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differences in IQ that are based exclusively on attitudinal, cultural, and expe­
riential factors to predict or explain such findings argues strongly that biological 
factors, whether genetic or environmental in origin, must be investigated. Before 
examining possible biological factors in racial differences in mental abilities, 
however, we should be conceptually clear about the biological meaning of the 
term “ race.”

THE MEANING OF RACE
Nowadays one often reads in the popular press (and in some anthropology 

textbooks) that the concept of human races is a fiction (or, as one well-known 
anthropologist termed it, a “ dangerous m yth” ), that races do not exist in reality, 
but are social constructions of politically and economically dominant groups for 
the purpose of maintaining their own status and power in a society. It naturally 
follows from this premise that, since races do not exist in any real, or biological, 
sense, it is meaningless even to inquire about the biological basis of any racial 
differences. I believe this line of argument has five main sources, none of them 
scientific:
• Heaping scorn on the concept of race is deemed an effective way of combating ra­

cism— here defined as the belief that individuals who visibly differ in certain charac­
teristics deemed “ racial”  can be ordered on a dimension of “ human worth”  from 
inferior to superior, and that therefore various civil and political rights, as well as social 
privileges, should be granted or denied according to a person’s supposed racial origin.

• Neo-M arxist philosophy (which still has exponents in the social sciences and the pop­
ular media) demands that individual and group differences in psychologically and so­
cially significant traits be wholly the result of economic inequality, class status, or the 
oppression of the working classes in a capitalist society. It therefore excludes consid­
eration of genetic or biological factors (except those that are purely exogenous) from 
any part in explaining behavioral differences among humans. It views the concept of 
race as a social invention by those holding economic and political powers to justify 
the division and oppression of unprivileged classes.

• The view that claims that the concept o f race (not just the misconceptions about it) is 
scientifically discredited is seen as a way to advance more harmonious relations among 
the groups in our society that are commonly perceived as “ racially”  different.

• The universal revulsion to the Holocaust, which grew out of the racist doctrines of 
Hitler’s Nazi regime, produced a reluctance on the part o f democratic societies to 
sanction any inquiry into biological aspects of race in relation to any behavioral vari­
ables, least of all socially important ones.

• Frustration with the age-old popular wrong-headed conceptions about race has led some 
experts in population genetics to abandon the concept instead of attempting candidly 
to make the public aware of how the concept of race is viewed by most present-day 
scientists.
W rong C onception s o f  Race. The root of most wrong conceptions of race 

is the Platonic view of human races as distinct types, that is, discrete, mutually
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exclusive categories. According to this view, any observed variation among the 
members o f a particular racial category merely represents individual deviations 
from the archetype, or ideal type, for that “ race.”  Since, according to this 
Platonic view of race, every person can be assigned to one or another racial 
category, it naturally follows that there is some definite number of races, each 
with its unique set of distinctive physical characteristics, such as skin color, hair 
texture, and facial features. The traditional number has been three: Caucasoid, 
Mongoloid, and Negroid, in part derived from the pre-Darwinian creationist 
view that “ the races of mankind”  could be traced back to the three sons of 
Noah— Shem, Ham, and Japheth.

T he C ause o f B iological V ariation . All that is known today about the world­
wide geographic distribution of differences in human physical characteristics 
can be understood in terms of the synthesis of Darwinian evolution and popu­
lation genetics developed by R. A. Fisher, Sewall Wright, Theodosius Dob- 
zhansky, and Ernst Mayr. Races are defined in this context as breeding 
populations that differ from one another in gene frequencies and that vary in a 
number of intercorrelated visible features that are highly heritable.

Racial differences are a product of the evolutionary process working on the 
human genome, which consists of about 100,000 polymorphic genes (that is, 
genes that contribute to genetic variation among members of a species) located 
in the twenty-three pairs of chromosomes that exist in every cell of the human 
body. The genes, each with its own locus (position) on a particular chromosome, 
contain all of the chemical information needed to create an organism. In addition 
to the polymorphic genes, there are also a great many other genes that are not 
polymorphic (that is, are the same in all individuals in the species) and hence 
do not contribute to the normal range of human variation. Those genes that do 
produce variation are called polymorphic genes, as they have two or more dif­
ferent forms called alleles, whose codes differ in their genetic information. Dif­
ferent alleles, therefore, produce different effects on the phenotypic characteristic 
determined by the gene at a particular chromosomal locus. Genes that do not 
have different alleles (and thus do not have variable phenotypic effects) are said 
to have gone to fixation', that is, alternative alleles, if any, have long since been 
eliminated by natural selection in the course of human or mammalian evolution. 
The physiological functions served by most basic “ housekeeping”  genes are so 
crucial for the organism’s development and viability that almost any mutation 
of them proves lethal to the individual who harbors it; hence only one form of 
the gene is possessed by all members of a species. A great many such essential 
genes are in fact shared by closely related species; the number of genes that are 
common to different species is inversely related to the evolutionary distance 
between them. For instance, the two living species closest to Homo sapiens in 
evolutionary distance, chimpanzees and gorillas, have at least 97 percent of their 
genes (or total genetic code) in common with present-day humans, scarcely less 
than chimps and gorillas have in common with each other. This means that even 
the very small percentage of genes (< 3  percent) that differ between humans and
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the great apes is responsible for all the conspicuous and profound phenotypic 
differences observed between apes and humans. The genetic difference appears 
small only if viewed on the scale of differences among all animal species.

A particular gene’s genetic code is determined by the unique sequences of 
four chemical bases of the DNA, arranged in the familiar double-helix structure 
of the gene. A change in a gene’s code (one base pair), however slight, can 
produce a new or different allele that manifests a different phenotypic effect. 
(Many such mutations, however, have no phenotypic effect because of redun­
dancy in the DNA.) Such changes in the DNA result from spontaneous mutation. 
Though mutations occur at random, some gene loci have much higher mutation 
rates than others, ranging for different loci from less than one per million to 
perhaps more than 500 per million sex cells— not a trivial number considering 
that each male ejaculation contains from 200 to 500 million sperm. While natural 
or spontaneous mutations have largely unknown causes, aptly referred to as 
biological “ noise,”  it has been shown experimentally that mutations can result 
from radiation (X-rays, gamma rays, cosmic rays, and ultraviolet radiation). 
Certain chemical substances are also mutagenic.

The creation of new alleles by spontaneous mutation along with the recom­
bination of alleles in gametogenesis are essential conditions for the evolution of 
all forms of life. A new allele with phenotypic effects that decrease an individ­
ual’s fitness in a given environment, compared to the nonmutated allele that 
would normally occupy the same chromosomal locus, will be passed on to fewer 
descendants and will eventually go to extinction. The gene is driven out of 
existence, so to speak, by losing in the competition with other alleles that afford 
greater fitness. Biological fitness (also known as Darwinian fitness), as a tech­
nical term in evolutionary genetics, refers only to an individual’s reproductive 
success, often defined operationally as the number of surviving fertile progeny 
of that individual. (A horse mated with a donkey, for example, might produce 
many surviving offspring, but because they are all sterile, the horse and donkey 
in this mating have a fitness of zero.) The frequency of a particular gene in all 
of an individual’s relatives is termed the inclusive fitness of that gene. The 
inclusive fitness of a gene is a measure of its effect on the survival and repro­
ductive success of both the individual bearing the gene and all of the individual’s 
relatives bearing the identical gene. Technically speaking, an individual’s bio­
logical fitness denotes nothing more than that individual’s genetic contribution 
to the next generation’s gene pool relative to the average for the population. 
The term does not necessarily imply any traits one may deem personally desir­
able, such as vigor, physical strength, or a beautiful body, although some such 
traits, to the extent that they are heritable, were undoubtedly genetically selected 
in the course of evolution only because, we know in retrospect, they enhanced 
individuals’ reproductive success in succeeding generations. The survival of any 
new allele and its rate of spreading through subsequent generations is wholly a 
function of the degree to which its phenotypic expression enhances the inclusive 
fitness of those who inherit the allele. An allele with any advantageous pheno­
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typic effect, in this respect, spreads to an ever-larger part of the breeding pop­
ulation in each successive generation.

New alleles created by mutation are subject to natural selection according to 
the degree of fitness they confer in a particular environment. Changed environ­
mental conditions can alter the selection pressure for a certain allele, depending 
on the nature of its phenotypic expression, thereby either increasing or decreas­
ing its frequency in a breeding population. Depending on its fitness in a given 
environment, it may go to extinction in the population or it may go to fixation 
(with every member of the population eventually possessing the allele).1 Many 
polymorphic gene loci harbor one or another allele of a balanced polymorphism, 
wherein two or more alleles with comparable fitness values (in a particular 
environment) are maintained at equilibrium in the population. Thus spontaneous 
genetic mutation and recombination, along with differential selection of new 
alleles according to how their phenotypic expression affects inclusive fitness, 
are crucial mechanisms of the whole evolutionary process. The variation in all 
inherited human characteristics has resulted from this process, in combination 
with random changes caused by genetic drift and gene frequency changes caused 
by migration and intermarriage patterns.

R aces as B reed ing P opulation s with Fuzzy B oundaries. Most anthropolo­
gists and population geneticists today believe that the preponderance of evidence 
from both the dating of fossils and the analysis of the geographic distribution 
of many polymorphic genes in present-day indigenous populations argues that 
genus Homo originated in Africa. Estimates are that our direct distant hominid 
precursor split off from the great apes some four to six million years ago. The 
consensus of human paleontologists (as of 1997) accept the following basic 
scenario o f human evolution.

Australopithecus afarensis was a small (about 3'6"), rather ape-like hominid 
that appears to have been ancestral to all later hominids. It was bipedal, walking 
more or less upright, and had a cranial capacity of 380 to 520 cm3 (about the 
same as that of the chimpanzee, but relatively larger for its overall body size). 
Branching from this species were at least two lineages, one of which led to a 
new genus, Homo.

Homo also had several branches (species). Those that were precursors of 
modern humans include Homo habilis, which lived about 2.5 to 1.5 million 
years ago. It used tools and even made tools, and had a cranial capacity of 510 
to 750 cm 3 (about half the size of modern humans). Homo erectus lived about 
1.5 to 0.3 million years ago and had a cranial capacity of 850 to 1100 cm3 
(about three-fourths the size of modern humans). The first hominid whose fossil 
remains have been found outside Africa, Homo erectus, migrated as far as the 
Middle East, Europe, and Western and Southeastern Asia. No Homo erectus 
remains have been found in Northern Asia, whose cold climate probably was 
too severe for their survival skills.

Homo sapiens branched off the Homo erectus line in Africa at least 100 
thousand years ago. During a period from about seventy to ten thousand years
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ago they spread from Africa to the Middle East, Europe, all of Asia, Australia, 
and North and South America. To distinguish certain archaic subspecies of 
Homo sapiens (e.g., Neanderthal man) that became extinct during this period 
from their contemporaries who were anatomically modern humans, the latter are 
now referred to as Homo sapiens sapiens (or Homo s. sapiens)', it is this line 
that branched off Homo erectus in Africa and spread to every continent during 
the last 70,000 years. These prehistoric humans survived as foragers living in 
small groups that frequently migrated in search of food.

GENETIC DISTANCE
As small populations of Homo s. sapiens separated and migrated further away 

from" Africa, genetic mutations kept occurring at a constant rate, as occurs in 
all living creatures. Geographic separation and climatic differences, with their 
different challenges to survival, provided an increasingly wider basis for pop­
ulations to become genetically differentiated through natural selection. Genetic 
mutations that occurred after each geographic separation of a population had 
taken place were differentially selected in each subpopulation according to the 
fitness the mutant gene conferred in the respective environments. A great many 
mutations and a lot of natural selection and genetic drift occurred over the course 
of the five or six thousand generations that humans were gradually spreading 
over the globe.

The extent of genetic difference, termed genetic distance, between separated 
populations provides an approximate measure of the amount of time since their 
separation and of the geographic distance between them. In addition to time and 
distance, natural geographic hindrances to gene flow (i.e., the interchange of 
genes between populations), such as mountain ranges, rivers, seas, and deserts, 
also restrict gene flow between populations. Such relatively isolated groups are 
termed breeding populations, because a much higher frequency of mating occurs 
between individuals who belong to the same population than occurs between 
individuals from different populations. (The ratio of the frequencies of within/ 
between population matings for two breeding populations determines the degree 
of their genetic isolation from one another.) Hence the combined effects of 
geographic separation, genetic mutation, genetic drift, and natural selection for 
fitness in different environments result in population differences in the frequen­
cies of different alleles at many gene loci.

There are also other causes of relative genetic isolation resulting from lan­
guage differences as well as from certain social, cultural, or religious sanctions 
against persons mating outside their own group. These restrictions of gene flow 
may occur even among populations that occupy the same territory. Over many 
generations these social forms of genetic isolation produce breeding populations 
(including certain ethnic groups) that evince relatively slight differences in allele 
frequencies from other groups living in the same locality.

When two or more populations differ markedly in allele frequencies at a great
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many gene loci whose phenotypic effects visibly distinguish them by a particular 
configuration of physical features, these populations are called subspecies. Vir­
tually every living species on earth has two or more subspecies. The human 
species is no exception, but in this case subspecies are called races. Like all 
other subspecies, human races are interfertile breeding populations whose in­
dividuals differ on average in distinguishable physical characteristics.

Because all the distinguishable breeding populations of modern humans were 
derived from the same evolutionary branch of the genus Homo, namely, Homo 
s. sapiens, and because breeding populations have relatively permeable (non- 
biological) boundaries that allow gene flow between them, human races can be 
considered as genetic “ fuzzy sets.”  That is to say, a race is one of a number 
of statistically distinguishable groups in which individual membership is not 
mutually exclusive by any single criterion, and individuals in a given group 
differ only statistically from one another and from the group’s central tendency 
on each of the many imperfectly correlated genetic characteristics that distin­
guish between groups as such. The important point is that the average difference 
on all of these characteristics that differ among individuals within the group is 
less than the average difference between the groups on these genetic character­
istics.4

W hat is termed a cline results where groups overlap at their fuzzy boundaries 
in some characteristic, with intermediate gradations of the phenotypic charac­
teristic, often making the classification of many individuals ambiguous or even 
impossible, unless they are classified by some arbitrary rule that ignores biology. 
The fact that there are intermediate gradations or blends between racial groups, 
however, does not contradict the genetic and statistical concept of race. The 
different colors of a rainbow do not consist of discrete bands but are a perfect 
continuum, yet we readily distinguish different regions of this continuum as 
blue, green, yellow, and red, and we effectively classify many things according 
to these colors. The validity of such distinctions and of the categories based on 
them obviously need not require that they form perfectly discrete Platonic cat­
egories.

It must be emphasized that the biological breeding populations called races 
can only be defined statistically, as populations that differ in the central tendency 
(or mean) on a large number of different characteristics that are under some 
degree of genetic control and that are correlated with each other through descent 
from common ancestors who are relatively recent in the time scale of evolution 
(i.e., those who lived about ten thousand years ago, at which time all of the 
continents and most of the major islands of the world were inhabited by rela­
tively isolated breeding populations of Homo s. sapiens).

O f course, any rule concerning the number of gene loci that must show dif­
ferences in allele frequencies (or any rule concerning the average size of dif­
ferences in frequency) between different breeding populations for them to be 
considered races is necessarily arbitrary, because the distribution of average 
absolute differences in allele frequencies in the world’s total population is a
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perfectly continuous variable. Therefore, the number of different categories, or 
races, into which this continuum can be divided is, in principle, wholly arbitrary, 
depending on the degree of genetic difference a particular investigator chooses 
as the criterion for classification or the degree of confidence one is willing to 
accept with respect to correctly identifying the area of origin of one’s ancestors.

Some scientists have embraced all of Homo sapiens in as few as two racial 
categories, while others have claimed as many as seventy. These probably rep­
resent the most extreme positions in the “ lumper”  and “ splitter”  spectrum. 
Logically, we could go on splitting up groups of individuals on the basis of 
their genetic differences until we reach each pair of monozygotic twins, which 
are genetically identical. But as any pair of MZ twins are always of the same 
sex, they of course cannot constitute a breeding population. (If hypothetically 
they could, the average genetic correlation between all of the offspring of any 
pair of MZ twins would be %; the average genetic correlation between the 
offspring of individuals paired at random in the total population is Vr, the off­
spring of various forms o f genetic relatedness, such as cousins [a preferred 
match in some parts of the world], falls somewhere between % and Vi.) How­
ever, as I will explain shortly, certain multivariate statistical methods can provide 
objective criteria for deciding on the number and composition of different racial 
groups that can be reliably determined by the given genetic data or that may be 
useful for a particular scientific purpose. But one other source of genetic vari­
ation between populations must first be explained.

G enetic  D rift. In addition to mutation, natural selection, and migration, an­
other means by which breeding population may differ in allele frequencies is 
through a purely stochastic (that is, random) process termed genetic drift. Drift 
is most consequential during the formation of new populations when their num­
bers are still quite small. Although drift occurs for all gene loci, Mendelian 
characters (i.e., phenotypic traits), which are controlled by a single gene locus, 
are more noticeably affected by drift than are polygepic traits (i.e., those caused 
by many genes). The reason is purely statistical.

Changes in a population’s allele frequencies attributable to genetic drift can 
be distinguished from changes due to natural selection for two reasons: (1) Many 
genes are neutral in the sense that their allele frequencies have remained un­
affected by natural selection, because they neither increase nor decrease fitness; 
over time they move across the permeable boundaries of different breeding 
populations. (2) When a small band of individuals emigrates from the breeding 
population of origin to found a new breeding population, it carries with it only 
a random sample of all of the alleles, including neutral alleles, that existed in 
the entire original population. That is, the allele frequencies at all gene loci in 
the migrating band will not exactly match the allele frequencies in the original 
population. The band of emigrants, and of course all its descendants (who may 
eventually form a large and stable breeding population), therefore differs ge­
netically from its parent population as the result of a purely random process. 
This random process is called founder effect. It applies to all gene loci. All
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during the time that genetic drift was occurring, gene mutations steadily contin­
ued, and natural selection continued to produce changes in allele frequencies at 
many loci. Thus the combined effects of genetic drift, mutation, and natural 
selection ensure that a good many alleles are maintained at different frequencies 
in various relatively isolated breeding populations. This process did not happen 
all at once and then cease. It is still going on, but it takes place too slowly to 
be perceived in the short time span of a few generations.

It should be noted that the phenotypic differences between populations that 
were due to genetic drift are considerably smaller than the differences in those 
phenotypic characteristics that were strongly subject to natural selection, espe­
cially those traits that reflect adaptations to markedly different climatic condi­
tions, such as darker skin color (thought to have evolved as protection from the 
tropical sun’s rays that can cause skin cancer and to protect against folate de­
composition by sunlight), light skin color (to admit more of the ultraviolet rays 
needed for the skin’s formation of vitamin D in northern regions; also because 
clothing in northern latitudes made dark skin irrelevant selectively and it was 
lost through random mutation and drift), and globular versus elongated body 
shape and head shape (better to conserve or dissipate body heat in cold or hot 
climates, respectively).5

Since the genetic drift of neutral genes is a purely random process, and given 
a fairly constant rate of drift, the differing allele frequencies of many neutral 
genes in various contemporary populations can be used as a genetic clock to 
determine the approximate time of their divergence. The same method has been 
used to estimate the extent of genetic separation, termed genetic distance, be­
tween populations.

M easu rem en t and A n alysis o f  G enetic D istance B etw een G roups. Modern 
genetic technology makes it possible to measure the genetic distance between 
different populations objectively with considerable precision, or statistical reli­
ability.161 This measurement is based on a large number of genetic polymor­
phisms for what are thought to be relatively neutral genes, that is, genes whose 
allele frequencies therefore differ across populations more because of mutations 
and genetic drift than because of natural selection. Population allele frequencies 
can be as low as zero or as high as 1.0 (as there are certain alleles that have 
large frequencies in some populations but are not found at all in other popula­
tions). Neutral genes are preferred in this work because they provide a more 
stable and accurate evolutionary “ clock”  than do genes whose phenotypic char­
acters have been subjected to the kinds of diverse external conditions that are 
the basis for natural selection. Although neutral genes provide a more accurate 
estimate of populations’ divergence times, it should be noted that, by definition, 
they do not fully reflect the magnitude of genetic differences between popula­
tions that are mainly attributable to natural selection.

The technical rationale and formulas for calculating genetic distance are fully 
explicated elsewhere.|6al For present purposes, the genetic distance, D, between 
two groups can be thought of here simply as the average difference in allele
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frequencies between two populations, with D scaled to range from zero (i.e., no 
allele differences) to one (i.e., differences in all alleles). One can also think of 
D as the complement of the correlation coefficient r (i.e., D =  1 — r, and r  =  
1 — D). This conversion of D to r is especially useful, because many of the 
same objective multivariate statistical methods that were originally devised to 
analyze large correlation matrices (e.g., principal components analysis, factor 
analysis, hierarchical cluster analysis, multidimensional scaling) can also be used 
to analyze the total matrix of genetic distances (after they are converted to 
correlations) between a large number of populations with known allele frequen­
cies based on some large number of genes.

The most comprehensive study of population differences in allele frequencies 
to date is that of the Stanford University geneticist Luigi Luca Cavalli-Sforza 
and his co-workers.6a Their recent 1,046-page book reporting the detailed results 
of their study is a major contribution to the science of population genetics. The 
main analysis was based on blood and tissue specimens obtained from repre­
sentative samples of forty-two populations, from every continent (and the Pacific 
islands) in the world. All the individuals in these samples were aboriginal or 
indigenous to the areas in which they were selected samples; their ancestors 
have lived in the same geographic area since no later than 1492, a familiar date 
that generally marks the beginning of extensive worldwide European explora­
tions and the consequent major population movements. In each of the Stanford 
study’s population samples, the allele frequencies of 120 alleles at forty-nine 
gene loci were determined. Most of these genes determine various blood groups, 
enzymes, and proteins involved in the immune system, such as human lympho­
cyte antigens (HLA) and immunoglobulins. These data were then used to cal­
culate the genetic distance (D ) between each group and every other group. (DNA 
sequencing was also used in separate analyses of some groups; it yields finer 
genetic discrimination between certain groups than can the genetic polymor­
phisms used in the main analysis.) From the total matrix of (42 X  41 )/2 =  861 
D values, Cavalli-Sforza et al. constructed a genetic linkage tree. The D  value 
between any two groups is represented graphically by the total length of the 
line that connects the groups in the branching tree. (See Figure 12.1.)

The greatest genetic distance, that is, the largest D, is between the five African 
groups (listed at the top of Figure 12.1) and all the other groups. The next 
largest D is between the Australian +  New Guinean groups and the remaining 
other groups; the next largest split is between the South Asians +  Pacific Is­
landers and all the remaining groups, and so on. The clusters at the lowest level 
(i.e., at far right in Figure 12.1) can also be clustered to show the D values 
between larger groupings, as in Figure 12.2. Note that these clusters produce 
much the same picture as the traditional racial classifications that were based 
on skeletal characteristics and the many visible physical features by which non­
specialists distinguish “ races.” 7

It is noteworthy, but perhaps not too surprising, that the grouping of various 
human populations in terms of invisible genetic polymorphisms for many rela-
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Figure 12.1. The genetic linkage tree for forty-two populations. The genetic distance 
between any two groups is represented by the total length of the line separating them. 
(Cavalli-Sforza, L. L., Menozzi, P. & Piazza, A., The history and geography o f  human 
genes. Copyright © 1994 by Princeton University Press. Reprinted by permission of 
Princeton University Press.)

tively neutral genes yields results that are highly similar to the classic methods 
of racial classification based on directly observable anatomical features.

Another notable feature of the Stanford study is that the geographic distances 
between the locations of the groups that are less than 5,000 miles apart are 
highly correlated (r *=.95) with the respective genetic distances between these
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Figure 12.2. A linkage tree based on the average genetic distances between the major 
clusters among the groups shown in Figure 12.1. (Cavalli-Sforza, L. L., Menozzi, P. & 
Piazza, A., The history and geography o f  human genes. Copyright © 1994 by Princeton 
University Press. Reprinted by permission o f Princeton University Press.)

groups. This argues that genetic distance provides a fairly good measure of the 
rate of gene flow between populations that were in place before a .d . 1492.

None of the 120 alleles used in this study has equal frequencies across all of 
the forty-two populations. This attests to the ubiquity of genetic variation among 
the world’s populations and subpopulations.

All of the modern human population studies based on genetic analysis (in­
cluding analyses based on DNA markers and sequences) are in close agreement 
in showing that the earliest, and by far the greatest, genetic divergence within 
the human species is that between Africans and non-Africans (see Figures 12.1 
and 12.2).

Cavalli-Sforza et al. transformed the distance matrix to a correlation matrix 
consisting of 861 correlation coefficients among the forty-two populations, so 
they could apply principal components (PC) analysis to their genetic data. (PC 
analysis is similar to factor analysis; the essential distinction between them is 
explained in Chapter 3, Note 13.) PC analysis is a wholly objective mathematical 
procedure. It requires no decisions or judgments on anyone’s part and yields 
identical results for everyone who does the calculations correctly. (Nowadays 
the calculations are performed by a computer program specifically designed for 
PC analysis.) The important point is that if the various populations were fairly 
homogeneous in genetic composition, differing no more genetically than could 
be attributable only to random variation, a PC analysis would not be able to 
cluster the populations into a number of groups according to their genetic pro­
pinquity. In fact, a PC analysis shows that most of the forty-two populations 
fall very distinctly into the quadrants formed by using the first and second 
principal components as axes (see Figure 12.3). They form quite widely sepa­
rated clusters of the various populations that resemble the “ classic”  major racial 
groups— Caucasians in the upper right, Negroids in the lower right, Northeast 
Asians in the upper left, and Southeast Asians (including South Chinese) and 
Pacific Islanders in the lower left. The first component (which accounts for 27
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percent of the total genetic variation) corresponds roughly to the geographic 
migration distances (or therefore time since divergence) from sub-Saharan Af­
rica, reflecting to some extent the differences in allele frequencies that are due 
to genetic drift. The second component (which accounts for 16 percent of the 
variation) appears to separate the groups climatically, as the groups’ positions 
on PC2 are quite highly correlated with the degrees latitude of their geographic 
locations. This suggests that not all of the genes used to determine genetic 
distances are entirely neutral, but at least some of them differ in allele frequen­
cies to some extent because of natural selection for different climatic conditions. 
I have tried other objective methods of clustering on the same data (varimax 
rotation of the principal components, common factor analysis, and hierarchical 
cluster analysis). All of these types of analysis yield essentially the same picture 
and identify the same major racial groupings.8

African-Americans. The first Africans arrived in North America in 1619 and 
for more than two centuries thereafter, mostly between 1700 and 1800, the
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majority of Africans were brought to America as slaves. The end to this invol­
untary migration came between 1863 and 1865, with the Emancipation Proc­
lamation. Nearly all of the Africans who were enslaved came from sub-Saharan 
West Africa, specifically the coastal region from Senegal to Angola. The pop­
ulations in this area are often called West African or North West and Central 
West Bantu.191

Steadily over time, the real, but relatively low frequency of cross-mating 
between blacks and whites produced an infusion of Caucasoid genes into the 
black gene pool. As a result, the present-day population of black Americans is 
genetically different from the African populations from whom they descended. 
Virtually 100 percent of contemporary black Americans have some Caucasian 
ancestry. Most of the Caucasian genes in the present-day gene pool of black 
Americans entered the black gene pool during the period of slavery.191

Estimates of the proportion of Caucasoid genes in American blacks are based 
on a number genetic polymorphisms that have fairly high allele frequencies in 
the European population but zero or near-zero frequencies in the West African 
population, or vice versa. For any given allele, the estimated proportion (M) of 
white European ancestry in American blacks is obtained by the formula M = 
(q r! — q Ar) / (q w — q Af), where qu is the given allele’s frequency in the black 
American population, q Af is its frequency in the African population, and q w is 
its frequency in the white European population. The average value of M is 
obtained over each of twenty or so genes with alleles that are unique either to 
Africans or to Europeans. The largest studies, which yield estimates with the 
greatest precision, give mean values of M close to 25 percent, with a standard 
error of about 3 percent.1101 This is probably the best estimate for the African- 
American population overall. However, M varies across different regions of the 
United States, being as low as 4 percent to 10 percent in some southeastern 
States and spreading out in a fan-shaped gradient toward the north and the west 
to reach over 40 percent in some northeastern and northwestern states. Among 
the most typical and precise estimates of M are those for Oakland, California 
(22.0 percent) and Pittsburgh, Pennsylvania (25.2 percent). This regional vari­
ation in M reflects the pattern of selective migration of blacks from the Deep 
South since the mid-nineteenth century. Gene flow, of course, goes in both 
directions. In every generation there has been a small percentage of persons who 
have some African ancestry but whose ancestry is predominantly Caucasian and 
who permanently “ pass as white.”  The white American gene pool therefore 
contains some genes that can be traced to Africans who were brought over as 
slaves (estimated by analyses of genetic polymorphisms to be less than 1 per­
cent)."11

Genetic Distance and Population Differences in g.  The preceding discourse 
on the genetics of populations is germane to any discussion of population dif­
ferences in g. The differences in gene frequencies that originally created differ­
ent breeding populations largely explain the physical phenotypic differences 
observed between populations called races. Most of these differences in visible
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phenotypic characteristics are the result of natural selection working over the 
course of human evolution. Selection changes gene frequencies in a population 
by acting directly on any genetically based phenotypic variation that affects 
Darwinian fitness for a given environment. This applies not only to physical 
characteristics, but also to behavioral capacities, which are necessarily to some 
degree a function of underlying physical structures. Structure and function are 
intimately related, as their evolutionary origins are inseparable.

The behavioral capacities or traits that demonstrate genetic variation can also 
be viewed from an evolutionary perspective. Given the variation in allele fre­
quencies between populations for virtually every known polymorphic gene, it is 
exceedingly improbable that populations do not differ in the alleles that affect 
the structural and functional basis of heritable behavioral traits. The empirical 
generalization that every polygenic physical characteristic that shows differences 
between individuals also shows mean differences between populations applies 
to behavioral as well as physical characteristics. Given the relative genetic dis­
tances between the major racial populations, one might expect some behavioral 
differences between Asians and Europeans to be of lesser magnitude than those 
between these groups and sub-Saharan Africans.

The behavioral, psychological, or mental characteristics that show the highest 
g loadings are the most heritable and have the most biological correlates (see 
Chapter 6) and are therefore the most likely to show genetic population differ­
ences. Because of the relative genetic distances, they are also the most likely to 
show such differences between Africans (including predominantly African de­
scendants) and Caucasians or Asians.

O f the approximately 100,000 human polymorphic genes, about 50,000 are 
functional in the brain and about 30,000 are unique to brain functions.1121 The 
brain is by far the structurally and functionally most complex organ in the human 
body and the greater part of this complexity resides in the neural structures of 
the cerebral hemispheres, which, in humans, are much larger relative to total 
brain size than in any other species. A general principle of neural organization 
states that, within a given species, the size and complexity of a structure reflect 
the behavioral importance of that structure. The reason, again, is that structure 
and function have evolved conjointly as an integrated adaptive mechanism. But 
as there are only some 50,000 genes involved in the brain’s development and 
there are at least 200 billion neurons and trillions of synaptic connections in the 
brain, it is clear that any single gene must influence some huge number of 
neurons— not just any neurons selected at random, but complex systems of 
neurons organized to serve special functions related to behavioral capacities.

It is extremely improbable that the evolution of racial differences since the 
advent of Homo sapiens excluded allelic changes only in those 50,000 genes 
that are involved with the brain.

Brain size has increased almost threefold during the course of human evo­
lution, from about 500 cm3 in the australopithecenes to about 1,350 cm3 (the 
present estimated worldwide average) in Homo sapiens. Nearly all of this in­
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crease in brain volume has occurred in connection with those parts of the cer­
ebral hemispheres associated with cognitive processes, particularly the prefrontal 
lobes and the posterior association areas, which control foresight, planning, goal- 
directed behavior, and the integration of sensory information required for higher 
levels of information processing. The parts of the brain involved in vegetative 
and sensorimotor functions per se differ much less in size, relative to total brain 
size, even between humans and chimpanzees than do the parts of the brain that 
subserve cognitive functions. Moreover, most of the- evolutionary increase in 
brain volume has resulted not from a uniform increase in the total number of 
cortical neurons per se, but from a much greater increase in the number and 
complexity o f the interconnections between neurons, making possible a higher 
level of interneuronal communication on which complex information processing 
depends. Although the human brain is three times larger than the chimpanzee 
brain, it has only 1.25 times as many neurons; the much greater difference is in 
their degree of arborization, that is, their number of synapses and interconnecting 
branches.

No other organ system has evolved as rapidly as the brain of Homo sapiens, 
a species that is unprecedented in this respect. Although in hominid evolution 
there was also an increase in general body size, it was not nearly as great as 
the increase in brain size. In humans, the correlation between individual differ­
ences in brain size and in stature is only about +.20. One minus the square of 
this relatively small correlation, which is .96, reflects the proportion of the total 
variance in brain size that cannot be accounted for by variation in overall body 
size. Much of this residual variance in brain size presumably involves cognitive 
functions.

Bear in mind that, from the standpoint of natural selection, a larger brain 
size (and its corresponding larger head size) is in many ways decidedly disad­
vantageous. A large brain is metabolically very expensive, requiring a high- 
calorie diet. Though the human brain is less than 2 percent of total body weight, 
it accounts for some 20 percent of the body’s basal metabolic rate (BMR). In 
other primates, the brain accounts for about 10 percent of the BMR, and for 
most carnivores, less than 5 percent. A larger head also greatly increases the 
difficulty of giving birth and incurs much greater risk of perinatal trauma or 
even fetal death, which are much more frequent in humans than in any other 
animal species. A larger head also puts a greater strain on the skeletal and 
muscular support. Further, it increases the chances of being fatally hit by an 
enemy’s club or missile. Despite such disadvantages of larger head size, the 
human brain, in fact, evolved markedly in size, with its cortical layer accom­
modating to a relatively lesser increase in head size by becoming highly con­
voluted in the endocranial vault. In the evolution of the brain, the effects of 
natural selection had to have reflected the net selective pressures that made an 
increase in brain size disadvantageous versus those that were advantageous. The 
advantages obviously outweighed the disadvantages to some degree or the in­
crease in hominid brain size would not have occurred.



Causal Hypotheses 435
The only conceivable advantage to an increase in the size and complexity of 

the brain is the greater behavioral capacity this would confer. This would in­
clude: the integration of sensory information, fine hand-eye coordination, quick­
ness of responding or voluntary response inhibition and delayed reaction 
depending on the circumstances, perceiving functional relationships between two 
things when only one or neither is physically present, connecting past and future 
events, learning from experience, generalization, far transfer of learning, im­
agery, intentionality and planning, short-term and long-term memory capacity, 
mentally manipulating objects without need to handle them physically, foresight, 
problem solving, use of denotative language in vocal communication, as well 
as all of the information processes that are inferred from performance on what 
were referred to in Chapter 8 as “ elementary cognitive tasks.”  These basic 
information processes are involved in coping with the natural exigencies and 
the contingencies of humans’ environment. An increase in these capabilities and 
their functional efficiency are, in fact, associated with allometric differences in 
brain size between various species of animals, those with greater brain volume 
in relation to their overall body size generally displaying more of the kinds of 
capabilities listed above.1131 The functional efficiency of the various behavioral 
capabilities that are common to all members of a given species can be enhanced 
differentially by natural selection, in the same way (though probably not to the 
same degree) that artificial selection has made dogs of various breeds differ in 
propensities and trainability for specific types of behavior.14

W hat kinds of environmental pressures encountered by Homo erectus and 
early Homo sapiens would have selected for increased size and complexity of 
the brain? Evolutionists have proposed several plausible scenarios.1'51 Generally, 
a more complex brain would be advantageous in hunting skill, cooperative social 
interaction, and the development of tool use, followed by the higher-order skill 
of using tools to make other tools, a capacity possessed by no contemporary 
species other than Homo sapiens.

The environmental forces that contributed to the differentiation of major pop­
ulations and their gene pools through natural selection were mainly climatic, but 
parasite avoidance and resistance were also instrumental. Homo sapiens evolved 
in Africa from earlier species of Homo that originated there. In migrating from 
Africa and into Europe and Asia, they encountered highly diverse climates. 
These migrants, like their parent population that remained in sub-Saharan Africa, 
were foragers, but they had to forage for sustenance under the highly different 
conditions of their climatically diverse habitats. Foraging was possible all during 
the year in the tropical and subtropical climates of equatorial regions, while in 
the more northern climate of Eurasia the abundance of food that could be ob­
tained by hunting and gathering greatly fluctuated with the seasons. This ne­
cessitated the development of more sophisticated techniques for hunting large 
game, requiring vocal communication and cooperative efforts (e.g., by ambush­
ing, trapping, or corralling), along with foresight in planning ahead for the pres­
ervation, storage, and rationing of food in order to survive the severe winter
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months when foraging is practically impossible. Extreme seasonal changes and 
the cold climate of the northern regions (now inhabited by Mongoloids and 
Caucasians) also demanded the ingenuity and skills for constructing more per­
manent and sturdy dwellings and designing substantial clothing to protect 
against the elements. Whatever bodily and behavioral adaptive differences be­
tween populations were wrought by the contrasting conditions of the hot climate 
of sub-Saharan Africa and the cold seasons of northern Europe and northeast 
Asia would have been markedly intensified by the last glaciation, which oc­
curred approximately 30,000 to 10,000 years ago, after Homo sapiens had in­
habited most of the globe. During this long period of time, large regions of the 
Northern Hemisphere were covered by ice and the north Eurasian winters were 
far more severe than they have ever been for over 10,000 years.

It seems most plausible, therefore, that behavioral adaptations of a kind that 
could be described as complex mental abilities were more crucial for survival 
of the populations that migrated to the northern Eurasian regions, and were 
therefore under greater selection pressure as fitness characters, than in the pop­
ulations that remained in tropical or subtropical regions.1151

Climate has also influenced the evolution of brain size apparently indirectly 
through its direct effect on head size, particularly the shape of the skull. Head 
size and shape are more related to climate than is the body as a whole. Because 
the human brain metabolizes 20 percent of the body’s total energy supply, it 
generates more heat in relation to its size than any other organ. The resting rate 
o f energy output of the average European adult male’s brain is equal to about 
three-fourths that of a 100-watt light bulb. Because temperature changes in the 
brain of only four to five degrees Celsius are seriously adverse to the normal 
functioning o f the brain, it must conserve heat (in a cold environment) or dis­
sipate heat (in a hot environment). Simply in terms of solid geometry, a sphere 
contains a larger volume (or cubic capacity) for its total surface area than does 
than any other shape. Conversely, a given volume can be contained in a sphere 
that has a smaller surface area than can be contained by a nonspherical shape 
with the same surface area (an elongated oval shape, for instance). Since heat 
radiation takes place at the surface, more spherical shapes will radiate less heat 
and conserve more heat for a given volume than a nonspherical shape, and less 
spherical shapes will lose more heat by radiation. Applying these geometric 
principles to head size and shape, one would predict that natural selection would 
favor a smaller head with a less spherical (dolichocephalic) shape because of 
its better heat dissipation in hot climates, and would favor a more spherical 
(brachycephalic) head to accommodate a larger volume of brain matter with a 
smaller surface area because of its better heat conservation in cold climates. 
(The dolichocephalic-brachycephalic dimension is related to the head’s width: 
length ratio, known as the cephalic index.) In brief, a smaller, dolichocephalic 
cranium is advantageous for thermoregulation of the brain in a hot climate, 
whereas a larger, brachycephalic cranium is advantageous in a cold climate. In
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the world’s populations, head breadth is correlated about +.8 with cranial ca­
pacity; head length is correlated about +.4.

Evidence that the average endocranial volume of various populations is related 
to cranial shape and that both phenomena are, in some part, adaptations to 
climatic conditions in different regions has been shown by physical anthropol­
ogist Kenneth Beals and his co-workers.1161 They amassed measurements of en­
docranial volume in modern humans from some 20,000 individual crania 
collected from every continent, representing 122 ethnically distinguishable pop­
ulations. They found that the global mean cranial capacity for populations in 
hot climates is 1,297 ±  10.5 cm 3; for populations in cold and temperate climates 
it is 1,386 ±  6.7 cm3, a highly significant (p  <  10“4) difference of 89 cm3. 
Beals also plotted a correlation scatter diagram of the mean cranial capacity in 
cm3 of each of 122 global populations as a function of their distance from the 
equator (in absolute degrees north or south latitude). The Pearson correlation 
between absolute distance from the equator and cranial capacity was r =  + .62 
{p <  10'5). (The regression equation is: cranial capacity =  2.5 cm 3 X Idegrees 
latitudcl +  1257.3 cm3; that is, an average increase of 2.5 cm3 in cranial capacity 
for every 1° increase in latitude.) The same analysis applied to populations of 
the African-Eurasian landmass showed a cranial capacity X latitude correlation 
of + .76 (p <  10-4) and a regression slope of 3.1 cm3 increase in cranial capacity 
per every 1° of absolute latitude in distance from the equator. The indigenous 
populations of North and South American continents show a correlation of + .44 
and a regression slope of 1.5; the relationship of cranial capacity to latitude is 
less pronounced in the New World than in the Old World, probably because 
Homo sapiens inhabited the New World much more recently, having migrated 
from Asia to North America only about 15,000 years ago, while Homo sapiens 
have inhabited the African and Eurasian continents for a much longer period.

RACIAL DIFFERENCES IN HEAD/BRAIN SIZE
Are the climatic factors associated with population differences in cranial ca­

pacity, as summarized in the preceding section, reflected in the average cranial 
or brain-size measurements of the three broadest contemporary population 
groups, generally termed Caucasoid (Europeans and their descendants), Negroid 
(Africans and descendants), and Mongoloid (Northeast Asians and descendants)? 
A recent comprehensive review '171 summarized the worldwide literature on brain 
volume in cm 3 as determined from four kinds of measurements: (a) direct meas­
urement of the brain obtained by autopsy, (b) direct measurement of endocranial 
volume of the skull, (c) cranial capacity estimated from external head measure­
ments, and (d) cranial capacity estimated from head measurements and corrected 
for body size. The aggregation of data obtained by different methods, based on 
large samples, from a number of studies tends to average-out the sampling error 
and method effects and provides the best overall estimates of the racial group
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Mean Cranial Capacity (cm3) of Three Racial Populations Determined from Four 
Types of Measurements
Table 12.1

Measurement East Asian European African
Autopsy 1351 1356 1223
Endocranial volume 1415 1362 1268
External head measurements 1335 1341 1284
Corrected for body size 1356 1329 1294
Mean 1364 1347 1267
Source: Based on data sum m arized by Rushton & Ankney, 1996.

means in head/brain size measurements. The results of this aggregation are 
shown in Table 12.1.

Probably the technically most precise data on brain size for American whites 
and blacks were obtained from a study of autopsied brains by a team of experts 
at the Case-Western Reserve University’s Medical School in Cleveland, Ohio.1181 
It measured the autopsied brains of 811 whites and 450 blacks matched for 
mean age (sixty years). Subjects with any brain pathology were excluded from 
the study. The same methods were used to remove, preserve, and weigh the 
brains for all subjects. The results for each race X sex group are shown in Table 
12.2. As the total sample (N  =1,261) ranged in age from 25 to 80 years, with 
a mean of 60 years in both racial groups, it was possible to estimate (by re­
gression) the mean brain weight for each race X sex group at age 25 based on 
all of the data for each group (shown in the last column of Table 12.2). For the 
mean height-adjusted brain weight, the W-B difference in standard deviation 
units is 0.76a  for males, 0.78c for females. (The actual height-adjusted W-B 
differences are 102 g for males and 95 g for females.) Neurologically, a differ­
ence of 100 g in brain weight corresponds to approximately 550 million cortical 
neurons.1191 But this average estimate ignores any sex differences in brain size 
and density of cortical neurons.

Note that for each racial group the sexes differ in brain weight by about 130 
g, which is about 30 g more than the average racial difference. This presents a 
paradox, because while brain size is correlated with IQ, there is little or no sex 
difference in IQ (even the largest IQ differences that have been claimed by 
anyone are much smaller than would be predicted by the sex difference in brain 
size). Attempts to explain this paradox amount to plausible speculations.1201 One 
thing seems certain: Because of the small correlation (about .20) between brain 
size and body size, the sex difference in brain volume and weight can be only 
partially accounted for by the regression of brain size on body size.(2la| The 
resolution of this paradox may come from the evidence|2lb| that females have a 
higher density of neurons in the posterior temporal cortex, which is the major 
association area and is involved in higher thought processes. Females have 11
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Table 12.2
Mean Brain Weight (in grams) of White and Black Males and Females

G r o u p N H e i g h t  
(cm)

B r a i n
W e i g h t

SD o f  B r a i n  
W e i g h t

B r a i n  W e i g h t  
H t . A d j u s t e d *

E s t  B r a i n  W e i g h t  
a t  A g e  25

WM 4 1 3  1 7 5 1 3 9 2 1 3 0 1 3 9 2 1 5 7 0
BM 2 2 8  1 7 3 1 2 8 6 1 3 8 1 2 9 0 1 3 7 5
WF 3 9 5  1 6 2 1 2 5 2 1 2 5 1 2 5 2 1 3 3 9
BF 2 2 2  16 2 1 1 5 8 1 1 9 1 1 5 8 1 2 9 1

'Brain weight is adjusted by regression based on equating black height with white height. 
Source: Data from Ho et al., 1980a, 1980b.

percent more neurons per unit volume than do males, which, if true for the brain 
as a whole, would more than offset the 10 percent male-female difference in 
overall brain volume. This sex difference in neuronal packing density is consid­
ered a true sexual dimorphism, as are the sex differences in overall body size, 
skeletal form, the proportion and distribution of body fat, and other secondary 
sexual characteristics. Sexual dimorphism is seen throughout the animal king­
dom and in many species is far more extreme than in Homo sapiens. I have not 
found any investigation of racial differences in neuron density that, as in the 
case of sex differences, would offset the racial difference in brain weight or 
volume. Until doubts on this point are empirically resolved, however, interpre­
tations of the behavioral significance of the racial difference in brain size remain 
tentative. One indication that the race difference in brain weight is not of the 
same nature as the sex difference is that the allometric ratio of brain weight (in 
g) to body weight (in kg) is less similar between the racial groups than between 
the sexes within each racial group.ll8cl

Group Brain Weight / Body Weight (g/kg)
Mean SD

WF 22.61 5.29
WM 21.14 4.65
BM 20.65 5.18
BF 19.99 6.22

Also, we must take into account the fact that, on average, about 30 percent of 
total adult female body weight is fat, as compared to 15 percent for males. 
Because body fat is much less innervated than muscle tissue, brain size is more 
highly correlated with fat-free body weight than with total body weight. Statis­
tically controlling for fat-free body weight (instead of total body weight) has 
been found to reduce the sex difference in head circumference by about 77 
percent, or about three times as much as controlling for total body weight.1221 
Because head circumference is an imperfect proxy for brain size, the percentage
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reduction of the sex difference in directly measured brain volume (or weight) 
that would be achieved by controlling for fat-free weight will be uncertain until 
such studies are performed. Measuring fat-free body weight should become rou­
tine in the conduct of brain-size studies based on autopsied brains or on in vivo 
brain measurements obtained by imaging techniques.

The white-black difference in head/brain size is significant in neonates (about
0.4g difference in head circumference) and within each racial group head size 
at birth is correlated (about + .13) with IQ at age seven years, when the average 
within-groups correlation with IQ is +  .21.|23al A retrospective study of two 
groups of seven-year-old children, those with IQ <  80 and those with IQ >  
120 were found to have differed by 0 .5c  in head circumference measured at 
one year of age.|23bl Also, small head size measured at eight months has been 
found to interact most unfavorably with birth weight; infants with very low birth 
weight who had subnormal head size at eight months had an average IQ about 
nine points (0.6o) lower at school age than did infants of comparable birth 
weight but with normal head size (corrected for prematurity).|23cI

I have not found an estimate of the heritability of directly measured brain 
size. However, the heritability, h2, of cranial capacity (estimated by formula 
from head length, width, and circumference) based on Falconer’s formula [h2 
=  2(rMZ — rDZ)] applied to 107 MZ twin pairs and 129 DZ twin pairs ranged 
widely for different race X sex subgroups, for a within-subgroup average of 
.19. When the estimates of cranial capacity were adjusted for age, stature, and 
weight, the h2 values averaged ,53.l24al The narrow h2 (i.e., the proportion of the 
total variance attributable only to additive genetic effects) of various head meas­
urements determined in a Caucasoid sample (Bulgarians) by the midparent X 
offspring correlation (all offspring over fifteen years of age) were: length .37, 
height .33, breadth .46, circumference ,52.|24bl All of these estimates of the 
heritability of cranial size 24c indicate a considerable amount of nongenetic (or 
environmental) variance, at least as much as for IQ. Moreover, much more of 
the nongenetic variance is within-families (i.e., unshared among siblings reared 
together) than is between-families (shared) variance. This implies that shared 
environmental effects, such as those associated with parents’ education, occu­
pation, and general socioeconomic level, are not the major source of variance 
in cranial capacity as estimated from head measurements. Also, what little ev­
idence we have suggests that the total environmental variance in head measure­
ments is greater for blacks than for whites. (The nature of these environmental 
influences is discussed later in this chapter.)

Implications of Brain Size for IQ Differences.1251 Chapter 6 reviewed the 
major evidence showing that head measurements and brain size itself are sig­
nificantly correlated with IQ. The only available correlations for blacks are based 
on head length, width, and circumference (and cranial capacity estimated by 
formula from these measurements); as yet there are no reported correlations 
between IQ and directly measured brain size for blacks. However, the head 
measurements are significantly correlated with IQ for age-matched whites and
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Table 12.3
Head Circum ference (HC) (in cm) of White (W) and Black (B) Groups Matched 
on IQ at the White Mean IQ and the Black Mean IQ at Two Ages

G roup

Age 4 
M atched on:

Age 7 
M atched on:

W Mean IQ B M ean IQ W M ean IQ B Mean IQ

N HC N HC N HC N HC
White males 322 50.59 206 50.34 411 51.93 226 51.67
Black males 216 50.35 335 50.07 221 51.60 438 51.36
W M -B M 0.24 0.27 0.33 0.31

White females 321 49.57 146 49.29 416 51.03 243 50.73
Black females 293 49.94 408 49.81 251 51.34 547 51.04
W F-B F -0 .3 7 - 0 .5 2 -0 .3 1 -0 .3 1
W -B -0 .0 6 5 -0 .1 2 5 0.010 0.000

Note\ Both head circum ference and IQ were adjusted for age, height, and weight.

blacks, both on raw measurements and on measurements corrected for height 
and weight, although the correlations are somewhat lower in blacks. Longitu­
dinal data show that the head circumference X IQ correlation significantly in­
creases between ages 4 and 7, and cross-sectional data indicate that the 
correlation gradually increases up to 15 years of age, by which time the average 
growth curves for head size and brain size have reached asymptote.

It is especially important to note that for both racial groups the head size X 
IQ correlation exists vwWn-fatnilies as well as befwen-fam ilies, indicating an 
intrinsic, or functional, relationship, as explained in Chapter 6. Equally impor­
tant is the fact that within each sex, whites and blacks share precisely one and 
the same regression line for the regression of head size on IQ. When blacks and 
whites are perfectly matched for true-score IQ (i.e., IQ corrected for measure­
ment error), either at the black mean or at the white mean, the overall average 
W-B difference in head circumference is virtually nil, as shown in Table 12.3.

Taken together, these findings suggest that head size and IQ are similarly 
related to IQ for both blacks and whites. Although matching blacks and whites 
for IQ virtually eliminates the average difference in head size, matching the 
groups on head size does not equalize their IQs. This is what we in fact should 
expect if brain size is only one of a number of brain factors involved in IQ. 
When matched on IQ, the groups are thereby also equal on at least one of these 
brain factors, in this case, size. But when black and white groups are matched 
on head or brain size, they still differ in IQ, though to a lesser degree than in 
unmatched or representative samples of each population.

The black-white difference in head/brain size is also related to Spearman’s
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hypothesis. A study in which head measurements were correlated (within racial 
groups) with each of seventeen diverse psychometric tests showed that the col­
umn vector of seventeen correlations was rank-order correlated + .64 (p <  .01) 
with the corresponding vector composed of each test’s g loading (within groups). 
In other words, a test’s g loading significantly predicts the degree to which that 
test is correlated with head/brain size. We would also predict from Spearman’s 
hypothesis that the degree to which each test was correlated with the head meas­
urements should correlate with the magnitude of the W-B difference on each 
test. In fact, the column vector of test X head-size correlations and the vec­
tor of standardized mean W-B differences on each of the tests correlate +.51 
(p <  .05).

From the available empirical evidence, we can roughly estimate the fraction 
of the mean IQ difference between the black and white populations that could 
be attributed to the average difference in brain size. As noted in Chapter 6, 
direct measurements of in vivo brain size obtained by magnetic resonance im­
aging (MRI) show an average correlation with IQ of about + .40 in several 
studies based on white samples. Given the reasonable assumption that this cor­
relation is the same for blacks, statistical regression would predict that an IQ 
difference equivalent to l a  would be reduced by 0.4a, leaving a difference of 
only 0.6a, for black and white groups matched on brain size. This is a sizable 
effect. As the best estimate of the W-B mean IQ difference in the population is 
equivalent to 1.1a or 16 IQ points, then 0.40 X 16 6 IQ points of the black- 
white IQ difference would be accounted for by differences in brain size. 
(Slightly more than 0 .4a  would predictably be accounted for if a hypothetically 
pure measure of g could be used.) Only MRI studies of brain size in represen­
tative samples of each population will allow us to improve this estimate.

Other evidence of a systematic relationship between racial differences in cra­
nial capacity and IQ comes from an “ ecological”  correlation, which is com­
monly used in epidemiological research. It is simply the Pearson r between the 
means of three or more defined groups, which disregards individual variation 
within the groups.26 Referring back to Table 12.1, I have plotted the median IQ 
of each of the three populations as a function of the overall mean cranial capacity 
of each population. The median IQ is the median value of all of the mean values 
of IQ reported in the world literature for Mongoloid, Caucasoid, and Negroid 
populations. (The source of the cranial capacity means for each group was ex­
plained in connection with Table 12.1.) The result of this plot is shown in Figure 
12.4. The regression of median IQ on mean cranial capacity is almost perfectly 
linear, with a Pearson r = +.998. Unless the data points in Figure 12.4 are 
themselves highly questionable, the near-perfect linearity of the regression in­
dicates that IQ can be regarded as a true interval scale. No mathematical trans­
formation of the IQ scale would have yielded a higher correlation. Thus it 
appears that the central tendency of IQ for different populations is quite accu­
rately predicted by the central tendency of each population’s cranial capacity.
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Cranial Capacity  (c m 3)

Figure 12.4. Median IQ of three populations (Mongoloid. Caucasoid, and Negroid) 
plotted as a function o f the mean cranial capacity in each population. (Regression: IQ = 
.262 X cranial capacity — 252.6; r = .998.)

POPULATION DIFFERENCES IN g:  THE DEFAULT HYPOTHESIS
Consider the following items of evidence: the many biological correlates of 

g; the fact that among all of the psychometric factors in the domain of cognitive 
abilities the g factor accounts for the largest part of the mean difference between 
blacks and whites; the evolutionary history of Homo sapiens and the quantitative 
differentiation of human populations in allele frequencies for many character­
istics, including brain size, largely through adaptive selection for fitness in 
highly varied climates and habitats; the brain evolved more rapidly than any 
other organ; half of humans’ polymorphic genes affect brain development; the 
primary evolutionary differentiation and largest genetic distance between human 
populations is that between the African populations and all others; the intrinsic 
positive correlation between brain size and measures of g\ the positive mean 
white-black difference in brain size; the positive correlation between the variable 
heritability of individual differences in various measures of cognitive abilities 
and the variable magnitudes of their g loadings. All these phenomena, when 
viewed together, provide the basis for what I shall call the default hypothesis 
concerning the nature of population or racial differences in g.

Although we are concerned here with variation between populations, it is also 
important to keep in mind that, from an evolutionary perspective, it is most 
unlikely that there are intraspecies differences in the basic structural design and 
operating principles of the brain. The main structural and functional units of the
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brain found in any one normal human being should be validly generalizable to 
all other normal humans. That is to say, the processes by which the brain per­
ceives, learns, reasons, remembers, and the like are the same for everyone, as 
are the essential structures and functions of every organ system in the entire 
body. Individual differences and population differences in normal brain proc­
esses exist at a different level, superimposed, as it were, over and above the 
brain’s common structures and operating principles.

The default hypothesis states that human individual differences and popula­
tion differences in heritable behavioral capacities, as products of the evolution­
ary process in the distant past, are essentially composed of the same stuff, so 
to speak, controlled by differences in allele frequencies, and that differences in 
allele frequencies between populations exist for all heritable characteristics, 
physical or behavioral, in which we find individual differences within popula­
tions.

With respect to the brain and its heritable behavioral correlates, the default 
hypothesis holds that individual differences and population differences do not 
result from differences in the brain’s basic structural operating mechanisms per 
se, but result entirely from other aspects of cerebral physiology that modify the 
sensitivity, efficiency, and effectiveness of the basic information processes that 
mediate the individual’s responses to certain aspects of the environment.1271 A 
crude analogy would be differences in the operating efficiency (e.g., miles per 
gallon, horsepower, maximum speed) of different makes of automobiles, all 
powered by internal combustion engines (hence the same operating mechanisms) 
but differing in, say, the number of cylinders, their cubic capacity, and the octane 
rating of the gasoline they are using. Electric motor cars and steam-engine cars 
(analogous to different species or genera) would have such distinctively different 
operating mechanisms that their differences in performance would call for quite 
different explanations.

In brief, the default hypothesis states that the proximal causes of both indi­
vidual differences and population differences in heritable psychological traits 
are essentially the same, and are continuous variables. The population differ­
ences reflect differences in allele frequencies of the same genes that cause in­
dividual differences. Population differences also reflect environmental effects, 
as do individual differences, and these may differ in frequency between popu­
lations, as do allele frequencies.

In research on population differences in mean levels of g, I think that the 
default hypothesis should be viewed as the true “ null”  hypothesis, that is, the 
initial hypothesis that must be disproved. The conventional null hypothesis of 
inferential statistics (i.e., no differences between populations) is so improbable 
in light of evolutionary knowledge as to be scientifically inappropriate for the 
study of population differences in any traits that show individual differences. 
The real question is not whether population differences exist for a given poly­
genic trait, but rather the direction and magnitude of the difference.

The question of direction of a difference brings up another aspect of the
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default hypothesis, namely, that it is rare in nature for genotypes and phenotypes 
of adaptive traits to be negatively correlated. It is exceedingly improbable that 
racial populations, which are known to differ, on average, in a host of genetically 
conditioned physical characteristics, would not differ in any of the brain char­
acteristics associated with cognitive abilities, when half of all segregating genes 
in the human genome are involved with the brain. It is equally improbable that 
heritable variation among individuals in polygenic adaptive traits, such as g, 
would not show nontrivial differences between populations, which are aggre­
gations of individuals. Again, from a scientific standpoint, the only real ques­
tions about population differences concern their direction , their magnitude, and 
their causal mechanism(s). One may also be interested in the social significance 
of the phenotypic differences. Research will be most productively focused not 
on whether or not genes are involved in population differences, but in discov­
ering the relative effects o f genetic and environmental causes of differences and 
the nature of these causes, so they can be better understood and perhaps influ­
enced.

The rest of this chapter deals only with the scientific aspect of the default 
hypothesis. (For a discussion of its social significance, see Chapter 14.) Since 
far more empirical research relevant to the examination of the default hypothesis 
with respect to g has been done on the black-white difference, particularly within 
the United States, than on any other populations, I will focus exclusively on the 
causal basis o f the mean black-white difference in the level of g.

HERITABILITY OF 10 WITHIN GROUPS AND BETWEEN 
GROUPS

One of the aims of science is to comprehend as wide a range of phenomena 
as possible within a single framework, using the fewest possible mechanisms 
with the fewest assumptions and ad hoc hypotheses. With respect to IQ, the 
default hypothesis relating individual differences and population differences is 
consistent with this aim, as it encompasses the explanation of both within-group 
(WG) and between-group (BG) differences as having the same causal sources 
of variance. The default hypothesis that the BG and WG differences are ho­
mogeneous in their causal factors implies that a phenotypic difference of PD 
between two population groups in mean level of IQ results from the same causal 
effects as does any difference between individuals (within either of the two 
populations) whose IQs differ by PD (i.e., the phenotypic difference). In either 
case, PD is the joint result of both genetic (G) and environmental (E) effects. 
In terms of the default hypothesis, the effects of genotype X environment co­
variance are the same between populations as within populations. The same is 
hypothesized for genotype X environment interaction, although studies have 
found it contributes negligibly to within-population variance in g.

It is possible for a particular allele to be present in one population but absent 
in another, or for alleles at certain loci to be turned on in some environments
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and turned off in others, or to be regulated differently in different environments. 
These conditions would constitute exceptions to the default hypothesis. But 
without empirical evidence of these conditions with respect to population dif­
ferences in g, which is a highly polygenic trait in which most of the variance 
within (and probably between) populations is attributable to quantitative differ­
ences in allele frequencies at many loci, initial investigation is best directed at 
testing the default hypothesis.

In terms of the black-white IQ difference, the default hypothesis means that 
the question of why (on average) two whites differ by amount PD in IQ, or two 
blacks differ by amount PD, or a black and a white differ by amount PD can all 
be answered in the same terms. There is no need to invoke any special “ racial” 
factor, either genetic or cultural.

The countervailing dual hypothesis contends that: (1) within-group individual 
differences (WG), on the one hand, and between-group mean differences (BG), 
on the other, have different, independent causes; and (2) there is no relationship 
between the sources of WG differences and of BG differences. In this view, the 
high heritability of individual differences in g within groups tells us nothing 
about the heritability (if any) of g between groups.

The empirical fact that there is a large genetic component in WG individual 
differences in g is so well established by now (see Chapter 7) that, with rare 
exceptions, it is no longer challenged by advocates for the dual hypothesis. The 
defining tenet of the dual hypothesis, at least as it applies to the phenotypic 
black-white IQ difference, is that there is no genetic component in the mean 
BG difference; that is, the causes of the observed BG difference in IQ are 
entirely environmental. These environmental sources may include nutrition and 
other biological conditions, as well as socioeconomic, attitudinal, or cultural 
group differences, to name the most frequently hypothesized causal factors. 
(Psychometric test bias, as such, has been largely ruled out; see Chapter 11, pp. 
360-67.)

W ithin-G roup H eritab ility  o f IQ  in B lack and in W hite G roups. Before 
contrasting the dual and the default hypotheses in terms of their formal impli­
cations and their consistency with empirical findings, we need to understand 
what is, and is not, known about the heritability of individual differences in IQ 
within each population.

The many studies of IQ heritability based on white samples are summarized 
in Chapter 7. They give estimates that range mostly between .40 and .60 for 
children and adolescents, and between .60 and .80 for adults.

The few studies of IQ heritability in black samples have all been performed 
in conjunction with age-matched white samples, so that group comparisons 
would be based on the same tests administered under the same conditions. Only 
two such studies based on large samples (total Ns of about 300 and 700) of 
black and white twins of school age have been reported.I28a) The data of these 
studies do not support rejection of the null hypothesis of no black-white differ­
ence in the heritability coefficients for IQ. Nor do these studies show any evi­
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dence of a statistically significant racial difference between the magnitudes of 
the correlations for either MZ or DZ twins. But the sample sizes in these studies, 
though large, are not large enough to yield statistical significance for real, though 
small, group differences. The small differences between the black and white 
twin correlations observed in these studies are, however, consistent with the 
black-white differences in the correlations between full siblings found in a 
study|28bl of all of the school-age sibling pairs in the total black and white 
populations of the seventeen elementary schools of Berkeley, California. The 
average sibling correlations for IQ in that study were +.38 for blacks and + .40 
for whites. (For height, the respective age-corrected correlations were .45 and 
.42.) Because the samples totaled more than 1,500 sibling pairs, even differences 
as small as .02 are statistically significant. If the heritability of IQ, calculated 
from twin data, were very different in the black and white populations, we would 
expect the difference to show up in the sibling correlations as well.[28c| The fact 
that sibling correlations based on such large samples differ so little between 
blacks and whites suggests that the black-white difference in IQ heritability is 
so small that rejection of the null hypothesis of no W-B difference in IQ heri­
tability would require enormous samples of black and white MZ and DZ twins— 
far more than any study has yet attempted or is ever likely to attempt. Such a 
small difference, even if it were statistically reliable, would be of no theoretical 
or practical importance. On the basis of the existing evidence, therefore, it is 
reasonable to conclude that the difference between the U.S. black and white 
populations in the proportion of within-group variance in IQ attributable to ge­
netic factors (that is, the heritability of IQ) is probably too small to be detectable.

T he R elationsh ip  o f  B etw een-G roup  to W ith in-G roup H eritability . The 
mantra invoked to ward off any unpalatable implications of the fact that IQ has 
substantially equal heritability in both the black and the white populations is 
that “ heritability within groups does not imply (or prove, or generalize to) her­
itability between groups.”  Arguing that the fact that there is genetic variance in 
individual differences within groups gives no warrant to generalize to differences 
between groups is, of course, formally equivalent to saying exactly the same 
thing about environmental variance, which is the complement of the within- 
groups heritability (i.e., 1 — h2). But a little analysis is required to understand 
the peculiar nature of the relationship between within-group heritability (WGH) 
and between-group heritability (BGH).

To say there is no relationship of any kind between WGH and BGH is wrong. 
They are mathematically related according to the following equation1291:

r J  1 — r„)BGH =  WGH ^rp(l -  rg)
where

BGH is the between-group heritability.
WGH is the within-group heritability.
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rt is the genetic intraclass correlation within groups, i.e., rg = (genetic variance 
between groups) h- (genetic variance between groups + genetic variance within 
groups).
r is the phenotypic intraclass correlation within groups; it is equal to the squared 
point-biserial correlation between individuals’ nominal group membership (e.g., 
black or white, quantitized as 0 or 1) and the quantitative variable of interest (e.g., 
IQ).

This is termed the form al relationship between WGH and BGH. Although there 
is no argument about the mathematical correctness of this formulation, it is not 
empirically applicable, because a single equation containing two unknowns (i.e., 
BGH and r ), cannot be solved. (It is also clear mathematically that the formula 
must assume that WGH is greater than zero and that rg is less than unity.) The 
value of rp can easily be obtained empirically. (For example, if two groups each 
have the same standard deviation on a given variable and the group means differ 
by one such standard deviation, the value of rp =  .20). If we knew the value 
of rf, we could solve the equation for BGH (or vice versa). (If the between- 
groups difference were entirely nongenetic, as strict environmentalists maintain, 
then of course rg would be zero.) But we know neither rg nor BGH, so the 
formula is empirically useless.30

However, this formula does indicate that for any hypothesized value of rg 
greater than zero, BGH is a linearly increasing function of WGH. As I will point 
out, the hypothesized relationship between WGH and BGH can suggest some 
useful conjectures and empirical analyses. The formal relationship between 
WGH and BGH makes no assumptions about the sources of either the genetic 
or the environmental variance in BGH and WGH, or whether BGH and WGH 
are qualitatively the same or different in this respect. The default hypothesis, 
however, posits that the genetic and the environmental factors that cause the 
between-groups difference exist within each group (but not necessarily in equal 
degrees). The opposing dual hypothesis is that the environmental factors that 
cause variance between groups are different not just in degree, but in kind, from 
the environmental factors that cause individual differences within a group. This 
conjecture raises problems that I will examine shortly.

The between-groups (BG) versus within-groups (WG) problem can be visu­
alized as shown in Figure 12.5. Assume a population is composed of two equal­
sized subpopulations, A and B, and assume that on some characteristic (e.g., 
IQ) the phenotypic means of these two subpopulations differ, that is, A — B = 
P„. (Sampling error and measurement error are assumed to be zero in this di­
dactic diagram.) The measurement of the phenotypic characteristic (P) is stan­
dardized in the total population, so its population standard deviation is l a  and 
the total variance is the square of the standard deviation, l a 2. Any variance can 
be visualized as the area of a square. The square in Figure 12.5 represents the 
total phenotypic variance ( l a 2) of the whole population, and its square root is 
the standard deviation ( la )  of the phenotypic measurements. The total variance 
(area of the square) is partitioned horizontally into the variance between groups
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1(7

Figure 12.5. The total phenotypic variance (standardized to la 2) shown as a square 
partitioned vertically into genetic (G) and environmental (E) components and horizontally 
into between-groups (BG) and within-groups (WG) components. The empirical uncer­
tainty of the division of the BG variance into E and G components is indicated by the 
dotted line, the position o f  which as shown here is the representation consistent with the 
strong form of the default hypothesis. In the weak form of the hypothesis it could be 
shifted either to the left or to the right.

(BG) and the variance within groups (WG). The total variance is partitioned 
vertically into the genetic (G) variance, i.e., heritability (h2) and the environ­
mental (E) variance, i.e., environmentality (e2). At present, the only variables 
we are able to determine empirically are the total phenotypic variance, a,,2, and 
the within-group genetic and environmental variances, /z2w0, and e2wo. The be- 
tween-group variables, h2na and e2na, are undetermined (and so are shown in 
parentheses). As the genetic and environmental proportions of the BG variance 
have not been empirically determined, they are shown separated by a dotted line 
in Figure 12.5. This dotted line could move either to the left or to the right, 
based on new empirical evidence. Its approximate position is the bone of con­
tention between the advocates of the default hypothesis and those of the con­
ventional null hypothesis.

Extreme “ environmentalists”  argue that both h2WG =  0 and h2na =  0, leaving 
environmental agents as the source of all observed phenotypic variance. (Hardly 
anyone now holds this position with respect to IQ.) A much more common 
position nowadays is to accept the empirically established WG values, but main­
tain that the BG variance is all environmental. “ Agnostics”  would say (cor­
rectly) that h2nG is not empirically known, and some might add that, though 
unknown, it is plausibly greater than zero.

The strong form of the default hypothesis is represented in Figure 12.5 by 
the dotted-line extension of the solid vertical line, thus partitioning both the WG 
and BG variances into the same proportions of genetic and environmental var­
iance. A “ relaxed”  form of the default hypothesis still posits h2na >  0, but 
allows h2na to differ from h2wo. In general, this is closer to reality than is the 
strong form of the default hypothesis. In both forms of the default hypothesis
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Figure 12.6. The total standardized phenotypic variance ( a P2), represented as the area 
o f a square, partitioned into its genetic (G) and environmental (E) variance components, 
a G2 and a ,,2, which are shown here as equal to .75 and .25, respectively.

W G  variance and BG variance are attributable to the same causal factors, al­
though they may differ in degree. The purpose of hypothesizing some fairly 
precise value for h2ntt is not because one necessarily thinks it is true, or wants 
to “ sell”  it to someone, but rather because scientific knowledge advances by 
the process that Karl Popper described as “ conjectures and refutations” — a 
strong hypothesis (or conjecture) can permit certain possibly testable deductions 
or inferences, and can be decisively refuted only if formulated precisely and 
preferably quantitatively. Any hypothesis is merely the temporary scaffolding 
that assists in discovering new facts about nature. It helps us to formulate ques­
tions precisely and further focuses investigative efforts on research that will yield 
diacritical results. Beyond this purpose, a hypothesis has no other use. It is not 
a subject for advocacy.

A clear quantitative statement of the default hypothesis depends upon under­
standing some important technical points about variance and its relation to linear 
measurement. The large square in Figure 12.6 represents the total variance (a 2) 
of a standardized phenotypic variable (P), with a standard deviation a,» =  1. 
The area of the large square (total phenotypic variance) is partitioned into its 
genetic and environmental components, corresponding to a heritability of .75 
(which makes it easy to visualize). The genetic variance Og2 in Figure 12.6 
(unshaded area) is equal to .75, leaving the environmental component a F2 
(shaded area) equal to .25. Since the variance of each effect is shown in the 
diagram as an area, the square root of the area represents the standard deviation 
of that effect. The linear distances or differences between points on a scaled 
variable are shown as line segments scaled in standard deviation units, not in 
variance units. Thus the line segments that form the area in the lower right of
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the shaded square in Figure 12.6 are each equal to /2 5  or .5 (in standard 
deviation units). The linear distances represented by the environmental variance 
a  wH2 =  .25 is J?25 =  .50; and the linear distance represented by the genetic 
variance o G2 = .75 is J?75 =  .866. Notice that these two linear measurements 
(.866 +  .500 =  1.366) do not add up to the length of the side of the total 
square, which is 1. That is, standard deviation units are not additive. Before 
the sum of the standard deviations of two or more component elements can 
represent the standard deviation of the total of the component elements, you 
must first take the square root of the sum of the squared standard deviations. 
Now, with these points in mind, refer back to the values for the standard de­
viations (c G and a E) in Figure 12.6. Note that

J(. 866)2 +  (.500)2 =  J.75 +  .25 =  /T  = 1.

We can now ask, “ How many units of environmental variance (tfE2) are needed 
to add up to the total phenotypic variance (a,,2)? The answer is c P2/ a E2 =  1/.25 
=  4. This ratio is in variance (i.e., a 2) units. To express it in linear terms, it 
has to be converted into standard deviation units, that is, 0p/0E =  1/.50 =  2.

Suppose we obtain IQ scores for all members of two equal-size groups called 
A and B. Further assume that within each group the IQs have a normal distri­
bution,11 and the mean of group A is greater than the mean of group B. To keep 
the math simple, let the IQ scores have perfect reliability, let the standard de­
viation of the scores be the same in both groups (i.e., GA =  o B =  la ) , and let 
the mean phenotypic difference, PD, be equal to the average within-group phe­
notypic standard deviation (i.e., PD =  A -  B = l a p). All of this is depicted by 
the two overlapping curves in the top half of Figure 12.7.

Now consider the hypothesis that the between-group heritability (BGH) is 
zero and that therefore the cause of the A-B difference is purely environmental. 
Assume that the within-group heritability (WGH) is the same in each group, 
say, W GHa =  W GHh =  .75. Now, if we remove the variance attributable to 
genetic factors (WGH) from the total variance of each group’s scores, the re­
mainder (1 — .15 — .25) gives us the proportion of within-group variance at­
tributable to purely environmental factors (i.e., 1 — WGH = WGE.) If both the 
genetic and environmental effects on test scores are normally distributed within 
each group, the resulting curves after the genetic variance has been removed 
from each represent the distribution of environmental effects on test scores. Note 
that this does not refer to variation in the environment per se, but rather to the 
effects of environmental variation on the phenotypes (i.e., IQ scores, in this 
case.) The standard deviation of this distribution of environmental effects 
(termed c K) provides a unit of measurement for environmental effects. (Note: It 
is important to keep in mind throughout the following discussion that a E is 
scaled in terms of the average environmental effect on test scores within groups. 
The mean effect of environmental differences between groups can then be ex­
pressed on this scale of within-group environmental effects. Hence a mean phe-
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Figure 12.7. Top: Two overlapping normal curves for groups A and B showing a mean 
phenotypic difference X A -  X B =  1.0 a P. Bottom: The two distributions after all o f the 
genetic variance (h2 =  .75) has been removed from each one, leaving only the within- 
group nongenetic, or environmental, variance (e2 =  .25). Then, in units of the average 
within-group g e, the group means differ by 2 o E, showing rather little overlap of the two 
distributions. The total area (which represents the total frequency) under each curve is 
the same (in both the upper and lower panels); the upper and lower curves differ only 
in their degree o f dispersion, here measured by the standard deviation ( a P or a E).

notypic difference between groups expressed in terms of the mean within-groups 
standard deviation of environment effects [oE] may be greater than l o E.)

The distribution of just the total environmental effects (assuming WGH = 
.75) is shown in the two curves in the bottom half of Figure 12.7. The pheno­
typic difference between the group means is kept constant at la,,, but on the 
scale of environmental effects (measured in environmental standard deviation 
units, o E), the mean environmental effects for groups A and B differ by the
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Figure 12.8. Path diagram in which the arrows show the causal relationship of genetic 
and environmental differences to phenotypic differences.

ratio 0P/a tT =  1/.50 =  2 o E, as shown in the lower half of Figure 12.7. What 
this means is that for two groups to differ phenotypically by l o P when WGH 
= .75 and BGH =  0, the two groups would have to differ by 2aF on the scale 
of environmental effects. This is analogous to two groups in which each member 
of one group has a monozygotic twin in the other group, thus making the dis­
tribution of genotypes exactly the same in both groups. For the test score dis­
tributions of these two genotypically matched groups to differ by l c P, the groups 
would have to differ by 2 g e on the scale of environmental effects (assuming 
WGH =  .75).

The hypothetical decomposition of a mean phenotypic difference, PD, between 
two groups as expressed in terms of the simplest model is that the phenotypic 
difference between the groups is completely determined by their genetic differ­
ence and their environmental difference, or PD =  GD + ED. These variables are 
related quantitatively by the simple path model shown in Figure 12.8. The ar­
rows represent the direction of causation; each arrow is labeled with the re­
spective regression coefficients (also called path coefficients), h and e, between 
the variables, which, when rGF = 0 and the variables P, G, and E are standard­
ized, are mathematically equivalent to the respective correlation coefficients, rGP 
and rHP, and to the standard deviations of the genetic and environmental effects, 
o (1 and c h. This is the simplest model and assumes independent effects of GD 
and Ed; in other words, there is no correlation between GD and ED. In reality, 
of course, there could be a causal path from GD to ED (with a correlation rGE), 
but this would not alter the essential point of the present argument. We see that 
the phenotypic difference can be represented as a weighted sum of the genetic 
and the environmental effects on PD, the weights being h and e. Since these 
values are equivalent to standard deviations, they cannot be summed (as pre­
viously explained). The phenotypic difference must be written as PD = 
\7?2P |>2 +  e1'Pn2. (Since P„ is standardized, with unit variance, we have simply 
PD = j l f  +  e2.) (See Note 32.)

A phenotypic difference between the means of two groups can be expressed 
in units of the standard deviation of the average within-groups environmental
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effect, which is o E = J( 1 — BGH)/(1 — WGH), where BGH is the between- 
groups heritability and WGH is the within-groups heritability. Thus the phe­
notypic difference between the means of the two curves in the lower half of 
Figure 12.7 (which represent the distribution of only environmental effects in 
each group) expressed in a E units is J(l — 0)/(l -  .75) =  Jl/,25 = 2 a E. That 
is, the means of the two environmental-effect curves differ by two standard 
deviations (2a E). The body of empirical evidence shows that an environmental 
effect on IQ this large would predictably occur only rarely in pairs of mono­
zygotic twins reared apart (whose IQs are correlated .75) except for random 
errors of measurement. The difference in IQ attributable solely to nongenetic 
differences between random pairs of individuals in a population in which h2 is 
.75 is about the same as for MZ twins reared apart. On an IQ scale with a  =  
15, a difference of 2 a E is approximately equal to 30 IQ points (i.e., 2 X 15). 
But the largest IQ difference between MZ twins reared apart reported in the 
literature is 1.5a, or 23 IQ points.33 Further, the average absolute difference in 
IQ (assuming a perfectly normal distribution of IQ) between all random pairs 
of persons in the population (who differ both in g and in E) would be 1.1284a, 
or approximately 17 IQ points. (Mathematically, the mean of the absolute dif­
ferences between normal deviates is 2a/Jn — 1.1284a.)

Now consider again the two groups in the upper half of Figure 12.7, called 
A and B. They differ in their mean test scores, with a phenotypic difference A 
-  B =  + lC p and have a within-group environmental effect difference of 2 a E. 
If we hypothesize that the difference between the phenotypic means is entirely 
nongenetic (i.e., environmental), then the phenotypic difference of l a P must be 
equal to 2a E.

By the same reasoning, we can determine the size of the environmental effect 
a K that is required to produce a phenotypic difference of la,, given any values 
of the within-groups heritability (WGH) and the between-groups heritability 
(BGH). For a phenotypic difference of l c P, Table 12.4(A) shows the expected 
values (in a E units) of the environmental effects for various values of the within- 
groups heritability (WGH) and the between-groups heritability (BGH). The 
strong default hypothesis is defined in terms of Table 12.4(A) as BGH =  WGH; 
the relaxed default hypothesis allows independent values of BGH and WGH.

For example, in the first column inside Table 12.4(A), the BGH =  .00. This 
represents the hypothesis that the cause of the mean group difference in test 
scores is purely environmental. When WGH is also equal to .00, the environ­
mental difference of l a E between the groups accounts for all of the phenotypic 
difference of la ,, and thus accords perfectly with the environmental hypothesis 
that la ,. =  l a E. Table 12.4(A) shows that when WGH =  BGH =  .00, the value 
of a E =  1.00.

Maintaining the same purely environmental hypothesis that the BGH =  0, 
but with the WGH =  .10, for two groups to differ phenotypically by la,> they 
must differ by 1.05aE in environmental effect, which deviates .05 from the 
hypothesized value of l a E. The critical point of this analysis is that if the BGH



Causal Hypotheses 455

Table 12.4(A)
Mean D ifference in E n v i r o n m e n t a l  Effect (in a E Units) between Groups A and 
B for Different Values o f WGH and BGH When the Mean Phenotypic Difference 
between Groups (A-B) is la , .

Between--Group Heritability (BGH)
.00 .50 .60 .70 .80

WGH * <*E
.00 1.00 0.71 0.63 0.55 0.45
.10 1.05 0.74 0.67 0.57 0.47
.20 1.12 0.79 0.71 0.61 0.50
.30 1.19 0.84 0.75 0.65 0.54
.40 1.77 0.91 0.82 0.71 0.57
.50 1.41 1.00 0.89 0.77 0.63
.60 1.58 1.12 1.00 0.87 0.71
.70* 1 .8 3 1.29 1.15 1.00 0.82
.80 2.24 1.58 1.41 1.22 1.00
.90 3.16 2.24 2.00 1.73 1.41

"W ithin-group heritability.
''Modal value o f W GH for adult IQ reported in kinship studies. 
Note: All values o f cr': =  ,/(l — BGH)/(1 -  WGH).

Table 12.4(B)
Mean D ifference in G e n e t i c  Effect (in <r<; Units) between Groups A and B for 
Different Values of WGH and BGH When the Mean Phenotypic Difference be­
tween Groups (A-B) is la , .

Between-Group Heritability f BGH)
.10 .50 .60 .70 .80

WGH 1 oG

.10 1.00 2.24 2.45 2.65 2.83

.20 0 .71 1.58 1.73 1.87 2.00

.30 0 .57 1.29 1.41 1.53 1.63

.40 0 .50 1.12 1.22 1.32 1.41

.50 0 .45 1.00 1.09 1.18 1.26

.60 0 .41 0.91 1.00 1.08 1.15

.70* 0 . 3 7 0.84 0.93 1.00 1.07

.80 0 .36 0.79 0.87 0.93 1.00

.90 0 .33 0.74 0.82 0.88 0.94

“W ithin-group heritability.
*M odal value o f W GH for adult IQ reported in kinship studies.
Note: Values o f  (which are equal to /B G H /W G H ) cannot be computed when W G H  =  0, because 

the quotient o f any value divided by zero is mathematically undefined.
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=  0, values of WGH greater than 0 then require that o H be greater than 1.00. 
We can see in Table 12.4(A) that as the WGH increases, the required value of 
o F must increasingly deviate from the hypothesized value of l a E, thereby be­
coming increasingly more problematic for empirical explanation. Since the em­
pirical value of WGH for the IQ of adults lies within the range of .60 to .80, 
with a mean close to .70, it is particularly instructive to examine the values of 
o H for this range in WGH. When WGH =  .70 and BGH =  0, for example, the 
la,, difference between the groups is entirely due to environmental causes and 
amounts to 1.83ge. Table 12.4(A) indicates that as we hypothesize levels of 
BGH that approach the empirically established levels of WGH, the smaller is 
the size of the environmental effect required to account for the phenotypic dif­
ference of la,, in group means.

F actor X. Recall that the strong form of the default hypothesis states that the 
average difference in test scores observed between groups A and B results from 
the same kinds of genetic (G) and environmental (E) influences acting to the 
same degree to produce individual differences within each group. The groups 
may differ, however, in the mean values of either G, or E, or both. Stated in 
terms of the demonstration in Table 12.4(A), this means that if WGH is the 
same for both groups, A and B, then, given any empirically obtained value of 
WGH, the limits of BGH are constrained, as shown. The hypothesis that BGH 
=  0 therefore appears improbable, given the typical range of empirical values 
of WGH.

To accept the preponderance of evidence that WGH >  0 and still insist that 
BGH =  0 regardless of the magnitude of the WGH, we must attribute the cause 
of the group difference to either of two sources: ( 1) the same kinds of environ­
mental factors that influence the level of g but that do so at much greater mag­
nitude between groups than within either group, or (2) empirically identified 
environmental factors that create variance between groups but do not do so 
within groups. The “ relaxed”  default hypothesis allows both of these possibil­
ities. The dual hypothesis, on the other hand, requires either much larger envi­
ronmental effects between groups than are empirically found, on average, within 
either group, or the existence of some additional empirically unidentified source 
of nongenetic variance that causes the difference between groups but does not 
contribute to individual differences within either group. If the two groups are 
hypothesized not to differ in WGH or in total phenotypic variance, this hypoth­
esized additional source of nongenetic variance between groups must either have 
equal but opposite effects within each group, or it must exist only within one 
group but without producing any additional variance within that group. In 1973,
I dubbed this hypothesized additional nongenetic effect Factor X.[341 When 
groups of blacks and whites who are matched on virtually all of the environ­
mental variables known to be correlated with IQ within either racial population 
still show a substantial mean difference in IQ, Factor X is the favored expla­
nation in lieu of the hypothesis that genetic factors, though constituting the 
largest source of variance within groups, are at all involved in the IQ difference
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between groups. Thus Factor X is an ad hoc hypothesis that violates Occam’s 
razor, the well-known maxim in science which states that if a phenomenon can 
be explained without assuming some hypothetical entity, there is no ground for 
assuming it.

The default hypothesis also constrains the magnitude of the genetic difference 
between groups, as shown in Table 12.4(B). (The explanations that were given 
for interpreting Table 12.4(A) apply here as well.) For two groups, A and B, 
whose phenotypic means differ by A — B = lo P, the strong default hypothesis 
(i.e., BGH =  W GH) means that the groups differ on the scale of genetic effect 
by BGH/WGH =  1.00oG.

The values of a r, in Table 12.4(B) show that the strong default hypothesis is 
not the same as a purely genetic hypothesis of the group difference. For example, 
for WGH — .70 and BGH = .70, the groups differ by l a G (Table 12.4B), and 
also the groups differ by 1ge (Table 12.4A). For the relaxed default hypoth­
esis, the environmental and genetic differences associated with each and every 
intersection of WGH and BGH in Tables 12.4A and 12.4B add up to 
;o ,;2(WGH) + o k2( 1 -  WGH) = l c P.

The foregoing analysis is relevant to the often repeated “ thought experiment'' 
proposed by those who argue for the plausibility of the dual hypothesis, as in 
the following example from an article by Carol Tavris:1351

Suppose that you have a bag o f tomato seeds that vary genetically; all things being 
equal, some seeds will produce tomatoes that are puny and tasteless, and some 
will produce tomatoes that are plump and delicious. You take a random bunch of 
seeds in your left hand and random bunch in your right. Though one seed differs 
genetically from another, there is no average difference between the seeds in your 
left hand and those in your right.

Now you plant the left hand’s seeds in Pot A. You have doctored the soil in 
Pot A with nitrogen and other nutrients. You feed the pot every day, sing arias to 
it from La Traviata, and make sure it gets lots of sun. You protect it from pests, 
and you put in a trellis, so even the weakest little tomatoes have some support. 
Then you plant the seeds in your right hand in Pot B, which contains sandy soil 
lacking nutrients. You don’t feed these tomatoes, or water them; you don’t give 
them enough sun; you let pests munch on them.

When the tomatoes mature, they will vary in size within each pot, purely be­
cause of genetic differences. But there will also be an average difference between 
the tomatoes of enriched Pot A and those of depleted Pot B. This difference 
between pots is due entirely to their different soils and tomato-rearing experiences.
(p. 63)

Statistically stated, the argument is that (1) WGH =  1, BGH =  0. What is the 
expected magnitude of the required environmental effect implied by these con­
ditions? In terms of within-group standard deviation units, it is o h; =  
j(  1 — BGH)/(1 — WGH) =  J(\ — 0)/(l -  1) =  1/0. But of course the quo­
tient of any fraction with zero in the denominator is undefined, so no inference 
about the magnitude of o F is possible at all, given these conditions. However,
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if we make the WGH slightly less than perfect, say, .99, the expected difference 
in environmental effect becomes 10oE. This is an incredibly large, but in this 
case probably not unrealistic, effect given Tavris’s descriptions of the contrast­
ing environments of Pot A and Pot B.

The story of tomatoes-in-two-pots doesn’t contradict the default hypothesis. 
Rather, it makes the very point of the default hypothesis by stating that Pots A 
and B each contain random samples of the same batch of seeds, so an equally 
massive result would have been observed if the left-hand and right-hand seeds 
had been planted in opposite pots. Factor X is not needed to explain the enriched 
and deprived tomatoes; the immense difference in the environmental conditions 
is quite sufficient to produce a difference in tomato size ten times greater than 
the average differences produced by environmental variation within each pot.

Extending the tomato analogy to humans, Tavris goes on to argue, “ Blacks 
and whites do not grow up, on the average, in the same kind of pot”  (p. 63). 
The question, then, is whether the average environmental difference between 
blacks and whites is sufficient to cause a la ,, difference in IQ if BGH =  0 and 
WGH is far from zero. The default hypothesis, positing values of BGH near 
those of the empirical values of WGH, is more plausible than the hypothesis 
that BGH = 0. (A third hypothesis, which can be ruled out of serious consid­
eration on evolutionary grounds, given the observed genetic similarity between 
all human groups, is that the basic organization of the brain and the processes 
involved in mental development are qualitatively so different for blacks and 
whites that any phenotypic difference between the groups cannot, even in prin­
ciple, be analyzed in terms of quantitative variation on the same scale of the 
genetic or of the environmental factors that influence individual development of 
mental ability within one racial group.)

T he D efau lt H yp othesis in T erm s o f M ultip le R egression . The behavioral 
geneticist Eric Turkheimer1361 has proposed an approach for relating the quan­
titative genetic analysis of individual and of group differences. Phenotypic var­
iance can be conceptually partitioned into its genetic and its environmental 
components in terms of a multiple regression equation.37 Turkheimer’s method 
allows us to visualize the relationship of within-group and between-group ge­
netic effects and environmental effects in terms of a regression plane located in 
a three-dimensional space in which the orthogonal dimensions are phenotype 
(P), genotype (G), and environment (E). Both individual and group mean phe­
notypic values (e.g., IQ) can then be represented on the surface of this plane. 
This amounts to a graphic statement of the strong default hypothesis, where the 
phenotypic difference (PD) between two individuals (or two group means), A 
and B, can be represented by the multiple regression of the phenotypic difference 
(PA ~ P„ =  PD) on the genetic and environmental differences (GD and ED).

According to the default hypothesis, mental development is affected by the 
genetic mechanisms of inheritance and by environmental factors in the same 
way for all biologically normal individuals in either group. (Rejection of this 
hypothesis would mean that evolution has caused some fundamental intraspecies
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F ig u re  1 2 .9 . A cube representing the regression plane (shaded area) created by the 
multiple regression o f phenotype on environment and on genotype. The slope o f the 
regression line o f phenotype on genotype (line oy) is h; the slope o f the regression line 
of phenotype on environment (line ox) is J1 — h2 =  e. A and B are two individuals 
(or two group means) with environmental values of EA and EB, genotypic values of G A 
and G„, and phenotypic values of PA and PD. Their phenotypic difference is given by 
the regression equation PA — PB =  h(GA — GD) +  e(EA -  EIS). The positions of A and 
B on the regression plane are represented by the solid dot and the solid square, respec­
tively.

differences in brain organization and mental development, a possibility which, 
though seemingly unlikely, has not yet been ruled out.) Thus the default hy­
pothesis implies that a unit increase in genetic value G for individuals in group 
A is equal to the same unit increase in G for individuals in group B, and likewise 
for the environmental value E. Within these constraints posited by the default 
hypothesis, however, the groups may differ, on average, in the mean values of 
G, or E, or both. Accordingly, individuals of either group will fall at various 
points (depending on their own genotype and environment) on the same regres­
sion lines (i.e., for the regression of P on G and of P on E). This can be 
visualized graphically as a regression plane inside a square box (Figure 12.9). 
The G and E values for individuals (or for group means) A and B are projected

ENVIRONMENT
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onto the tilted plane; the projections are shown as a dot and a square. Their 
positions on the plane are then projected onto the phenotype dimension of 
the box.

The important point here is that the default hypothesis states that, for any 
value of WGH, the predicted scores of all individuals (and consequently the 
predicted group means) will lie on one and the same regression plane. Assuming 
the default hypothesis, this clearly shows the relationship between the herita­
bility of individual differences within groups (WGH) and the heritability of 
group differences (BGH). This formulation makes the default hypothesis quan­
titatively explicit and therefore highly liable to empirical refutation. If there were 
some environmental factor(s) that is unique to one group and that contributes 
appreciably to the mean difference between the two groups, their means would 
not lie on the same plane. This would result, for example, if there were a be- 
tween-groups G X E interaction. The existence of such an interaction would be 
inconsistent with the default hypothesis, because it would mean that the groups 
differ phenotypically due to some nonadditive effects of genes and environment 
so that, say, two individuals, one from each group, even if they had identical 
levels of IQ, would have had to attain that level by different developmental 
processes and environmental influences. The fact that significant G X E inter­
actions with respect to IQ (or g) have not been found within racial groups 
renders such an interaction between groups an unlikely hypothesis.

It should be noted that the total nongenetic variance has been represented here 
as e2. As explained in Chapter 7, the true-score nongenetic variance can be 
partitioned into two components: between-families environment (BFE is also 
termed shared  environment because it is common to siblings or to any children 
reared together) and within-family environment (WFE, or unshared environment, 
that part of the total environmental effect that differs between persons reared 
together).

The WFE results largely from an accumulation of more or less random mi­
croenvironmental factors.1381 We know from studies of adult MZ twins reared 
apart and studies of genetically unrelated adults who were reared together from 
infancy in adoptive homes that the BFE has little effect on the phenotype of 
mental ability, such as IQ scores, even over a quite wide range of environments 
(see Chapter 7 for details). The BF environment certainly has large effects on 
mental development for the lowest extreme of the physical and social environ­
ment, conditions such as chronic malnutrition, diseases that affect brain devel­
opment, and prolonged social isolation, particularly in infancy and early 
childhood. These conditions occur only rarely in First World populations. But 
some would argue that American inner cities are Third World environments, 
and they certainly resemble them in some ways. On a scale of environmental 
quality with respect to mental development, these adverse environmental con­
ditions probably fall more than 2a  below the average environment experienced 
by the majority of whites and very many blacks in America. The hypothetical 
function relating phenotypic mental ability (e.g., IQ) on the total range of BFE
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Figure 12.10. The hypothetical relationship of phenotypic values to the between- 
families (that is, shared) environment, represented on a normalized scale, with mean = 
0 , o =  1. Note that for environments above about ~ 2 o r., additional increments in the 
environment result in small and diminishing increments in phenotypic value.

effects (termed the reaction range or reaction norm  for the total environmental 
effect) is shown in Figure 12.10.

P seudo-race G roups and the D efault H ypothesis. In my studies of test bias, 
I used what I termed pseudo-race groups to test the hypothesis that many fea­
tures of test performance are simply a result of group differences in the mean 
and distribution of IQ per se rather than a result of any cultural differences 
between groups. Pseudo-race groups are made up entirely of white subjects. The 
standard  group is composed of individuals selected on the basis of estimated 
true-scores so as to be normally distributed, with a mean and standard deviation 
of the IQ distribution o f whites in the general population. The pseudo-race group 
is composed of white individuals from the same population as the standard 
group, but selected on the basis of their estimated true-scores so as to be nor­
mally distributed, but with a mean and standard deviation of the IQ distribution 
of blacks in the general population. The two groups, with age controlled, are 
intentionally matched with the white and black populations they are intended to 
represent only on the single variable of interest, in this case IQ (or preferably 
g factor scores). Therefore, the groups should not differ systematically on any 
other characteristics, except for whatever characteristics may be correlated with 
IQ. Estimated true-scores must be used to minimize the regression (i.e., toward 
the white mean of 100) effect that would otherwise result from selecting white 
subjects on IQ so as to form a group with a lower mean IQ than that of the 
population from which they were selected.

The creation of two groups that, in this manner, are made to differ on a single 
trait can be viewed as another model of the strong default hypothesis. This 
method is especially useful in empirically examining various nonpsychometric 
correlates of the standard group versus pseudo-race group difference. These 
differences can then be compared against any such differences found between 
representative samples of the actual white and black populations. The critical
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question is, in the circumstances of daily life how closely does the behavior of 
the pseudo-race group resemble that of a comparable sample of actual blacks? 
The extent of the pseudo-race versus actual race difference in nonpsychometric 
or “ real-life”  behavior would delimit the g factor’s power to account for the 
observed racial differences in many educationally, occupationally, and socially 
significant variables.

Notice that the standard and pseudo-race groups would perfectly simulate the 
conditions of the strong default hypothesis. Both genetic and environmental 
sources of variance exist in nearly equal degrees within each group, and the 
mean difference between the groups necessarily comprises comparable genetic 
and environmental sources of variance. If this particular set of genetic and en­
vironmental sources of IQ variance within and between the standard and pseudo­
race groups simulates actual white-black differences in many forms of behavior 
that have some cognitive aspect but are typically attributed solely to cultural 
differences, it constitutes strong support for the default hypothesis. Experiments 
of this type could tell us a lot and should be performed.

EMPIRICAL EVIDENCE ON THE DEFAULT HYPOTHESIS
Thus far the quantitative implications of the default hypothesis have been 

considered only in theoretical or formal terms, which by themselves prove noth­
ing, but are intended only to lend some precision to the statement of the hy­
pothesis and its predicted empirical implications. It should be clear that the 
hypothesis cannot feasibly be tested directly in terms of applying first-order 
statistical analyses (e.g., the t test or analysis of variance applied to phenotypic 
measures) to determine the BGH of a trait, as is possible in the field of exper­
imental genetics with plants or animals. In the latter field, true breeding exper­
iments with cross-fostering in controlled environments across different 
subspecies and subsequent measurement of the phenotypic characteristics of the 
progeny of the cross-bred strains for comparison with the same phenotypes in 
the parent strains are possible and, in fact, common. In theory, such experiments 
could be performed with different human subspecies, or racial groups, and the 
results (after replications of the experiment to statistically reduce uncertainty) 
would constitute a nearly definitive test of the default hypothesis. An even more 
rigorous test of the hypothesis than is provided by a controlled breeding and 
cross-fostering experiment would involve in vitro fertilization to control for pos­
sible differences in the prenatal environment of the cross-fostered progeny. Such 
methods have been used in livestock breeding for years without any question 
as to the validity of the results. But, of course, for ethical reasons the methods 
of experimental genetics cannot be used for research in human genetics. 
Therefore, indirect methods, which are analytically and statistically more com­
plex, have been developed by researchers in human genetics.

The seemingly intractable problem with regard to phenotypic group differ­
ences has been the empirical estimation of the BGH. To estimate the genetic
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variance within groups one needs to know the genetic kinship correlations based 
on the theoretically derived proportions of alleles common to relatives of dif­
ferent degrees (e.g., MZ twins =  1.00, DZ twins and full siblings, parent-child 
=  0.50 [or more with assortative mating], half-siblings =  0.25, first cousins =  
.125, etc.). These unobserved but theoretically known genetic kinship correla­
tions are needed as parameters in the structural equations used to estimate the 
proportion of genetic variance (heritability) from the phenotypic correlations 
between relatives of different degrees of kinship. But we generally do not have 
phenotypical correlations between relatives that bridge different racial groups. 
Since few members of one racial group have a near relative (by common de­
scent) in a different racial group, we don’t have the parameters needed to esti­
mate between-group heritability. Although interracial matings can produce 
half-siblings and cousins who are members of different racial groups, the off­
spring of interracial matings are far from ideal for estimating BGH because, at 
least for blacks and whites, the parents o f the interracial offspring are known to 
be unrepresentative of these populations. Thus such a study would have doubtful 
generality.

An example of cross-racial kinships that could be used would be a female of 
group A who had two offspring by a male of group A and later had two offspring 
by a male o f group B, resulting finally in two pairs of full-siblings who are both 
AA and two pairs of half-siblings who are both AB. A biometric genetic analysis 
of phenotypic measurements obtained on large samples of such full-siblings and 
half-siblings would theoretically afford a way of estimating both WGH and 
BGH. Again, however, unless such groups arose from a controlled breeding 
experiment, the resulting estimate of BGH would probably not be generalizable 
to the population groups of interest but would apply only to the specific groups 
used for this determination of BGH (and other groups obtained in the same 
way). There are two reasons: First, the degree of assortative mating for IQ is 
most likely the same, on average, for interracial and intraracial matings; that is, 
the A and B mates of the hypothetical female in our example would probably 
be phenotypically close in IQ, so at least one of them would be phenotypically 
(hence also probably genetically) unrepresentative of his own racial population. 
Therefore, the mixed offspring AB are not likely to differ genetically much, if 
at all, on average, from the unmixed offspring AA. Second, aside from assort­
ative mating, it is unlikely that interracial half-siblings are derived from parents 
who are random or representative samples of their respective racial populations. 
It is known, for example, that present-day blacks and whites in interracial mar­
riages in the United States are not typical of their respective populations in IQ- 
related variables, such as levels of education and occupation.1391

How then can the default hypothesis be tested empirically? It is tested exactly 
as is any other scientific hypothesis; no hypothesis is regarded as scientific unless 
predictions derived from it are capable of risking refutation by an empirical test. 
Certain predictions can be made from the default hypothesis that are capable of 
empirical test. If  the observed result differs significantly from the prediction, the
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hypothesis is considered disproved, unless it can be shown that the tested pre­
diction was an incorrect deduction from the hypothesis, or that there are artifacts 
in the data or methodological flaws in their analysis that could account for the 
observed result. If the observed result does in fact accord with the prediction, 
the hypothesis survives, although it cannot be said to be proven. This is because 
it is logically impossible to prove the null hypothesis, which states that there is 
no difference between the predicted and the observed result. If there is an al­
ternative hypothesis, it can also be tested against the same observed result.

For example, if we hypothesize that no tiger is living in the Sherwood Forest 
and a hundred people searching the forest fail to find a tiger, we have not proved 
the null hypothesis, because the searchers might have failed to look in the right 
places. If  someone actually found a tiger in the forest, however, the hypothesis 
is absolutely disproved. The alternative hypothesis is that a tiger does live in 
the forest; finding a tiger clearly proves the hypothesis. The failure of searchers 
to find the tiger decreases the probability of its existence, and the more search­
ing, the lower is the probability, but it can never prove the tiger’s nonexistence.

Similarly, the default hypothesis predicts certain outcomes under specified 
conditions. If the observed outcome does not differ significantly from the pre­
dicted outcomes, the default hypothesis is upheld but not proved. If the predic­
tion differs significantly from the observed result, the hypothesis must be 
rejected. Typically, it is modified to accord better with the existing evidence, 
and then its modified predictions are empirically tested with new data. If it 
survives numerous tests, it conventionally becomes a “ fact.”  In this sense, for 
example, it is a “ fact” that the earth revolves around the sun, and it is a “ fact”  
that all present-day organisms have evolved from primitive forms.

Structural E quation  M odeling. Probably the most rigorous methodology 
presently available to test the default hypothesis is the application of structural 
equation modeling to what is termed the biometric decomposition of a pheno­
typic mean difference into its genetic and environmental components. This meth­
odology is an extraordinarily complex set of mathematical and statistical 
procedures, an adequate explanation of which is beyond the scope of this book, 
but for which detailed explanations are available.1401 It is essentially a multiple 
regression technique that can be used to statistically test the differences in 
“ goodness-of-fit” between alternative models, such as whether ( 1) a phenotypic 
mean difference between groups consists of a linear combination of the same 
genetic (G) and environmental (E) factors that contribute to individual differ­
ences within the groups, or (2) the group difference is attributable to some 
additional factor (an unknown Factor X) that contributes to variance between 
groups but not to variance within groups.

Biometric decomposition by this method requires quite modern and special­
ized computer programs (LISREL VII) and exacting conditions of the data to 
which it is applied— above all, large and representative samples of the groups 
whose phenotypic means are to be decomposed into their genetic and environ­
mental components. All subjects in each group must be measured with at least
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three or more different tests that are highly loaded on a common factor, such 
as g, and this factor must have high congruence between the two groups. Also, 
of course, each group must comprise at least two different degrees of kinship 
(e.g., MZ and DZ twins, or full-siblings and half-siblings) to permit reliable 
estimates of WGH for each of the tests. Further, in order to meet the assumption 
that WGH is the same in both groups, the estimates of WGH obtained for each 
of the tests should not differ significantly between the groups.

Given these stringent conditions, one can test whether the mean group dif­
ference in the general factor common to the various tests is consistent with the 
default model, which posits that the between-groups mean difference comprises 
the same genetic and environmental factors as do individual differences within 
each group. The goodness-of-fit of the data to the default model (i.e., group 
phenotypic difference =  G +  E) is then compared against the three alternative 
models, which posit only genetic (G) factors, or only environment (E), or neither 
G nor E, respectively, as the cause of the group difference. The method has 
been applied to estimate the genetic and environmental contributions to the 
observed sex difference in average blood pressure.1401

This methodology was applied to a data set1411 that included scores on thirteen 
mental tests (average g loading =  .67) given to samples of black and white 
adolescent MZ and DZ twins totaling 190 pairs. Age and a measure of socio­
economic status were regressed out of the test scores. The data showed by far 
the best fit to the default model, which therefore could not be rejected, while 
the fit of the data to the alternative models, by comparison with the default 
model, could be rejected at high levels o f confidence (p  <  .005 to p  <  .001). 
That is, the observed W-B group difference is probably best explained in terms 
of both G and E factors, while either G or E alone is inadequate, given the 
assumption that G and E are the same within both groups. This result, however, 
does not warrant as much confidence as the above p  values would indicate, as 
these particular data are less than ideal for one of the conditions of the model. 
The data set shows rather large and unsystematic (though nonsignificant) dif­
ferences in the WGHs of blacks and whites on the various tests. Therefore, the 
estimate o f BGH, though similar to the overall WGH of the thirteen tests (about 
.60), is questionable. Even though the WGHs of the general factor do not differ 
significantly between the races, the difference is large enough to leave doubt as 
to whether it is merely due to sampling error or is in fact real but cannot be 
detected given the sample size. If the latter is true, then the model used in this 
particular method of analysis (termed the psychometric factor model) cannot 
rigorously be applied to these particular data.

A highly similar methodology (using a less restrictive model termed the bi­
ometric factor model) was applied to a much larger data set by behavioral ge­
neticists David Rowe and co-workers.42 But Rowe’s large-scale preliminary 
studies should first be described. He beganf42abl by studying the correlations 
between objective tests of scholastic achievement (which are substantially loaded 
on g as well as on specific achievement factors) and assessment of the quality
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of the child’s home environment based on environmental variables that previous 
research had established as correlates of IQ and scholastic achievement and 
which, overall, are intended to indicate the amount of intellectual stimulation 
afforded by the child’s environment outside of school. Measures of the achieve­
ment and home environment variables were obtained on large samples of bio­
logically full-sibling pairs (Np =  579), each tested twice (at ages 6.6 and 9.0 
years). The total sample comprised three groups: white, black, and Hispanic, 
and represented the full range of socioeconomic levels in the United States, with 
intentional oversampling of blacks and Hispanics.

The data on each population group were treated separately, yielding three 
matrices (white, black, and Hispanic), each comprising the correlations between 
( 1) the achievement and the environmental variables within and between age 
groups, (2) the full-sibling correlations on each variable at each age, and (3) the 
cross-sibling correlations on each variable at each age— yielding twenty-eight 
correlation coefficients for each of the three ethnic groups.

Now if, in addition to the environmental factors measured in this study, there 
were some unidentified Factor X that is unique to a certain group and is re­
sponsible for most of the difference in achievement levels between the ethnic 
groups, one would expect that the existence of Factor X in one (or two), but 
not all three, of the groups should be detectable by an observed difference 
between groups in the matrix of correlations among all of the variables. That 
is, a Factor X hypothesized to represent a unique causal process responsible for 
lower achievement in one groups but not in the others should cause the pattern 
of correlations between environment and achievement, or between siblings, or 
between different ages, to be distinct for that group. However, since the corre­
lation matrices were statistically equal, there was not the slightest evidence of 
a Factor X operating in any group. The correlation matrices of the different 
ethnic groups were as similar to one another as were correlation matrices derived 
from randomly selected half-samples within each ethnic group.

Further analyses by Rowe et al. that included other variables yielded the same 
results. Altogether the six data sets used in their studies included 8,582 whites, 
3,392 blacks, 1,766 Hispanics, and 906 Asians.[42aI None of the analyses required 
a minority-unique developmental process or a cultural-environmental Factor X 
to explain the correlations between the achievement variables and the environ­
mental variables in either of the minority groups. The results are consistent with 
the default hypothesis, as explained by Rowe et al:

Our explanation for the similarity of developmental precesses is that (a) different 
racial and ethnic groups possess a common gene pool, which can create behavioral 
similarities, and that (b) among second-generation ethnic and racial groups in the 
United States, cultural differences are smaller than commonly believed because of 
the omnipresent force of our mass-media culture, from television to fast-food res­
taurants.

Certainly, a burden of proof must shift to those scholars arguing a cultural 
difference position. They need to explain how matrices representing developmental
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processes can be so similar across ethnic and racial groups if major developmental 
processes exert a minority-specific influence on school achievement, (p. 38)|42bl

The dual hypothesis, which attributes the within-group variance to both ge­
netic and environmental factors but excludes genetic factors from the mean 
differences between groups, would, in the light of these results, have to invoke 
a Factor X which, on the one hand, is so subtle and ghostly as to be perfectly 
undetectable in the whole matrix of correlations among test scores, environ­
mental measures, full-siblings, and ages, yet sufficiently powerful to depress the 
minority group scores, on average, by as much as one-half a standard deviation.

To test the hypothesis that genetic as well as environmental factors are im­
plicated in the group differences, Rowe and Cleve!and[42dl designed a study that 
used the kind of structural equation modeling methodology (with the biometric 
factor model) mentioned previously. The study used full-siblings and half­
siblings to estimate the WGH for large samples of blacks and whites (total N  
= 1,220) on three Peabody basic achievement tests (Reading Recognition, Read­
ing Comprehension, and general Mathematics). A previous study|42cl had found 
that the heritability (WGH) of these tests averaged about .50 and their average 
correlation with verbal IQ =  .65. The achievement tests were correlated among 
themselves about .75., indicating that they all share a large common factor, with 
minor specificities for each subtest.

The default hypothesis that the difference between the black and white group 
means on the single general achievement factor has the same genetic and non­
genetic causes that contribute to individual differences within each group could 
not be rejected. The data fit the default model extremely well, with a goodness- 
of-fit index of .98 (which, like a correlation coefficient, is scaled from zero to 
one). The authors concluded that the genetic and environmental sources of in­
dividual differences and of differences between racial means appear to be iden­
tical. Compared to the white siblings, the black siblings had lower means on 
both the genetic and the environmental components. To demonstrate the sensi­
tivity of their methodology, the authors substituted a fake mean value for the 
real mean for whites on the Reading Recognition test and did the same for 
blacks on the Math test. The fake white mean approximately equaled the true 
black mean and vice versa. When the same analysis was applied to the data set 
with the fake means, it led to a clear-cut rejection of the default hypothesis. For 
the actual data set, however, the BGH did not differ significantly from the WGH. 
The values of the BGH were .66 to .74 for the verbal tests and .36 for the math 
test. On the side of caution, the authors state, “ These estimates, of course, are 
imprecise because of sampling variation; they suggest that a part of the Black 
versus W hite mean difference is caused by racial genetic differences, but that it 
would take a larger study, especially one with more genetically informative half­
sibling pairs, to make such estimates quantitatively p recise .. . . ”  (p. 221).

R egression  to the P opulation  M ean. In the 1860s, Sir Francis Galton dis­
covered a phenomenon that he first called reversion to the mean and later gave
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it the more grandiloquent title the law o f  filial regression to mediocrity. The 
phenomenon so described refers to the fact that, on every quantitative hereditary 
trait that Galton examined, from the size of peas to the size of persons, the 
measurement of the trait in the mature offspring of a given parent (or both 
parents) was, on average, closer to the population mean (for their own sex) than 
was that of the parent(s). An exceptionally tall father, for example, had sons 
who are shorter than he; and an exceptionally short father had sons who were 
taller than he. (The same for mothers and daughters.)

This “ regression to the mean”  is probably better called regression toward 
the mean, the mean being that of the subpopulation from which the parent and 
offspring were selected. In quantitative terms, Galton’s “ law” predicts that the 
more that variation in a trait is determined by genetic factors, the closer the 
degree of regression (from one parent to one child), on average, approximates 
one-half. This is because an offspring receives exactly one-half of its genes from 
each parent, and therefore the parent-offspring genetic correlation equals .50. 
The corresponding phenotypic correlation, of course, is subject to environmental 
influences, which may cause the phenotypic sibling correlation to be greater 
than or (more usually) less than the genetic correlation of .50. The more that 
the trait is influenced by nongenetic factors, the greater is the departure of the 
parent-offspring correlation from .50. The average of the parent-child correla­
tions for IQ reported in thirty-two studies is + .42 .1431 Traits in which variation 
is almost completely genetic, such as the number of fingerprint ridges, show a 
parent-offspring correlation very near .50. Mature height is also quite near this 
figure, but lower in childhood, because children attain their adult height at dif­
ferent rates. (Differences in both physical and mental growth curves are also 
largely genetic.)

Regression occurs for all degrees of kinship, its degree depending on the 
genetic correlation for the given kinship. Suppose we measure individuals 
(termed probands) selected at random from a given population and then measure 
their relatives (all of the same degree of kinship to the probands). Then, ac­
cording to Galton’s “ law”  and the extent to which the trait of interest is ge­
netically determined, the expected value (i.e., best prediction) of the proband’s 
relative (in standardized units, z) is rGz,,. The expected difference between a 
proband and his or her relative will be equal to zP — zR = zv — rGz,„ where ra 
is the theoretical genetic correlation between relatives of a given degree of kin­
ship, is the standardized phenotypic measurement of the proband, and zR is 
the predicted or expected measurement of the proband’s relative. It should be 
emphasized that this prediction is statistical and therefore achieves a high degree 
of accuracy only when averaged over a large number of pairs of relatives. The 
standard deviation of the errors of prediction for individual cases (known as the 
standard error of estimate, SEcy) is quite large.

For example, in the case of estimating the offspring’s IQ from one parent’s 
IQ, the SEcs, =  a IQj] _  ^  =  15J\ -  .50 =  10.6 IQ points.44
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A common misconception is that regression to the mean implies that the total 
variance in the population shrinks from one generation to the next, until even­
tually everyone in the population would be located at the mean on a given trait. 
In fact, the population variance does not change at all as a result of the phe­
nomenon of regression. Regression toward the mean works in both directions. 
That is, offspring with phenotypes extremely above (or below) the mean have 
parents whose phenotypes are less extreme, but are, on average, above (or be­
low) the population mean. Regression toward the mean is a statistical result of 
the imperfect correlation between relatives, whatever the causes of the imperfect 
correlation, of which there may be many.

Genetic theory establishes the genetic correlations between various kinships 
and thereby indicates how much of the regression for any given degree of 
kinship is attributable to genetic factors.45 Without the genetic prediction, any 
particular kinship regression (or correlation) is causally not interpretable. Re­
semblance between relatives could be attributed to any combination of genetic 
and nongenetic factors.

Empirical determination of whether regression to the mean accords with the 
expectation of genetic theory, therefore, provides another means of testing the 
default hypothesis. Since regression can result from environmental as well as 
from genetic factors (and always does to some extent, unless the trait variation 
has perfect heritability [i.e., h2 =  1] and the phenotype is without measurement 
error), the usefulness of the regression phenomenon based on only one degree 
of kinship to test a causal hypothesis is problematic, regardless of its purely 
statistical significance. However, it would be remarkable (and improbable) if 
environmental factors consistently simulated the degree of regression predicted 
by genetic theory across a number of degrees of kinship.

A theory that completely excludes any involvement of genetic factors in pro­
ducing an observed group difference offers no quantitative prediction as to the 
amount of regression for a given kinship and is unable to explain certain phe­
nomena that are both predictable and explainable in terms of genetic regression. 
For example, consider Figure 11.2 (p. 358) in the previous chapter. It shows a 
phenomenon that has been observed in many studies and which many people 
not familiar with Galton’s “ law”  find wholly surprising. One would expect, on 
purely environmental grounds, that the mean IQ difference between black and 
white children should decrease at each successively higher level of the parental 
socioeconomic status (i.e., education, occupational level, income, cultural ad­
vantages, and the like). It could hardly be argued that environmental advantages 
are not greater at higher levels of SES, in both the black and the white popu­
lations. Yet, as seen in Figure 11.2, the black and white group means actually 
diverge with increasing SES, although IQ increases with SES for both blacks 
and whites. The specific form  of this increasing divergence of the white and 
black groups is also of some theoretical interest: the black means show a sig­
nificantly lower rate of increase in IQ as a function of SES than do the white 
means. These two related phenomena, black-white divergence and rate of in­
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crease in mean IQ as a function of SES, are predictable and explainable in terms 
of regression, and would occur even if there were no difference in IQ between 
the mean IQs of the black and the white parents within each level of SES. These 
results are expected on purely genetic grounds, although environmental factors 
also are most likely involved in the regression. For a given parental IQ, the 
offspring IQs (regardless of race) regress about halfway to their population 
mean. As noted previously, this is also true for height and other heritable phys­
ical traits.46

Probably the single most useful kinship for testing the default hypothesis is 
full siblings reared together, because they are plentiful, they have developed in 
generally more similar environments than have parents and their own children, 
and they have a genetic correlation of about .50. I say “ about .50” because 
there are two genetic factors that tend slightly to alter this correlation. As they 
work in opposite directions, their effects tend to cancel each other. When the 
total genetic variance includes nonadditive genetic effects (particularly genetic 
dominance) it slightly decreases the genetic correlation between full siblings, 
while assortative mating (i.e., correlation between the parents’ genotypes) 
slightly increases the sibling correlation. Because of nongenetic factors, the phe­
notypic correlation between siblings is generally below the genetic correlation. 
Meta-analyses47 of virtually all of the full-sibling IQ correlations reported in the 
world literature yield an overall average r of only slightly below the predicted 
+ .50.

Some years ago, an official from a large school system came to me with a 
problem concerning the school system’s attempt to find more black children 
who would qualify for placement in classes for the “ high potential”  or “ aca­
demically gifted”  pupils (i.e., IQ of 120 or above). Black pupils were markedly 
underrepresented in these classes relative to whites and Asians attending the 
same schools. Having noticed that a fair number of the white and Asian children 
in these classes had a sibling who also qualified, the school system tested the 
siblings of the black pupils who had already been placed in the high-potential 
classes. However, exceedingly few of the black siblings in regular classes were 
especially outstanding students or had IQ scores that qualified them for the high- 
potential program. The official, who was concerned about bias in the testing 
program, asked if I had any other idea as to a possible explanation for their 
finding. His results are in fact fully explainable in terms of regression toward 
the mean.

I later analyzed the IQ scores on all of the full-sibling pairs in grades one 
through six who had taken the same IQ tests (Lorge-Thorndike) normed on a 
national sample in all of the fourteen elementary schools of another California 
school district. As this study has been described more fully elsewhere,14811 will 
only summarize here. There were over 900 white sibling pairs and over 500 
black sibling pairs. The sibling intraclass correlations for whites and blacks were 
.40 and .38, respectively. The departure of these correlations from the genetically 
expected value of .50 indicates that nongenetic factors (i.e., environmental in­
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fluences and unreliability of measurement) affect the sibling correlation similarly 
in both groups. In this school district, blacks and whites who were perfectly 
matched for a true-score49 IQ of 120 had siblings whose average IQ was 113 
for whites and 99 for blacks. In about 33 percent of the white sibling pairs both 
siblings had an IQ of 120 or above, as compared with only about 12 percent of 
black siblings.

O f more general significance, however, was the finding that Galton’s “ law” 
held true for both black and white sibling pairs over the full range of IQs 
(approximately IQ 50 to IQ 150) in this school district. In other words, the 
sibling regression lines for each group showed no significant deviation from 
linearity. (Including nonlinear transformations of the variables in the multiple 
regression equation produced no significant increment in the simple sibling cor­
relation.) These regression findings can be regarded, not as a proof of the default 
hypothesis, but as wholly consistent with it. No purely environmental theory 
would have predicted such results. Of course, ex post facto  and ad hoc expla­
nations in strictly environmental terms are always possible if one postulates 
environmental influences on IQ that perfectly mimic the basic principles of ge­
netics that apply to every quantitative physical characteristic observed in all 
sexually reproducing plants and animals.

A number of different mental tests besides IQ were also given to the pupils 
in the school district described above. They included sixteen age-normed meas­
ures of scholastic achievement in language and arithmetic skills, short-term 
memory, and a speeded paper-and-pencil psychomotor test that mainly reflects 
effort or motivation in the testing situation.1501 Sibling intraclass correlations 
were obtained on each of the sixteen tests. IQ, being the most g loaded of all 
the tests, had the largest sibling correlation. All sixteen of the sibling correla­
tions, however, fell below + .50 to varying degrees; the correlations ranged from 
.10 to .45., averaging .30 for whites and .28 for blacks. (For comparison, the 
average age-adjusted sibling correlations for height and weight in this sample 
were .44 and .38, respectively.) Deviations of these sibling correlations from the 
genetic correlation of .50 are an indication that the test score variances do reflect 
nongenetic factors to varying degrees. Conversely, the closer the obtained sibling 
correlation approaches the expected genetic correlation of .50, the larger its 
genetic component. These data, therefore, allow two predictions, which, if borne 
out, would be consistent with the default hypothesis:

1. The varying magnitudes of the sibling correlations on the sixteen diverse 
tests in blacks and whites should be positively correlated. In fact, the correlation 
between the vector of sixteen black sibling correlations and the corresponding 
vector of sixteen white sibling correlations was r — + .71, p  =  .002.

2. For both blacks and whites, there should be a positive correlation between 
(a) the magnitudes of the sibling correlations on the sixteen tests and (b) the 
magnitudes of the standardized mean W-B differences (average difference =  
1.03c) on the sixteen tests. The results show that the correlation between the
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standardized mean W-B differences on the sixteen tests and the siblings corre­
lations is r = + .61, p <  .013 for blacks, and r =  +.80, p  <  .001 for whites.

Note that with regard to the second prediction, a purely environmental hy­
pothesis of the mean W-B differences would predict a negative correlation be­
tween the magnitudes of the sibling correlations and the magnitudes of the mean 
W-B differences. The results in fact showing a strong positive correlation con­
tradict this purely nongenetic hypothesis.

CONTROLLING THE ENVIRONMENT: TRANSRACIAL ADOPTION
Theoretically, a transracial adoption study should provide a strong test of the 

default hypothesis. In reality, however, a real-life adoption study can hardly 
meet the ideal conditions necessary to make it definitive. Such conditions can 
be perfectly met only through the cross-fostering methods used in animal be­
havior genetics, in which probands can be randomly assigned to foster parents. 
Although adoption in infancy is probably the most comprehensive and powerful 
environmental intervention possible with humans, under natural conditions the 
adoption design is unavoidably problematic because the investigator cannot ex­
perimentally control the specific selective factors that affect transracial adop­
tions— the adopted children themselves, their biological parents, or the adopting 
parents. Prenatal and perinatal conditions and the preadoption environment are 
largely uncontrolled. So, too, is the willingness of parents to volunteer their 
adopted children for such a study, which introduces an ambiguous selection 
factor into the subject sampling of any adoption study. It is known that individ­
uals who volunteer as subjects in studies that involve the measurement of mental 
ability generally tend to be somewhat above-average in ability. For these rea­
sons, and given the scarcity of transracial adoptions, few such studies have been 
reported in the literature. Only one of these, known as the Minnesota Transracial 
Adoption Study, is based on large enough samples of black and white adoptees 
to permit statistical analysis. While even the Minnesota Study does not meet the 
theoretically ideal conditions, it is nevertheless informative with respect to the 
default hypothesis.

Initiated and conducted by Sandra Scarr and several colleagues,1511 the Min­
nesota Transracial Adoption Study examined the same groups of children when 
they were about age 7 and again in a 10-year follow-up when they were about 
age 17. The follow-up study is especially important, because it has been found 
in other studies that family environmental influences on IQ decrease from early 
childhood to late adolescence, while there is a corresponding increase in the 
phenotypic expression of the genetic component of IQ variance. Therefore, one 
would have more confidence in the follow-up data (obtained at age 17) as a test 
of the default hypothesis than in the data obtained at age 7.

Four main groups were compared on IQ and scholastic performance:
1. Biological offspring of the white adoptive parents.
2. Adopted children whose biological father and mother were both white (WW).
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3. Adopted interracial children whose biological fathers were black and whose mothers

were white (BW).
4. Adopted children whose biological father and mother were both black (BB).
(A group of twelve children, consisting of Asian and Amerindian adoptees who 
took part in both the first study and the follow-up, were not included in the 
main statistical analyses.)

The adoptive parents were all upper-middle class, employed in professional 
and managerial occupations, with an average educational level of about sixteen 
years (college graduate) and an average WAIS IQ of about 120. The biological 
parents of the BB and BW adoptees averaged 11.5 years and 12.5 years of 
education, respectively. The IQs of the adoptees’ biological parents were not 
known. Few of the adoptees ever lived with their biological parents; some lived 
briefly in foster homes before they were legally adopted. The average age of 
adoption was 32 months for the BB adoptees, 9 months for the BW adoptees, 
and 19 months for the WW adoptees. The adoptees came mostly from the North 
Central and North Eastern regions of the United States. The Stanford-Binet and 
the W echsler Intelligence Scale for Children (WISC) were used in the first study 
(at age seven), the W echsler Adult Intelligence Scale (WAIS) was used in the 
follow-up study (at age seventeen).52

The investigators hypothesized that the typical W-B IQ difference results from 
the lesser relevance of the specific information content of IQ tests to the blacks’ 
typical cultural environment. They therefore suggest that if black children were 
reared in a middle or upper-middle class white environment they would perform 
near the white average on IQ tests and in scholastic achievement. This cultural- 
difference hypothesis therefore posits no genetic effect on the mean W-B IQ 
difference; rather, it assumes equal black and white means in genotypic g. The 
default hypothesis, on the other hand, posits both genetic and environmental 
factors as determinants of the mean W-B IQ difference. It therefore predicts that 
groups of black and white children reared in highly similar environments typical 
of the white middle-class culture would still differ in IQ to the extent expected 
from the heritability of IQ within either population.

The data of the Minnesota Study also allow another prediction based on the 
default hypothesis, namely, that the interracial children (BW) should score, on 
average, nearly (but not necessarily exactly) halfway between the means of the 
WW and BB groups. Because the alleles that enhance IQ are genetically dom­
inant, we would expect the BW group mean to be slightly closer to the mean 
of the WW group than to the mean of the BB group. That is, the heterosis 
(outbreeding enhancement of the trait) due to dominance deviation would raise 
the BW group’s mean slightly above the midpoint between the BB and WW 
groups. (This halfway point would be the expected value if the heritability of 
IQ reflected only the effects of additive genetic variance.) Testing this predicted 
heterotic effect is unfortunately debased by the fact that the IQs of the biological 
parents of the BB and BW groups were not known. As the BB biological parents
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10 Mean and Standard Deviation of Groups in the Minnesota Transraciai Adop­
tion Study Tested at Two Ages
Table 12.5

Group Age 7 Age 17
N* Mean SD Mean SD

Adoptive Father 74 121.7 9.5 117.1 11.5
Adoptive Mother 84 119.1 9.7 113.6 10.5
Biological Offspring 104 116.4 13.5 109.4 13.5

Adopted White (W/W) 16 117.6 11.3 105.6 14.9
Adopted Interracial (B/W) 55 109.5 11.9 98.5 10.6
Adopted Black (B/B) 21 95.4 13.3 89.4 11.7

'The num ber o f individuals tested both in 1975 and 1986. 
Source : Data from  W einberg et al., 1992.

had about one year less education than the BW parents, given the correlation 
between IQ and education, it is likely that the mean IQ of the BB parents was 
somewhat lower than the mean IQ of the BW parents, and so would produce a 
result similar to that predicted in terms of heterosis. It is also possible, though 
less likely, that the later age of adoption (by twenty-one months) of the BB 
adoptees than of the BW adoptees would produce an effect similar to that pre­
dicted in terms of heterosis.

The results based on the subjects who were tested on both occasions are 
shown in Table 12.5. Because different tests based on different standardization 
groups were used in the first testing than were used in the follow-up testing, the 
overall average difference of about eight IQ points (evident for all groups) be­
tween the two test periods is of no theoretical importance for the hypothesis of 
interest. The only important comparisons are those between the WW, BW, and 
BB adopted groups within each age level. They show that:

• The biological offspring have about the same average IQ as has been re­
ported for children of upper-middle-class parents. Their IQs are lower, on 
average, than the average IQ of their parents, consistent with the expected ge­
netic regression toward the population mean (mainly because of genetic domi­
nance, which is known to affect IQ— see Chapter 7, pp. 189-91). The 
above-average environment of these adoptive families probably counteracts the 
predicted genetic regression effect to some extent, expectably more at age seven 
than at age seventeen.

• The BB adoptees’ mean IQ is close to the mean IQ of ninety for blacks in 
the same North Central area (from which the BB adoptees came) reared by their 
own parents. At age seventeen the BB group’s IQ is virtually identical to the 
mean IQ of blacks in the North Central part of the United States. Having been
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reared from two years of age in a white upper-middle-class environment has 
apparently had little or no effect on their expected IQ, that is, the average IQ 
of black children reared in the average black environment. This finding specif­
ically contradicts the expectation o f the cultural-difference explanation of the 
W-B IQ difference, but is consistent with the default hypothesis.

• The BB group is more typical of the U.S. black population than is the BW 
group. The BB group’s IQ at age seventeen is sixteen points below that of the 
white adoptees and thirteen points below the mean IQ of whites in the national 
standardization sample of the WAIS. Thus the BB adoptees’ IQ is not very 
different from what would be expected if they were reared in the average en­
vironment of blacks in general (i.e., IQ eighty-five).

• The mean IQ of the interracial adoptees (BW), both at ages seven and 
seventeen, is nearly intermediate between the WW and BB adoptees, but falls 
slightly closer to the W W  mean. This is consistent with, but does not prove, the 
predicted heterotic effect of outbreeding on IQ. The intermediate IQ at age seven 
is (WW + BB)/2 =  (117.6 +  95.4)/2 =  106.5, or three points below the 
observed IQ of the BW group; at age seventeen the intermediate IQ is 97.5, or 
one point below the observed IQ of the BW group. Of course, mean deviations 
of this magnitude, given the sample sizes in this study, are not significant. Hence 
no conclusion can be drawn from these data regarding the predicted heterotic 
effect.

But all of the group IQ means do differ significantly from one another, both 
at age seven and at age seventeen, and the fact that the BW adoptees are so 
nearly intermediate between the WW and BB groups is hard to explain in purely 
environmental or cultural terms. But it is fully consistent with the genetic pre­
diction. An ad hoc explanation would have to argue for the existence of some 
cultural effects that quantitatively simulate the prediction of the default hypoth­
esis, which is derived by simple arithmetic from accepted genetic theory.

• Results similar to those for IQ were also found for scholastic achievement 
measured at age seventeen, except that the groups differed slightly less on the 
scholastic achievement measures than on IQ. This is probably because the level 
o f scholastic achievement is generally more susceptible to family influences than 
is the IQ. The mean scores based on the average of five measures of scholastic 
achievement and aptitude expressed on the same scale as the IQ (with |i  =  100, 
ct =  15) were: Nonadopted biological offspring =  107.2, WW adoptees =  
103.1, BW adoptees =  100.1, BB adoptees =  95.1. Again, the BW group’s 
mean is but one point above the midpoint between the means of the WW and 
BB groups.

In light of what has been learned from many other adoption studies, the results 
of this transracial adoption study are hardly surprising. As was noted in Chapter 
7 (pp. 177-79), adoption studies have shown that the between-family (or shared) 
environment is the smallest component of true-score IQ variance by late ado­
lescence.

It is instructive to consider another adoption study by Scarr and W einberg,1531
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based on nearly 200 white children who, in their first year of life, were adopted 
into 104 white families. Although the adoptive families ranged rather widely in 
socioeconomic status, by the time the adoptees were adolescents there were 
nonsignificant and near-zero correlations between the adoptee’s IQs and the 
characteristics of their adoptive families, such as the parents’ education, IQ, 
occupation, and income. Scarr and Weinberg concluded that, within the range 
of “ humane environments,”  variations in family socioeconomic characteristics 
and in child-rearing practices have little or no effect on IQ measured in adoles­
cence. Most “ humane environments,”  they claimed, are functionally equivalent 
for the child’s mental development.

In the transracial adoption study, therefore, one would not expect that the 
large differences between the mean IQs of the WW, BW, and BB adoptees 
would have been mainly caused by differences in the unquestionably humane 
and well-above-average adoptive family environments in which these children 
grew up. Viewed in the context of adoption studies in which race is not a factor, 
the group differences observed in the transracial adoption study would be at­
tributed to genetic factors.

There is simply no good evidence that social environmental factors have a 
large effect on IQ, particularly in adolescence and beyond, except in cases of 
extreme environmental deprivation. In the Texas Adoption Study,1541 for exam­
ple, adoptees whose biological mothers had IQs of ninety-five or below were 
compared with adoptees whose biological mothers had IQs of 120 or above. 
Although these children were given up by their mothers in infancy and all were 
adopted into good homes, the two groups differed by 15.7 IQ points at age 7 
years and by 19 IQ points at age 17. These mean differences, which are about 
one-half of the mean difference between the low-IQ and high-IQ biological 
mothers of these children, are close to what one would predict from a simple 
genetic model according to which the standardized regression of offspring on 
biological parents is .50.

In still another study, Turkheimer1551 used a quite clever adoption design in 
which each of the adoptee probands was compared against two nonadopted 
children, one who was reared in the same social class as the adopted proband’s 
biological mother, the other who was reared in the same social class as the 
proband’s adoptive mother. (In all cases, the proband’s biological mother was 
of lower SES than the adoptive mother.) This design would answer the question 
of whether a child born to a mother of lower SES background and adopted into 
a family of higher SES background would have an IQ that is closer to children 
who were born and reared in a lower SES background than to children born 
and reared in a higher SES background. The result: the proband adoptees’ mean 
IQ was nearly the same as the mean IQ of the nonadopted children of mothers 
of lower SES background but differed significantly (by more than 0.5a) from 
the mean IQ of the nonadopted children of mothers of higher SES background. 
In other words, the adopted probands, although reared by adoptive mothers of 
higher SES than that of the probands’ biological mothers, turned out about the
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same with respect to IQ as if they had been reared by their biological mothers, 
who were of lower SES. Again, it appears that the family social environment 
has a surprisingly weak influence on IQ. This broad factor therefore would seem 
to carry little explanatory weight for the IQ differences between the WW, BW, 
and BB groups in the transracial adoption study.

There is no evidence that the effect of adoption is to lower a child’s IQ from 
what it would have been if the child were reared by it own parents, and some 
evidence indicates the contrary.56 Nor is there evidence that transracial adoption 
per se is disadvantageous for cognitive development. Three independent studies 
of Asian children (from Cambodia, Korea, Thailand, and Vietnam) adopted into 
white families in the United States and Belgium have found that, by school age, 
their IQ (and scholastic achievement), on average, considerably exceeds that of 
middle-class white American and Belgian children by at least ten IQ points, 
despite the fact that many of the Asian children had been diagnosed as suffering 
from malnutrition prior to adoption.1571

The authors of the Minnesota Study suggest the difference in age of adoption 
of the BB and BW groups (32 months and 9 months, respectively) as a possible 
cause of the lower IQ of the BB group (by 12 points at age 7, 9 points at age 
17). The children were in foster care prior to adoption, but there is no indication 
that the foster homes did not provide a humane environment. A large-scale 
study1581 specifically addressed to the effect of early versus late age of adoption 
on children’s later IQ did find that infants who were adopted before one year 
of age had significantly higher IQs at age four years than did children adopted 
after one year of age, but this difference disappeared when the children were 
retested at school age. The adoptees were compared with nonadopted controls 
matched on a number of biological, maternal, prenatal, and perinatal variables 
as well as on SES, education, and race. The authors concluded, “ The adopted 
children studied in this project not only did not have higher IQ than the 
[matched] controls, but also did not perform at the same intellectual level as the 
biologic children from the same high socioeconomic environment into which 
they were adopted. . . . the better socioeconomic environment provided by adop­
tive parents is favorable for an adopted child’s physical growth (height and 
weight) and academic achievement but has no influence on the child’s head 
measurement and intellectual capacity, both of which require a genetic influ­
ence.”

In the Minnesota Transracial Adoption Study, multiple regression analyses 
were performed to compare the effects of ten environmental variables with the 
effects of two genetic variables in accounting for the IQ variance at age sev­
enteen in the combined black and interracial groups (i.e., BB & BW). The ten 
environmental variables were those associated with the conditions of adoption 
and the adoptive family characteristics (e.g., age of placement, time in adoptive 
home, number of preadoptive placements, quality of preadoptive placements, 
adoptive mother’s and father’s education, IQ, occupation, and family income). 
The two genetic variables were the biological mother’s race and education. (The



478 The g  Factor
biological father’s education, although it was known, was not used in the re­
gression analysis; if it were included, the results might lend slightly more weight 
to the genetic variance accounted for by this analysis.) The unbiased59 multiple 
correlation (R ) between the ten environmental variables and IQ was .28. The 
unbiased R between the two genetic variables and IQ was .39. This is a fairly 
impressive correlation, considering that mother’s race was treated as a dichot- 
omous variable with a 72%(BW mothers)/28%(BB mothers) split. (The greater 
the departure from the optimal 50%/50% split, the more restricted is the size of 
the obtained correlation. If the obtained correlation of .39 were corrected to 
compensate for this suboptimal split, the corrected value would be .43.) More­
over, mother’s education (measured in years) is a rather weak surrogate for IQ; 
it is correlated about + .7  with IQ in the general population. (In the present 
sample, the biological mothers’ years of education in the BB group had a mean 
of 10.9, SD  =  1.9 years, range 6-14 years; the BW group had a mean of 12.4, 
SD =  1.8, range 7-18.)

The two critiques,1601 by Levin and by Lynn, of the authors’ social- 
environmental interpretation of the results of their follow-up study are well 
worth reading, as is the authors’ detailed reply, in which they state, “ We think 
that it is exceedingly implausible that these differences are either entirely ge­
netically based or entirely environmentally based.” I60c' p-311

STUDIES BASED ON RACIAL ADMIXTURE
In the M innesota Transracial Adoption Study, the interracial adoptees labeled 

BW (black father, white mother) had a mean IQ approximately intermediate 
between those of the white (WW) and the black (BB) adoptees. One might 
expect, therefore, that individual variation in IQ among the population of black 
Americans would be correlated with individual variation in the percentage of 
Caucasian admixture. (The mean percentage of European genes in American 
blacks today is approximately 25 percent, with an undetermined standard de­
viation for individual variation.[6laI) This prediction could be used to test the 
hypothesis that blacks and whites differ in the frequencies of the alleles whose 
phenotypic effects are positively correlated with g. The several attempts to do 
so, unfortunately, are riddled with technical difficulties and so are unable to 
reduce the uncertainty as to the nature of the mean W-B difference in IQ.

An ideal study would require that the relative proportions of European and 
African genes in each hybrid individual be known precisely. This, in turn, would 
demand genealogical records extending back to each individual’s earliest an­
cestors of unmixed European and African origin. In addition, for the results to 
be generalizable to the present-day populations of interest, one would also need 
to know how representative of the white and black populations in each gener­
ation of interracial ancestors of the study probands (i.e., the present hybrid in­
dividuals whose level of g is measured) were. A high degree of assortative 
mating for g, for example, would mean that these ancestors were not represen­
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tative and that cross-racial matings transmitted much the same ^-related alleles 
from each racial line. Also, the results would be ambiguous if there were a 
marked systematic difference in the g levels of the black and white mates (e.g., 
in half of the matings the black [or hybrid] g >  white g and vice versa in the 
other half). This situation would act to cancel any racial effect in the offspring’s 
level of g.

A large data set that met these ideal conditions would provide a strong test 
of the genetic hypothesis. Unfortunately, such ideal data do not exist, and are 
probably impossible to obtain. Investigators have therefore resorted to estimating 
the degree o f European admixture in representative samples of American blacks 
by means of blood-group analyses, using those blood groups that differ most in 
frequency between contemporary Europeans and Africans in the regions of or­
igin of the probands’ ancestors. Each marker blood group is identified with a 
particular polymorphic gene. Certain antigens or immunoglobulins in the blood 
serum, which have different polymorphic gene loci, are also used in the same 
way. The gene loci for all of the known human blood loci constitute but a very 
small fraction o f the total number of genes in the human genome. To date, only 
two such loci, the Fy (Duffy) blood group and the immunoglobulin Gm, have 
been identified that discriminate very markedly between Europeans and Afri­
cans, with near-zero frequencies in one population and relatively high frequen­
cies in the other. A number of other blood groups and blood serum antigens 
also discriminate between Europeans and Africans, but with much less precision. 
T. E. Reed,|6lbl an expert on the genetics of blood groups, has calculated that a 
minimum of eighteen gene loci with perfect discrimination power (i.e., 100 
percent frequency in one population and 0 percent in the other) are needed to 
determine the proportions of European/African admixture with a 5 percent or 
less error rate for specific individuals. This condition is literally impossible to 
achieve given the small number of blood groups and serum antigens known to 
differ in racial frequencies. However, blood group data, particularly that of Fy 
and Gm, aggregated in reasonably large samples are capable of showing statis­
tically significant mean differences in mental test scores between groups if in 
fact the mean difference has a genetic component.

A critical problem with this methodology is that we know next to nothing 
about the level of g in either the specific European or African ancestors or of 
the g-related selective factors that may have influenced mating patterns over the 
many subsequent generations of the hybrid offspring, from the time of the first 
African arrivals in America up to the present. Therefore, even if most of the 
European blood-group genes in present-day American blacks had been randomly 
sampled from European ancestors, the genes associated with g may not have 
been as randomly sampled, if systematic selective mating took place between 
the original ancestral groups or in the many generations of hybrid descendants.

Another problem with the estimation of racial admixture from blood-group 
frequencies is that most of the European genes in the American black gene pool 
were introduced generations ago, mostly during the period of slavery. According
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to genetic principles, the alleles of a particular racial origin would become in­
creasingly disassociated from one another in each subsequent generation. The 
genetic result of this disassociation, which is due to the phenomena known as 
crossing-over and independent segregation of alleles, is that any allele that shows 
different frequencies in the ancestral racial groups becomes increasingly less 
predictive of other such alleles in each subsequent generation of the racially 
hybridized population. If a given blood group of European origin is not reliably 
correlated with other blood groups of European origin in a representative sample 
of hybrid individuals, we could hardly expect it to be correlated with the alleles 
of European origin that affect g. In psychometric terms, such a blood group 
would be said to have little or no validity for ranking hybrid individuals ac­
cording to their degree of genetic admixture, and would therefore be useless in 
testing the hypothesis that variation in g in a hybrid (black-white) population is 
positively correlated with variation in amount of European admixture.

This disassociation among various European genes in black Americans was 
demonstrated in a study1621 based on large samples of blacks and whites in 
Georgia and Kentucky. The average correlations among the seven blood-group 
alleles that differed most in racial frequencies (out of sixteen blood groups 
tested) were not significantly different from zero, averaging —.015 in the white 
samples (for which the theoretically expected correlation is zero) and —.030 in 
the black samples. (Although the correlations between blood groups in individ­
uals were nil, the total frequencies of each of the various blood groups were 
quite consistent [r = .88] across the Georgia and Kentucky samples.) Gm was 
not included in this correlation analysis but is known to be correlated with Fy. 
These results, then, imply that virtually all blood groups other than Fy and Gm 
are practically useless for estimating the proportions of Caucasian admixture in 
hybrid black individuals. It is little wonder, then, that, in this study, the blood- 
group data from the hybrid black sample yielded no evidence of being signifi­
cantly or consistently correlated with g (which was measured as the composite 
score on nineteen tests).

A similar study,1631 but much more complex in design and analyses, by Sandra 
Scarr and co-workers, ranked 181 black individuals (in Philadelphia) on a con­
tinuous variable, called an “ odds” index, estimated from twelve genetic markers 
that indicated the degree to which an individual’s genetic markers resembled 
those of Africans without any Caucasian ancestry versus the genetic markers of 
Europeans (without any African ancestry). This is probably an even less accurate 
estimate of ancestral admixture than would be a direct measure of the percentage 
of African admixture, which (for reasons not adequately explained by the au­
thors) was not used in this study, although it was used successfully in another 
study of the genetic basis of the average white-black difference in diastolic blood 
pressure.64a The “ odds”  index of African ancestry showed no significant cor­
relation with individual IQs. It also failed to discriminate significantly between 
the means of the top and bottom one-third of the total distribution on the “ an­
cestral odds”  index of Caucasian ancestry. In brief, the null hypothesis (i.e., no



Causal Hypotheses 481

relationship between hybrid mental test score and amount of European ancestry) 
could not be rejected by the data of this study. The first principal component of 
four cognitive tests yielded a correlation of only - .0 5  with the ancestral index. 
Among these tests, the best measure of fluid g, Raven matrices, had the largest 
correlation ( - .1 3 )  with the estimated degree of African ancestry. (In this study, 
a correlation of —.14 would be significant at p <  .05, one-tailed.) But even the 
correlation between the ancestral odds index based on the three best genetic 
markers and the ancestral odds index based on the remaining nine genetic mark­
ers was a nonsignificant +.10. A measure of skin color (which has a much 
greater heritability than mental test scores) correlated .27 (p <  .01) with the 
index of African ancestry. When skin color and SES were partialed out of the 
correlation between ancestry and test scores, all the correlations were reduced 
(e.g., the Raven correlation dropped from —.13 to —.10). Since both skin color 
and SES have genetic components that are correlated with the ancestral index 
and with test scores, partialing out these variables further favors the null hy­
pothesis by removing some of the hypothesized genetic correlation between 
racial admixture and test scores.

It is likely that the conclusions of this study constitute what statisticians refer 
to as Type II error, acceptance of the null hypothesis when it is in fact false.65 
Although these data cannot reject the null hypothesis, it is questionable whether 
they are capable in fact of rejecting an alternative hypothesis derived from the 
default theory. The specific features of this data set severely diminish its power 
to reject the null hypothesis. In a rather complex analysis,64b I have argued that 
the limitations of this study (largely the lack of power due to the low validity 
of the ancestral index when used with an insufficient sample size) would make 
it incapable of rejecting not only the null hypothesis, but also any reasonable 
alternative hypothesis. This study therefore cannot reduce the heredity- 
environment uncertainty regarding the W-B difference in psychometric g. In 
another instance of Type II error, the study even upholds the null hypothesis 
regarding the nonexistence of correlations that are in fact well established by 
large-scale studies. It concludes, for example, that there is no significant cor­
relation between lightness of skin color and SES of American blacks, despite 
the fact that correlations significant beyond the .01 level are reported in the 
literature, both for individuals’ SES of origin and for attained SES.1661

Skin C olor and IQ. Earlier researchers relied on objective measures of skin 
color as an index of the amount of African/European admixture. In sixteen out 
of the eighteen studies o f the IQ of American blacks in which skin color was 
measured, the correlations between lightness of skin color and test scores were 
positive (ranging from + .12 to + .30).[67)

Although these positive correlations theoretically might well reflect the pro­
portion of Caucasian genes affecting IQ in the hybrid blacks, they are weak 
evidence, because skin color is confounded with social attitudes that may influ­
ence IQ or its educational and occupational correlates. It is more likely that the 
correlations are the result of cross-assortative mating for skin color and IQ,
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Mean WISC IQ o f Black Interracial Children (BW) and o f White Children (WW) 
of German Mothers

Table 12.6

Group Boys Girls Difference

White (WW) 101 93 8
Interracial (BW) 97 96 1

Difference 4 -3 7

Source: D ata from Eyferth (1959).

which would cause these variables to be correlated in the black population. 
(There is no doubt that assortative mating for skin color has taken place in the 
black population.) The same is of course true for the other visible racial char­
acteristics that may be correlated with IQ. If, in the black population, lighter 
skin color (or a generally more Caucasoid appearance) and higher IQ (or its 
correlates: education, occupation, SES) are both considered desirable in a mate, 
they will be subject to assortative mating and to cross-assortative mating for the 
two characteristics, and the offspring would therefore tend to possess both char­
acteristics. But any IQ-enhancing genes are as likely to have come from the 
African as from the European ancestors of the hybrid descendants.

In general, skin color and the other visible physical aspects of racial differ­
ences are unpromising variables for research aimed at reducing the heredity- 
environment uncertainty o f the causal basis of the average W-B difference in g.

B lack-W h ite H ybrids in P ost-W o rld  W ar II G erm any. We saw in the 
Minnesota Transracial Adoption Study that the interracial (BW) adoptees, whose 
biological fathers were black and whose biological mothers were white, aver­
aged lower in IQ than the adoptees who had two white parents (WW). (See 
Table 12.5, p. 474.) This finding appears to be at odds with the study conducted 
by Eyferth1681 in Germany following World War II, which found no difference 
between offspring of BW and WW matings who were reared by their biological 
mothers. All of the fathers (black or white) were members of the U.S. occupation 
forces stationed in Germany. The mothers were unmarried German women, 
mostly of low SES. There were about ninety-eight interracial (BW) children and 
about eighty-three white children (WW). The mothers of the BW and WW 
children were approximately matched for SES. The children averaged about 10 
years of age, ranging between ages 5 and 13 years. They all were tested with 
the German version of the Wechsler Intelligence Scale for Children (WISC). 
The results are shown in Table 12.6. The overall WW-BW difference is only 
one IQ point. As there is no basis for expecting a difference between boys and
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girls (whose average IQs are equal in the WISC standardization sample), the 
eight-point difference between the WW boys and WW girls in this study is most 
likely due to sampling error. But sampling error does not only result in sample 
differences that are larger than the corresponding population difference; it can 
also result in sample differences that are smaller than the population difference, 
and this could be the case for the overall mean WW-BW difference.

This study, although consistent with a purely environmental hypothesis of 
the racial difference in test scores, is not conclusive, however, because the IQs 
of the probands’ mothers and fathers’ were unknown and the white and black 
fathers were not equally representative of their respective populations, since 
about 30 percent of blacks, as compared with about 3 percent of whites, failed 
the preinduction mental test and were not admitted into the armed services. 
Further, nothing was known about the Army rank of the black or white fathers 
o f the illegitimate offspring; they could have been more similar in IQ than the 
average black or white in the occupation forces because of selective preferences 
on the part of the German women with whom they had sexual relations. Then, 
too, nearly all of the children were tested before adolescence, which is before 
the genotypic aspect of IQ has become fully manifested. Generally in adoption 
studies, the correlation of IQ and genotype increases between childhood and 
late adolescence, while the correlation between IQ and environment decreases 
markedly. (The respective correlations are the square roots of the heritability, 
Jf?, and of the environmentality, J\ — h2 =  Je2.) Finally, heterosis (the out- 
breeding effect; see Chapter 7, p. 196) probably enhanced the IQ level of the 
interracial children, thereby diminishing the IQ difference between the interra­
cial children and the white children born to German women. A heterotic effect 
equivalent to about + 4  IQ points was reported for European-Asian interracial 
offspring in Hawaii.69

G enetic Im plications o f  IQ  and F ertility  for B lack and W h ite W om en. 
Fertility is defined as the number of living children a woman (married or un­
married) gives birth to during her lifetime. If, in a breeding population, IQ (and 
therefore g ) is consistently correlated with fertility, it will have a compounded 
effect on the trend of the population’s mean IQ in each generation— an increas­
ing trend if the correlation is positive, a decreasing trend if it is negative (referred 
to as positive or negative selection for the trait). This consequence naturally 
follows from the fact that mothers’ and children’s IQs are correlated, certainly 
genetically and usually environmentally.

If IQ were more negatively correlated with fertility in one population than in 
another (for example, the American black and white populations), over two or 
more generations the difference between the two populations’ mean IQs would 
be expected to diverge increasingly in each successive generation. Since some 
part of the total IQ variance within each population is partly genetic (i.e., the 
heritability), the intergenerational divergence in population means would also 
have to be partly genetic. It could not be otherwise, unless one assumed that 
the mother-child correlation for IQ is entirely environmental (an assumption that



4 8 4 The a  Factor

has been conclusively ruled out by adoption studies). Therefore, in each suc­
cessive generation, as long as there is a fairly consistent difference in the cor­
relation between IQ and fertility for the black and white populations, some part 
of the increasing mean group difference in IQ is necessarily genetic. If fertility 
is negatively correlated with a desirable trait that has a genetic component, IQ 
for example, the trend is called dysgenic, if positively correlated, eugenic.

The phenomenon of regression toward the population mean (see Chapter 12, 
pp. 467-72) does not mitigate a dysgenic trend. Regression to the mean does 
not predict that a population’s genotypic mean in one generation regresses to­
ward the genotypic mean of the preceding generation. In large populations, 
changes in the genotypic mean of a given trait from one generation to the next 
can come about only through positive (or negative) selection for that trait, that 
is, by changes in the proportions of the breeding population that fall into dif­
ferent intervals of the total distribution of the trait in question.

It is also possible that a downward genetic trend can be phenotypically 
masked by a simultaneous upward trend in certain environmental factors that 
favorably affect IQ, such as advances in prenatal care, obstetrical practices, 
nutrition, decrease in childhood diseases, and education. But as the positive 
effect of these environmental factors approaches asymptote, the downward dys­
genic trend will continue, and the phenotypic (IQ) difference between the pop­
ulations will begin to increase.

Is there any evidence for such a trend in the American black and white pop­
ulations? There is, at least presently and during the last half of this century, 
since U.S. Census data relevant to this question have been available. A detailed 
study1701 based on data from the U.S. Census Bureau and affiliated agencies was 
conducted by Daniel Vining, a demographer at the University of Pennsylvania. 
His analyses indicate that, if IQ is to some degree heritable (which it is), then 
throughout most of this century (and particularly since about 1950) there has 
been an overall downward trend in the genotypic IQ of both the white and the 
black populations. The trend has been more unfavorable for the black popula­
tion.

But how could the evidence for a downward trend in the genotypic component 
of IQ be true, when other studies have shown a gradual rise in phenotypic IQ 
over the past few decades? (This intergenerational rise in IQ, known as the 
“ Flynn effect,” is described in Chapter 10, pp. 318-22). Since the evidence for 
both of these effects is solid, the only plausible explanation is that the rapid 
improvement in environmental conditions during this century has offset and 
even exceeded the dysgenic trend. However, this implies that the effect of the 
dysgenic trend should become increasingly evident at the phenotypic level as 
improvements in the environmental factors that enhance mental development 
approach their effective asymptote for the whole population.

Table 12.7 shows the fertility (F) of white and black women within each one- 
standard deviation interval of the total distribution of IQ in each population. 
(The average fertility estimates include women who have had children and
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Table 12.7
Fertility in Each l a  Interval o f the Normal Curve and Mean IQ in Each Interval 
for U.S. National Probability Sam ples o f White and Black Women Aged 2 5 -3 4  
in 1978

10 Interval
s 7 1 7 1 - 8 5 8 6 - 1 0 0 1 0 1 - 1 1 5 1 1 6 - 1 3 0 > 1 3 0

White
Fertility* (F) 1 . 5 9 1 . 6 6 1 . 7 6 1 . 4 4 1 . 1 5 0 . 9 2
Proportion ( P ) . 0 2 3 . 1 36 . 3 4 1 . 3 4 1 . 1 3 6 . 0 2 3
(F X P)„ . 0 3 6 . 2 2 8 . 6 0 1 . 4 9 1 . 1 5 6 . 0 2 1
Mean IQ 6 4 . 5 7 9 . 3 9 3 . 1 1 0 6 . 9 1 2 0 . 7 1 3 5 . 5

Black
Fertility* );f ) 2 . 6 0 2 . 1 2 1 . 7 9 1 . 6 3 1 . 2 0 0.00

Proportion ( p ) . 1 5 9 . 3 4 1 . 3 4 1 . 1 3 6 . 0 2 1 . 0 0 1
(F X P). . 4 1 3 . 7 2 3 . 6 1 1 . 2 2 1 . 0 2 6 . 0 0 0
Mean IQ 6 2 . 1 7 8 . 1 9 1 . 9 1 0 5 . 7 1 1 9 . 6 1 3 5 . 8

(F X P)./(F X P)„ 1 1 . 3 7 3 . 1 7 1 . 0 2 0 . 4 5 0 . 1 7 0.00

'From Vining (1982), Table 1, p. 247. Fertility and IQ based on probability sam ples (2,066 whites, 
473 blacks) representing the noninstitutionalized U.S. population.

women who have not had any children by age thirty-four.) Assuming a normal 
distribution (which is closely approximated for IQ within the range of ± 2 a), 
the table also shows: (a) the estimated proportion (P) of the population within 
each interval, (b) the product of F X P, and (c) the mean IQ of the women 
within each interval. The average fertility in each of the IQ intervals and the 
average IQs in those intervals are negatively correlated ( — .86 for whites, —.96 
for blacks), indicating a dysgenic trend in both populations, though stronger in 
the black population.

Now, as a way of understanding the importance of Table 12.7, let us suppose 
that the mean IQ for whites was 100 and the mean IQ for blacks was 85 in the 
generation preceding that of the present sample of women represented in Table
12.7. Further, suppose that in that preceding generation the level of fertility was 
the same within each IQ interval. Then their offspring (that is, the present gen­
eration) would have an overall mean IQ equal to the weighted mean71 of the 
average IQ within each IQ interval (the weights being the proportion, P, of the 
population falling within each IQ interval). These means would also be 100 and 
eighty-five for the white and black populations, respectively.

But now suppose that in the present generation there is negative selection for 
IQ, with the fertility of the women in each IQ interval exactly as shown in Table
12.7. (This represents the actual condition in 1978 as best as we can determine.)
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What then will be the overall mean IQ of the subsequent generation of offspring? 
The weights that must be used in the calculation are the products of the average 
fertility (F) in each interval and the proportion (P) of women in each interval 
(i.e., the of values F X P, shown in Table 12.7). The predicted overall weighted 
mean IQ, then, turns out to be 98.2 for whites and 82.6 for blacks, a drop of 
1.8 IQ points and of 2.4 IQ points, respectively. The effect thus increases the 
W-B IQ difference from 15 IQ points in the parent generation to 15.6 IQ points 
in the offspring generation— an increase in the W-B difference of 0.6 IQ points 
in a single generation. Provided that IQ has substantial heritability within each 
population, this difference must be partly genetic. So if blacks have had a greater 
relative increase in environmental advantages that enhance IQ across the gen­
erations than whites have had, the decline of the genetic component of the black 
mean would be greater than the decline of the white genetic mean, because of 
environmental masking, as previously explained. We do not know just how 
many generations this differential dysgenic trend has been in effect, but extrap­
olated over three or four generations it would have worsening consequences for 
the comparative proportions in each population that fall above or below 100 IQ. 
(Of course, fertility rates could change in the positive direction, but so far there 
is no evidence of this.) In the offspring generation of the population samples of 
women shown in Table 12.7, the percentage of each population above/below IQ 
100 would be: whites 43.6%/56.4%, blacks 12.4%/87.6% (assuming no increase 
in environmental masking between the generations). The W/B ratio above 100 
IQ is about 43.6%/12.4% =  3.5; the B/W ratio below  100 IQ is .87.6%/56.4% 
=  1.55. These ratios or any approximations of them would have considerable 
consequences if, for example, an IQ of 100 is a critical cutoff score for the 
better-paid types of employment in an increasingly technological and informa­
tion-intensive economy (see Chapter 14). Because generation time (measured as 
mother’s age at the birth of her first child) is about two years less in blacks than 
in whites, the dysgenic trend would compound faster over time in the black 
population than in the white. Therefore, the figures given above probably un­
derestimate any genetic component of the W-B IQ difference attributable to 
differential fertility.

This prediction follows from recent statistics on fertility rates. A direct test 
of this effect would require a comparison of the average IQ of women in one 
generation with the average IQ of all of their children who constitute the next 
generation. Such cross-generational IQ data are available from the National Lon­
gitudinal Study of Youth (NLSY).[72al Large numbers of youths, including 
whites and blacks, originally selected as part of a nationally representative sam­
ple of the U.S. population, were followed to maturity. The mean IQ of the 
women in this group was compared with the mean IQ of their school-age chil­
dren. Whereas the mean IQ difference between the white and black mothers in 
the study was 13.2 IQ points, the difference between the white and black chil­
dren was 17.5 IQ points. That is, the overall mean W-B IQ difference in this 
sample had increased by about four IQ points in one generation.l72bl As there is
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no indication that the children had been reared in less advantaged environments 
than their mothers, this effect is most reasonably attributable to the negative 
correlation between the m others’ IQs and their fertility, which is more marked 
in the NLSY sample than in the Census sample represented in Table 12.7. But 
I have not found any bona fide data set that disconfirms either the existence of 
a dysgenic trend for IQ of the population as a whole or the widening disparity 
in the mean W-B IQ difference.

R acial D ifferen ces in N eon ate B ehavior. Although individual differences in 
infant psychomotor behavior (i.e., reactivity to sensory stimulation, muscular 
strength, and coordination) have very little, if any, correlation with mental ability 
measured from about age three years and up (and therefore are not directly 
relevant to individual or group differences in g ), black and white infants, both 
in Africa and in America, differ markedly in psychomotor behavior even within 
the first few days and weeks after birth.1731 Black neonates are more precocious 
in psychomotor development, on average, than whites, who are more precocious 
in this respect than Asians. This is true even when the black, white, and Asian 
babies were born in the same hospital to mothers of similar SES background 
who gave birth under the same obstetrical conditions.17301 Early precocity in 
motor behavior among blacks also appears to be positively related to degree of 
African ancestry and is negatively related to their SES. African blacks are more 
precocious than American blacks, and, at least in the United States, black infants 
of lower SES are more precocious in motor development than blacks of middle 
and upper-middle SES. (The same SES relationship is also observed in whites.) 
These behavioral differences appear so early (e.g., one or two days after deliv­
ery, when the neonates are still in hospital and have had little contact with the 
mothers) that purely cultural or environmental explanations seem unlikely. Sub­
stantiated in at least three dozen studies,1731” these findings constitute strong 
evidence for innate behavioral differences between groups.

R elationsh ip  o f  M yopia  to IQ and Race. In Chapter 6 (pp. 149-50) it was 
noted that myopia (nearsightedness) is positively correlated with IQ and that the 
relationship appears to be pleiotropic, that is, a gene affecting one of the traits 
also has some effect on the other trait. Further, there are significant racial and 
ethnic differences in the frequency of myopia.1741 Among the major racial groups 
measured, the highest rates of myopia are found in Asians (particularly Chinese 
and Japanese); the lowest rates among Africans; and Europeans are intermediate. 
Among Europeans, Jews have the highest rate of myopia, about twice that of 
gentiles and about on a par with that of the Asians. The same rank ordering of 
all these groups is found for the central tendency of scores on highly g-loaded 
tests, even when these groups have had comparable exposure to education. Cul­
tural and environmental factors, except as they may have had an evolutionary 
impact in the distant past, cannot adequately explain the differences found 
among contemporary populations. Among populations of the same ethnic back­
ground, no relationship has been found between myopia and literacy. Compar-
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Table 12.8
Percentages o f Preinduction Whites and Blacks Diagnosed as Having Mild or 
Severe Myopia, and Their Sigma (a) Equivalents in While and Black U.S. Armed 
Services Draftees

Percentage* Sigma Eguivalent
Group White Black White Black B -  w
Mild (Accepted) 19.3 3.4 0.87a 1.83a 0.,96a
Severe (Rejected) 14.7 4.6 1.05o 1.69a 0 .. 64a
All Draftees 34.0 8.0 0.41o 1.41a 1.,00a

“From  Post (1982, p. 334). W hite N  =  1,000; black N  = 1,000.

isons of groups of the same ethnicity who learned to read before age twelve 
with those who learned after age twelve showed no difference in rates of myopia.

Table 12.8 shows the results of preinduction examinations of random samples 
of 1,000 black and 1,1000 white draftees for the U.S. Armed Services who were 
diagnosed as (a) mildly myopic and accepted for service, and (b) too severely 
myopic to be accepted. As myopia (measured in diopters) is approximately nor­
mally distributed in the population, the percentages of whites and blacks diag­
nosed as myopic can also be expressed in terms of their deviations from the 
population mean in standard deviation (a) units. These average deviations are 
shown on the right side of Table 12.8. They indicate the approximate cutoff 
points (in o  units) for the diagnosis of mild and of severe myopia in the total 
frequency distribution of refractive error (extending from extreme hyperopia, or 
farsightedness [ + 3oj, to emmetropia, or normal vision [Oo], to extreme myopia 
[ —3g ]). The last column in Table 12.8 shows the W-B difference in the cutoff 
point for the diagnosis of myopia, which is lo  for all who had either mild or 
severe myopia. Unfortunately, mental test scores on these subjects were not 
reported, but from other studies one would expect the group diagnosed as my­
opic to score about 0 .5a higher than the nonmyopic. Studies in Europe and in 
the United States have reported differences of about seven to eight IQ points 
between myopes and nonmyopes.I75)

Because myopia appears to be pleiotropic with IQ, the black-white difference 
in myopia is consistent with the hypothesis of a genetic component in the racial 
IQ difference. Further studies would be needed to make it an importantly inter­
esting hypothesis. For one thing, the pleiotropy of myopia is not yet all that 
firmly established. Although one study1761 provides fairly strong evidence for it, 
confirming studies are needed before one can make any inferences in regard to 
racial differences. More crucial, it is not known if myopia and IQ are also 
pleiotropic in the black population; there are no published studies of the cor­
relation between IQ and myopia in blacks. Failure to find such a relationship 
would nullify the hypothesis.

Other testable hypotheses could also be based on various highly heritable
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physical traits that are correlated with g (see Chapter 6), some of which show 
racial differences (e.g., the ability to taste phenylthiocarbamide, color vision, 
visual acuity, susceptibility to perceptual illusions).177' But it is first necessary 
to establish that the correlation of the physical trait with g is pleiotropic within 
each racial group.

As each specific gene in the human genome related to g is discovered— a 
search that is getting underway1781— a determination of the genes’ frequencies 
in different populations may make it possible to estimate the minimum per­
centage of the between-race variance in g  that has a genetic basis. Assuming 
that the genetic research on quantitative trait loci already underway continues 
apace, it is possible that the uncertainty regarding the existence, and perhaps 
even the magnitude, of genetic group differences in g could probably be re­
solved, should we so desire, within the first decade of the next century.

ENVIRONMENTAL CAUSES OF GROUP DIFFERENCES IN g
From the standpoint of research strategy, it is sensible to ask where one can 

best look for the environmental variables that are the most likely to cause the 
nongenetic component of the black-white difference in g. The Factor X hypoth­
esis encourages a search for nongenetic factors that are unique to the black- 
white difference and absent from individual differences among whites or among 
blacks. The default hypothesis leads us to look at the same kinds of environ­
mental factors that contribute to g variance within each population as causal 
factors in the g difference between groups.

Among the environmental factors that have been shown to be important within 
either group, the between-families environmental variance markedly decreases 
after childhood, becoming virtually nil by late adolescence (see Chapter 7, pp. 
179-81). In contrast, the within-family environmental variance remains fairly 
constant from early childhood to maturity, when it accounts for nearly all of the 
nongenetic variance and constitutes about 20 percent of the total true-score var­
iance in psychometric g. The macroenvironmental variables responsible for the 
transient between-families variance in g would therefore seem to be an unlikely 
source of the observed population difference in g. A more likely source is the 
microenvironment that produces the within-family variance. The macroenviron- 
mcnt consists of those aspects of interpersonal behavior, values, customs, pref­
erences, and life-style to which children are exposed at home and which clearly 
differ between families and ethnic groups in American society. The microen­
vironment consists of a great many small, often random, events that take place 
in the course o f prenatal and postnatal life. Singly they have small effects on 
mental development, but in the aggregate they may have a large cumulative 
effect on the individual. These microenvironmental effects probably account for 
most of the nongenetic variance in IQ that remains after childhood.1791

This difference in the potency and persistence of the macro- and microenvi­
ronments has been consistently demonstrated in environmental enrichment and
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intervention programs specifically intended to provide underprivileged black 
children with the kinds of macroenvironmental advantages typically experienced 
by white middle-class children. They include use of educational toys and picture 
books, interaction with nurturing adults, attendance in a preschool or cognitively 
oriented day-care center, early adoption by well-educated white parents, and 
even extraordinarily intensive cognitive development programs such as the Mil­
waukee Project and the Abecedarian Project (Chapter 10, pp. 340-44). The ef­
fects of these programs on IQ and scholastic performance have generally been 
short-lived, and it is still debatable whether these improvements in the macroen­
vironment have actually raised the level of g at all. This is not surprising if we 
consider that the same class of environmental variables, largely associated with 
socioeconomic status (SES), has so little, if any, positive effect on g or on IQ 
beyond childhood within the white population. Recent research has shown that 
the kinds of macroenvironmental factors typically used to describe differences 
between white lower-middle class and white upper-middle class child-rearing 
environments and long thought to affect children’s cognitive development ac­
tually have surprisingly little effect on IQ beyond childhood. The macroenvi­
ronmental variables associated with SES, therefore, seem unlikely sources of 
the black-white difference in g.

Hypothesizing environmental factors that are not demonstrably correlated with 
IQ within one or both populations is useless from the standpoint of scientific 
explanation. Unless an environmental variable can be shown to correlate with 
IQ, it has no explanatory value. Many environment-IQ correlations reported in 
the psychological literature, though real and significant, can be disqualified, 
however, because the relevant studies completely confound the environmental 
and the genetic causes of IQ variance. M ultiple correlations between a host of 
environmental assessments and children’s IQs ranging from below .50 to over 
.80 have been found for children reared by their biological parents. But nearly 
all the correlations found in these studies actually have a genetic basis. This is 
because children’s IQs have 50 percent of their genetic variance in IQ in com­
mon with their biological parents, and the parents’ IQs are highly correlated 
(usually about .70) with the very environmental variables that supposedly cause 
the variance in children’s mental development. For children reared by adoptive 
parents for whom there is no genetic relationship, these same environmental 
assessments show little correlation with the children’s IQs, and virtually zero 
correlation when the children have reached adolescence. The kinds of environ­
mental variables that show little or no correlation with the IQs of the children 
who were adopted in infancy, therefore, are not likely to be able to explain IQ 
differences between subpopulations all living in the same general culture. This 
is borne out by the study of transracial adoptions (reviewed previously, pp. 472- 
78).

We can now review briefly the main classes of environmental variables that 
have been put forth to explain the black-white IQ difference, and evaluate each
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one in light of the above methodological criteria and the current empirical ev­
idence.

S ocioeconom ic Status. Measures of SES are typically a composite of occu­
pation, education, income, location of residence, membership in civic or social 
organizations, and certain amenities in the home (e.g., telephone, TV, phono­
graph, records, books, newspapers, magazines). Children’s SES is that of their 
parents. For adults, SES is sometimes divided into “ attained SES”  and “ SES 
of origin”  (i.e., the SES of the parents who reared the individual). All of these 
variables are highly correlated with each other and they share a large general 
factor in common. Occupation (rank ordered on a scale from unskilled labor to 
professional and managerial) has the highest loading on this general SES factor.

The population correlations between SES and IQ for children fall in the range 
.30 to .40; for adults the correlations are .50 to .70, increasing with age as 
individuals approach their highest occupational level. There has probably been 
a higher degree of social mobility in the United States than in any other country. 
The attained SES of between one-third and one-half of the adult population in 
each generation ends up either above or below their SES of origin. IQ and the 
level of educational attainments associated with IQ are the best predictors of 
SES mobility. SES is an effect of IQ rather than a cause. If SES were the cause 
of IQ, the correlation between adults’ IQ and their attained SES would not be 
markedly higher than the correlation between children’s IQ and their parents’ 
SES. Further, the IQs of adolescents adopted in infancy are not correlated with 
the SES of their adoptive parents. Adults’ attained SES (and hence their SES 
as parents) itself has a large genetic component, so there is a genetic correlation 
between SES and IQ, and this is so within both the white and the black popu­
lations. Consequently, if black and white groups are specially selected so as to 
be matched or statistically equated80 on SES, they are thereby also equated to 
some degree on the genetic component of IQ. Whatever IQ difference remains 
between the two SES-equated groups, therefore, does not represent a wholly 
environmental effect. (Because the contrary is so often declared by sociologists, 
it has been termed the sociologist’s fallacy.)

When representative samples of the white and black populations are matched 
or statistically equated on SES, the mean IQ difference is reduced by about one- 
third. Not all of this five or six IQ points reduction in the mean W-B difference 
represents an environmental effect, because, as explained above, whites and 
blacks who are equated on SES are also more alike in the genetic part of IQ 
than are blacks and whites in general. In every large-scale study, when black 
and white children were matched within each level on the scale of the parents’ 
SES, the children’s mean W-B IQ difference increased, going from the lowest 
to the highest level of SES. A statistical corollary of this phenomenon is the 
general finding that SES has a somewhat lower correlation (by about .10) with 
children’s IQ in the black than in the white population. Both of these phenomena 
simply reflect the greater effect of IQ regression toward the population mean 
for black than for white children matched on above-average SES, as previously
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explained in this chapter (pp. 467-72). The effect shows up not only for IQ but 
for all highly g-loaded tests that have been examined in this way. For example, 
when SAT scores were related to the family income levels of the self-selected 
students taking the SAT for college admission, Asians from the lowest income 
level scored higher than blacks from the highest, and black students scored more 
than one standard deviation below white students from the same income level. 
It is impossible to explain the overall subpopulation differences in g-loaded test 
performance in terms of racial group differences in the privileges (or their lack) 
associated with SES and income.

Additional evidence that W-B differences in cognitive abilities are not the 
same as SES differences is provided by the comparison of the profile of W-B 
differences with the profile of SES differences on a variety of psychometric tests 
that measure somewhat different cognitive abilities (in addition to g).

This is illustrated in the three panels of Figure 12.11.[81al The W-B difference 
in the national standardization sample on each of the thirteen subtests of the 
Wechsler Intelligence Scale for Children-Revised (WISC-R) is expressed as a 
point-biserial correlation between age-controlled scale scores and race (quanti- 
tized as white =  1, black =  0). The upper (solid-line) profile in each panel 
shows the full correlations of race (i.e., W or B) with the age-scaled subtest 
scores. The lower (dashed-line) profile in each panel shows the partial correla­
tions, with the Full Scale IQ partialed out. Virtually all of the g factor is removed 
in the partial correlations, thus showing the profile of W-B differences free of 
g. The partial correlations (i.e., W-B differences) fall to around zero and differ 
significantly from zero on only six of the thirteen subtests (indicated by aster­
isks). The profile points for subtests on which whites outperform blacks are 
positive; those on which blacks outperform whites are negative (i.e., below 
zero).

Whites perform significantly better than blacks on the subtests called Com­
prehension, Block Design, Object Assembly, and Mazes. The latter three tests 
are loaded on the spatial visualization factor of the WISC-R. Blacks perform 
significantly better than whites on Arithmetic and Digit Span. Both of these tests 
are loaded on the short-term memory factor of the WISC-R. (As the test of 
arithmetic reasoning is given orally, the subject must remember the key elements 
of the problem long enough to solve it.) It is noteworthy that Vocabulary is the 
one test that shows zero W-B difference when g is removed. Along with Infor­
mation and Similarities, which even show a slight (but nonsignificant) advantage 
for blacks, these are the subtests most often claimed to be culturally biased 
against blacks. The same profile differences on the WISC-R were found in 
another study|8lbl based on 270 whites and 270 blacks who were perfectly 
matched on Full Scale IQ.

Panels B and C in Figure 12.11 show the profiles of the full and the partial 
correlations of the WISC-R subtests with SES, separately for whites and blacks. 
SES was measured on a five-point scale, which yields a mean W-B difference 
of 0.67 in standard deviation units. Comparison of the profile for race in Panel
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Figure 12 .11 . Panel A: Point-biserial correlation as an index o f W-B difference on Full 
Scale IQ (FSIQ) and on each o f thirteen subtests o f the WISC-R. The upper profile 
shows the actual race X subtest correlation; the lower profile shows the correlations with 
FSIQ partialed out, in effect equating the groups on g. Partial correlations significant 
beyond the .05 level o f confidence are indicated by asterisks. The subtests are: I =  
Information; S =  Similarities; A =  Arithmetic; V =  Vocabulary; C =  Comprehension; 
DS =  Digit Span; PC =  Picture Completion; PA =  Picture Arrangement; BD =  Block 
Design; OA =  Object Assembly; M =  Mazes; T  =  Tapping (Knox Cubes).

Panel B: Correlations between SES and subtest scaled scores on the WISC-R for the 
white sample (N  =  1,868).

Panel C: Correlations between SES and subtest scores for the black sample (N  =  305). 
Reprinted from Personality and Individual Differences, 3, A. R. Jensen and C. R. Reyn­
olds, Race, social class and ability patterns on the WISC-R, 4 2 3 ^ 3 8 , Copyright 1982, 
with kind permission from Elsevier Science Ltd, The Boulevard, Langford Lane, Kid- 
lington 0X5 IGB, UK.



494 The g  Factor

A with the profiles for SES in Panels B and C reveals marked differences. The 
Pearson correlation between profiles serves as an objective measure of their 
degree of similarity. The profiles of the partial correlations for race and for SES 
are negatively correlated: - .4 5  for whites; - .6 3  for blacks. The SES profiles 
for whites and for blacks are positively correlated: +0.59. While the profile of 
race X  subtest correlations and the profile of SES X  subtest correlations are 
highly dissimilar, the black profile of SES X  subtest scores and the white profile 
o f SES X  subtest scores are fairly similar. Comparable results were found in 
another study1821 that included racial and SES profiles based on seventy-five 
cognitive variables measured in a total sample of 70,000 high school students. 
The authors concluded, “ [Cjomparable levels of socioeconomic status tend to 
move profiles toward somewhat greater degrees of similarity, but there are also 
powerful causal factors that operate differentially for race [black-white] that are 
not revealed in these data. Degree of [economic] privilege is an inadequate 
explanation of the differences”  (p. 205).

Race and SES Differences in Educational Achievement. Because the spe­
cific knowledge content of educational achievement tests is explicitly taught and 
learned in school, of course, scores on such tests reflect not only the individual’s 
level of g but also the amount and type of schooling, the quality of teaching, 
and the degree of motivation for scholastic achievement. Nevertheless, tests of 
educational achievement are quite g-loaded, especially for groups of high school 
age with comparable years of schooling.

It is informative, therefore, to look at the black-white difference on achieve­
ment tests for the two most basic scholastic subjects, reading/verbal skills and 
mathematics, when a number of SES-related factors have been controlled. Such 
data were obtained on over 28,000 high school students in two independent 
large-scale surveys, the National Longitudinal Survey of Youth (NLSY) and the 
National Education Longitudinal Survey (NELS). In the two studies, the actual 
W-B mean differences on three tests (Math, Verbal, Reading) ranged from about
0 .75c to 1.25c. Regression analyses of the test scores obtained in each study 
controlled for a number of SES-related factors: family income, mother’s edu­
cation, father’s education, age of mother at the birth of the proband, sex, number 
of siblings, mother single or married, mother working (or not), region of the 
country in which the proband lives.

When the effects of these SES factors on test scores statistically were removed 
by regression, the mean W-B differences in the NLSY were: for Math 0.49c, 
for Verbal 0.55c; in the NELS, for Math 0.59c, for Reading 0 .51.1831 In a 
multiple-regression analysis for predicting the achievement test scores from 
twenty-four demographic and personal background variables, no other variable 
among the twenty-four had a larger predictive weight (independently of all the 
other variables in the regression equation) than the dichotomous W/B variable. 
Parents’ education was the next most strongly predictive variable (independently 
of race and all other variables), averaging only about half as much predictive 
weight as the W/B variable. That most of the predictive power of parental ed­
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ucation in these analyses is genetically mediated is inferred from the studies of 
individuals reared by adoptive parents, whose IQs and educational attainments 
have a near-zero correlation with that of the adoptees. (See Chapter 7.) Thus, 
for measures of educational achievement, as for IQ, demographic and SES var­
iables have been shown to account for only a small part of the W-B difference.

The C um ulative Deficit Theory. Cumulative deficit is really an empirical 
phenomenon that, in the 1960s, became a general theory of how environmental 
deprivation progressively decreased the IQ and scholastic performance of black 
children with increasing age relative to white age norms. The phenomenon itself 
is more accurately termed “ age-related decrement in IQ and achievement,”  
which is neutral as regards its nature and cause. The theory of cumulative deficit, 
its history, and empirical literature have been reviewed elsewhere.|84a| The theory 
says that environmental and educational disadvantages that cause a failure to 
learn something at an early age cause further failure at a later age, and the 
resulting performance deficit, which affects IQ and scholastic achievement alike, 
increases with age at an accelerating rate, accumulating like compound interest. 
At each stage of learning, the increasing deficit of prerequisite knowledge and 
skills hinders learning at each later stage of learning. This theory of the cause 
of shortfall in IQ and achievement of blacks and other poorly achieving groups 
was a prominent feature of the rationale for the large-scale federal programs 
intended to ameliorate these conditions begun in the 1960s— interventions such 
as Head Start, compensatory education, and a host of experimental preschool 
programs for disadvantaged children.

The raw scores on all mental tests, including tests of scholastic achievement, 
show an increasing divergence among individuals as they mature, from early 
childhood to the late teens. In other words, both the mean and the standard 
deviation o f raw scores increase with age. Similarly, the mean W-B difference 
in raw scores increases with age. This age-related increase in the mean W-B 
raw score difference, however, is not what is meant by the term “ cumulative 
deficit.”  The cumulative deficit effect can only be measured at each age in terms 
of the standardized scores (i.e., measures in units of the standard deviation) for 
each age. A significant increase of the mean W-B difference in standardized 
scores (i.e., in a  units) constitutes evidence for cumulative deficit, although this 
term does not imply the nature of its cause, which has remained purely hypo­
thetical.

The mental test and scholastic achievement data of large-scale studies, such 
as those from the famous Coleman Report based on 450,000 pupils in 6,000 
schools across the nation, failed to find any sign of the cumulative deficit effect 
for blacks in the nation as a whole. However, suggestive evidence was found 
for some school districts in the rural South, where the W-B difference in tests 
of verbal ability increased from 1.5a to 1.7a to 1.9a in Grades 6, 9, and 12, 
respectively. These findings were only suggestive because they were entirely 
based on cross-sectional data (i.e., different samples tested at each grade level) 
rather than longitudinal data (the same sample tested at different grade levels).
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Cross-sectional studies of age effects are liable to migratory and demographic 
changes in the composition of a local population.

Another method with fewer disadvantages even than a longitudinal study 
(which can suffer from nonrandom attrition of the study sample) compares the 
IQs of younger and older siblings attending the same schools. Cumulative deficit 
would be revealed by consistent IQ differences in favor of younger (Y) rather 
than older (O) siblings. This is measured by the signed difference between 
younger and older siblings (i.e., Y-O) on age-standardization test scores that 
constitute an equal-interval scale throughout their full range. Averaged over a 
large number of sibling pairs, the mean Y -0  difference represents only an en­
vironmental or nongenetic effect, because there is nothing in genetic theory that 
relates‘sibling differences to birth order. The expected mean genotypic value of 
the signed differences between younger and older full siblings is therefore nec­
essarily zero. A phenotypic Y -0  difference would indicate the presence of a 
cumulative IQ deficit with increasing age.

This method was applied to IQ data obtained from all of the full siblings 
from kindergarten through grade six in a total of seventeen schools in California 
that had about 60 percent white and 40 percent black pupils.(84a| In general, there 
was no evidence of a cumulative deficit effect, either for blacks or for whites, 
with the exception of blacks in the primary grades, who showed the effect only 
on the verbal part of the IQ test that required some reading skill; the effect was 
largely attributable to the black m ales’ greater lag in early reading skills com­
pared to the black females; in the early years of schooling, boys in general tend 
to advance less rapidly in reading than do girls. Blacks showed no cumulative 
deficit effect at all in nonverbal IQ, and beyond the elementary grades there was 
no trace of a cumulative deficit in verbal IQ.

Overall, the cumulative deficit hypothesis was not borne out in this California 
school district, although the mean W-B IQ difference in this school population 
was greater than lc .  However, the black population in this California study was 
socioeconomically more advantaged and socially more integrated with the white 
population than is true for blacks in many other parts of the country, particular 
those in the rural South. It is possible that the California black pupils did not 
show a cumulative deficit in IQ because the vast majority of them had grown 
up in a reasonably good environment and the cumulative deficit phenomenon 
might be manifested only when the blacks’ degree of environmental disadvan­
tage falls below some critical threshold for a normal rate of mental growth.

Exactly the same methodology, based on Y -0  sibling differences in IQ, was 
therefore applied in an entire school system of a county in rural Georgia.[84h| It 
perfectly exemplified a generally poor community, especially its black popula­
tion, which was well below the national black average in SES. Although the 
school population (49 percent white and 51 percent black) had long since been 
racially desegregated when the test data were obtained, the blacks’ level of 
scholastic performance was exceedingly low by national standards. The mean 
W-B IQ difference for the entire school population was 1.95a (white mean 102,
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SD 16.7; black mean 71, SD 15.1). If cumulative deficit were a genuine phe­
nomenon and not an artifact of uncontrolled demographic variables in previous 
cross-sectional studies, the sibling methodology should reveal it in this rural 
Georgia community. One would be hard put to find a more disadvantaged black 
community, by all indices, anywhere in the United States. This study, therefore, 
provides a critical test of the cumulative deficit hypothesis.

The rural Georgia study included all of the full siblings of both racial groups 
from kindergarten through grade twelve. Appropriate forms of the same stan­
dardized IQ test (California Test of Mental Maturity) were used at each grade 
level. An examination of the test’s scale properties in this population showed 
that it measured IQ as an interval scale throughout the full range of IQ at every 
age in both the black and white groups, had equally high reliability for both 
groups, and, despite the nearly two standard deviations IQ difference between 
the groups, IQ had an approximately normal distribution within each group.

No cumulative deficit effect could be detected in the white group. The Y -0  
sibling differences for whites showed no increase with age and they were un­
correlated with the age difference between siblings.

The result for blacks, however, was markedly different. The cumulative deficit 
effect was manifested at a high level of significance (p <  .001). Blacks showed 
large decrements in IQ with increasing age that were almost linear from five to 
sixteen years of age, for both verbal and nonverbal IQ. For total IQ, the blacks 
had an average rate of IQ decrement of 1.42 points per year during their first 
ten or eleven years in school— in all, a total decrement of about sixteen IQ 
points, or about half the total W-B difference of thirty-one IQ points that existed 
in this population.

It would be difficult to attribute the cause of this result to anything other than 
the effect of an exceedingly poor environment. A genetic hypothesis of the 
cumulative deficit effect seems highly unlikely in view of the fact that it was 
not found in blacks in the California study, although the sample size was large 
enough to detect even a very small effect size at a high level of statistical 
significance. Even if the blacks in California had, on average, a larger amount 
of Caucasian ancestry than blacks in rural Georgia, the cumulative deficit effect 
should have been evident, even if to a lesser degree, in the California group if 
genetic factors were involved. Therefore, the cause of the cumulative deficit, at 
least as observed in this study, is most probably of environmental origin. But 
the specific nature of the environmental cause remains unknown. The fact that 
it did not show up in the California sample suggests that a cumulative deficit 
does not account for any appreciable part of the overall W-B IQ difference of 
about l c  in nationally representative samples.

The overall W-B IQ difference of 1.95o in the rural Georgia sample would 
be reduced to about l a  if the decrement attributable to the cumulative effect 
were removed. W hat aspects of the environment could cause that large a dec­
rement? It would be worthwhile to apply the sibling method used in these studies 
in other parts of the country, and in rural, urban or “ inner city,”  and suburban
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Figure 12.12. Normal curves for male (M ) and female (F ) blacks (B ) and for whites 
(W) (both sexes combined) to illustrate how a relatively small average sex difference 
can result in markedly different proportions of males and females that fall above any 
given selection cutoff score, such as the vertical lines at W (the white mean) and 
at X.

populations of whites and blacks to determine just how widespread this cumu­
lative deficit effect is in the black population. It is probably the most promising 
strategy for discovering the specific environmental factors involved in the W-B 
IQ difference.

The Interaction of Race X Sex X Ability. In 1970, it came to my attention 
that the level of scholastic achievement was generally higher for black females 
than for black males. A greater percentage of black females than of black males 
graduate from high school, enter and succeed in college, pass high-level civil 
service examinations, and succeed in skilled and professional occupations. A 
comparable sex difference is not found in the white population. To investigate 
whether this phenomenon could be attributed to a sex difference in IQ that 
favored females relative to males in the black population, I proposed the hy­
pothesis I called the race X sex X ability interaction. It posits a sex difference 
in g (measured as IQ), which is expressed to some extent in all of the “ real 
life”  correlates of g. Because of the normal distribution of g for both sexes, 
selection on criteria that demand levels of cognitive ability that are well above 
the average level of ability in the population will be most apt to reveal the 
hypothesized sex difference in g and all its correlates. Success in passing high- 
level civil service examinations, in admission to selective colleges, and in high- 
level occupations, all require levels of ability well above the population average. 
They should therefore show a large difference in the proportions of each sex 
that can meet these high selection criteria, even when the average sex difference 
in the population as a whole is relatively small. This hypothesis is shown graph­
ically in Figure 12.12. For example, if the cutoff score on the criterion for 
selection is at the white mean IQ of 100 (which is shown as lo  above the black 
mean IQ of eighty-five), and if the black female-male difference (F-M) in IQ is
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only 0.2o (i.e., three IQ points), the F/M ratio above the cutoff score would be 
about 1.4 females to 1 male. If the selection cutoff score (X) is placed 2o  above 
the black mean, the F/M ratio would be 1.6 females to 1 male.

This hypothesis seemed highly worthy of empirical investigation, because if 
the sex difference in IQ for the black population were larger than it is for the 
white population (in which it is presumed to be virtually zero), the sex difference 
could help identify specific environmental factors in the W-B IQ difference 
itself. It is well established that the male of every mammalian species is gen­
erally more vulnerable to all kinds of environmental stress than is the female. 
There are higher rates of spontaneous abortion and of stillbirths for male fetuses 
and also a greater susceptibility to communicable diseases and a higher rate of 
infant mortality. Males are also psychologically less well buffered against un­
favorable environmental influences than are females. Because a higher propor­
tion of blacks than of whites grow up in poor and stressful environmental 
conditions that would hinder mental development, a sex difference in IQ, dis­
favoring males, would be greater for blacks than for whites.

I tested this race X  sex X  ability interaction hypothesis on all of the test data 
I could find on white and black samples that provided test statistics separately 
for males and females within each racial group.[85a) The analyses were based on 
a collection of various studies which, in all, included seven highly g-loaded tests 
and a total of more than 20,000 subjects, all of school age and most below age 
thirteen. With respect to the race X  sex interaction, the predicted effect was 
inconsistent for different tests and in different samples. The overall effect for 
the combined data showed a mean female-male (F-M) difference for blacks of 
+ 0.20 and for whites of +0.1C. Across various tests and samples, the F-M 
differences for whites and for blacks correlated + .54 (p <  .01), indicating that 
similar factors for both races accounted for the slight sex difference, but had a 
stronger effect for blacks. With the large sample sizes, even these small sex 
differences (equivalent to 3 and 1.5 IQ points for blacks and whites, respec­
tively) are statistically significant. But they are too small to explain the quite 
large differences in cognitively demanding achievements between male and fe­
male blacks.86 Apparently the sex difference in black achievement must be at­
tributed to factors other than g per se. These may be personality or motivational 
factors, or sexually differential reward systems for achievement in black society, 
or differential discrimination by the majority culture. Moreover, because the 
majority of subjects were of elementary school age and because girls mature 
more rapidly than boys in this age range, some part of the observed sex differ­
ence in test scores might be attributable to differing rates of maturation. Add to 
this the fact that the test data were not systematically gathered so as to be 
representative of the whole black and white populations of the United States, or 
even of any particular region, and it is apparent that while this study allows 
statistical rejection of the null hypothesis, it does so without lending strong 
support to the race X  sex interaction hypothesis.

The demise of the hypothesized race X  sex interaction was probably assured
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by a subsequent large-scale study|85bl that examined the national standardization 
sample of 2,000 subjects on the WISC-R, the 3,371 ninth-grade students in 
Project TALENT who were given an IQ test, and a sample of 152,944 pupils 
in grades 5, 8, and 11 in Pennsylvania, who were given a test measuring verbal 
and mathematical achievement. The subjects’ SES was also obtained in all three 
data sets. In all these data, the only significant (p <  .05 with an N  of 50,000) 
evidence of a race X  sex X  ability interaction was on the verbal achievement 
test for eleventh graders, and even it is of questionable significance when one 
considers the total number of statistical tests used in this study. In any case, it 
is a trifling effect. Moreover, SES did not enter into any significant interaction 
with race and sex.

Still another large data set[85cl used the Vocabulary and Block Design subtests 
of the WISC-R administered to a carefully selected national probability sample 
of 7,119 noninstitutionalized children aged six to eleven years. The Vocabulary 
+  Block Design composite of the WISC-R has the highest correlation with the 
WISC-R Full Scale IQ of any other pair of subtests, and both Vocabulary and 
Block Design are highly g loaded. These data also showed no effects that are 
consistent with the race X  sex X  ability interaction hypothesis for either Vo­
cabulary or Block Design.87 Similarly, the massive data of the National Collab­
orative Perinatal Project, which measured the IQs of more than 20,000 white 
and black children at ages four and seven years, yielded such a small interaction 
effect as to make its statistical significance virtually irrelevant.88

Although the race X  sex interaction hypothesis must now be discarded, it has 
nevertheless raised an important question about the environmental factors that 
have biological consequences for mental development as a possible cause of the 
W-B difference in g.

NONGENETIC BIOLOGICAL FACTORS IN THE W-B 
DIFFERENCE

The psychological, educational, and social factors that differ between families 
within racial groups have been found to have little, if any, effect on individual 
differences in the level of g after childhood. This class of variables, largely 
associated with socioeconomic differences between families, has similarly little 
effect on the differing average levels of g between native-born, English-speaking 
whites and blacks. By late adolescence, the IQs of black and white infants 
adopted by middle or upper-middle SES white parents are, on average, closer 
to the mean IQ of their respective populations than to that of either their adoptive 
parents or their adoptive parents’ biological children. Preschool programs such 
as Head Start and the much more intensive and long-term educational interven­
tions (e.g., the Milwaukee Project and the Abecedarian Project) have been shown 
to have little effect on g.

It is reasonable, therefore, to look beyond these strictly social and educational 
variables and to consider the nongenetic, or environmental, factors of a biolog­
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ical nature that may have adverse effects on mental development. These include 
prenatal variables such as the mother’s age, general health, and life-style during 
pregnancy (e.g., maternal nutrition, smoking, drinking, drug habits), number of 
previous pregnancies, spacing of pregnancies, blood-type incompatibility (e.g., 
kernicterus) between mother and fetus, trauma, and history of X-ray exposure. 
To these can be added the many obstetrical and perinatal variables, including 
premature birth, low birth weight, duration of labor, forceps delivery, anoxia at 
birth. Postnatal factors shown to have adverse effects include neonatal and child­
hood diseases, head trauma, and malnutrition during the period of maximum 
growth of the brain (from birth to five years of age). Although each of these 
biological factors singly may have only a very small average effect on IQ in 
the population, the cumulative effect of many such adverse microenvironmental 
factors on any one individual can produce a decrement in g that has significant 
consequences for that individual’s educability. Also, certain variables, though 
they may have a large negative effect on later IQ for some individuals, occur 
with such low frequency in the population as to have a negligible effect on the 
total variance in IQ, either within or between groups.

The largest study of the relationship between these nongenetic factors and IQ 
is the National Collaborative Perinatal Project conducted by the National Insti­
tutes of Health.1891 The study pooled data gathered from twelve metropolitan 
hospitals located in different regions of the United States. Some 27,000 mothers 
and their children were studied over a period of several years, starting early in 
the mother’s pregnancy, through the neonatal period, and at frequent intervals 
thereafter up to age four years (when all of the children were given the Stanford- 
Binet IQ test). Most of this sample was also tested at age seven years with the 
W echsler Intelligence Scale for Children (WISC). About 45 percent of the sam­
ple children were white and 55 percent were black. The white sample was 
slightly below the national average for whites in SES; the black sample was 
slightly higher in SES than the national black average. The white mothers and 
black mothers differed 1.02c on a nonverbal IQ test. The mean W-B IQ dif­
ference for the children was 0.86g  at age four years and 1.0 lo  at age seven 
years.

A total of 168 variables (in addition to race) were screened. They measured 
family characteristics, family history, maternal characteristics, prenatal period, 
labor and delivery, neonatal period, infancy, and childhood. The first point of 
interest is that eighty-two of the 168 variables showed highly significant (p <  
.001) correlations with IQ at age four in the white or in the black sample (or in 
both). Among these variables, 59 (or 72 percent) were also correlated with race; 
and among the 33 variables that correlated .10 or more with IQ, 31 (or 94 
percent) were correlated with race.

Many of these 168 variables, of course, are correlated with each other and 
therefore are not all independently related to IQ. However, a multiple regression 
analysis90 applied to the set of sixty-five variables for which there was complete 
data for all the probands in the study reveals the proportion of the total variance
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in IQ that can be reliably accounted for by all sixty-five variables. The regression 
analyses were performed separately within groups, both by sex (male-female) 
and by race (white-black), yielding four separate analyses. The percentage of 
IQ variance accounted for by the sixty-five independent variables (averaged over 
the four sex X race groups) was 22.7 percent. This is over one-fifth of total IQ 
variance.

However, not all of this variance in these sixty-five variables is necessarily 
environmental. Some of the IQ variance is attributable to regional differences 
in the populations surveyed, as the total subject sample was distributed over 
twelve cities in different parts of the country. And some of the variance is 
attributable to the mother’s education and socioeconomic status. (This infor­
mation was not obtained for fathers.) Mother’s education alone accounts for 13 
percent of the children’s IQ variance, but this is most likely a genetic effect, 
since adopted children of this age show about the same degree of relationship 
to their biological mothers with whom they have had no social contact. The 
proband’s score on the Bayley Scale obtained at eight months of age also should 
not be counted as an environmental variable. This yields four variables in the 
regression analysis that should not be counted strictly as environmental factors— 
region, mother’s education, SES, and child’s own test score at eight months. 
With the effects of these variables removed, the remaining sixty-one environ­
mental variables account for 3.4 percent of the variance in children’s IQ, av­
eraged over the four race X  sex groups. Rather unexpectedly, the proportion of 
environmental variance in IQ was somewhat greater in the white sample than 
in the black (4.2 percent vs. 2.6 percent). The most important variable affecting 
the probands’ IQ independently of mother’s education and SES in both racial 
groups was mother’s age, which was positively correlated with child’s IQ for 
mothers in the age range of twelve to thirty-six years.91

How can we interpret these percentage figures in terms of IQ points? Assum­
ing that the total variance in the population consisted only of the variance con­
tributed by this large set of environmental variables, virtually all of a biological 
but nongenetic nature, the standard deviation of true-score IQs in the population 
would be 2.7 IQ points. The average absolute IQ difference between pairs of 
individuals picked at random from this population would be three IQ points. 
This is the average effect that the strictly biological environmental variables 
measured in the Collaborative Project has on IQ. It amounts to about one-fifth 
of the average mean W-B IQ difference.

Unfortunately, the authors of the Collaborative Project performed only within- 
group regression analyses. They did not enter race as an independent variable 
into the multiple regression analysis, stating explicitly that the independent effect 
of race was not assessed. A regression analysis in which race, as an independent 
variable, was entered after all of the nongenetic environmental variables could 
have shown the independent effect of race on IQ when the effect of the envi­
ronmental variables was removed. This would have allowed testing of the strict 
form of the default hypothesis. It posits that the environmental variance between
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SOCIOECONOMIC INDEX

Figure 12.13. Distribution of SES index scores for the black sample in the Collabo­
rative Project (CP) and for the U.S. black population. (From Preschool IQ  (p. 23), by 
Broman et al., 1975, Hillsdale, NJ: Erlbaum. Copyright © 1975. Reprinted with perm is­
sion of Erlbaum and S. H. Broman.)

groups is the same as the environmental variance within groups, in \yhich case 
about three points of the fifteen points mean W-B IQ difference would be at­
tributable to nongenetic biological environment, assuming that all of these en­
vironmental factors worked in a harmful direction for blacks.92

There are three reasons to suspect that this study underrepresents the effects 
of the nongenetic biological environment on the IQ of blacks in the general 
populations.

1. The black sample is somewhat above average in SES compared to the 
black population as a whole. W hat today is termed the underclass, which in­
cludes some one-fourth to one-third of the total black population, is underre­
presented in the study sample; much of the U.S. black population is at or below 
the zero point on the scale of SES used in this study, as shown in Figure 12.13. 
The biological factors that adversely affect IQ almost certainly have a higher 
incidence in this poorest segment of the population, which was underrepresented 
in the Collaborative Project.

2. The selection of mothers entering the study excluded all women who had
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not received care in the prenatal clinic from early in their pregnancies. All of 
the subjects in the study, both black and white, received prenatal care, while 
many underclass mothers do not receive prenatal care. The Project mothers also 
received comparable high-quality obstetrical and perinatal treatment, followed 
up with comparable neonatal and infant medical care provided by the collabo­
rating hospitals. Pregnancies in the underclass are typically without these med­
ical advantages.

3. Certain environmental factors that in recent years have been studied in 
relation to IQ, such as nutrition, breast feeding, fetal alcohol syndrome, and 
drug abuse, were not considered in the Collaborative Project conducted three 
decades ago. The causal role of these factors should be examined, as should the 
increasing incidence of premature delivery and low birth weight. The latter var­
iables are in fact the strongest correlates of low IQ.

Low B irth  W eight (LBW ). Infant mortality can be viewed as the extreme 
point on a continuum of pathology and reproductive casualty. The rate of neo­
natal and infant mortality in a particular population, therefore, serves as an 
indicator of other sublethal but nevertheless damaging health conditions, which 
negatively affect children’s mental development. While the infant mortality rate 
has steadily declined in the population as a whole over the last several decades, 
it is still about twice as great in the U.S. black population (17.6 per 1,000 live 
births) as in the white population (8.5 per 1,000). Other minority populations 
differ only slightly from whites; of the groups with lower SES than the white 
average (such as Hispanics, American Indians, and native Alaskans) the infant 
mortality rate averages about 8.6 per 1,000. Asians have by far the lowest av­
erage, about 4.3 per 1,000.[931

LBW is defined as a birth weight under 2,500 grams (5.5 pounds). It repre­
sents a region on the risk continuum of which infant death is the end point. 
Therefore, the rates of LBW and of infant mortality are highly correlated across 
different subpopulations. Although premature birth incurs its own risks for the 
neonate’s development, it is not the same as LBW, because a premature baby 
may have normal weight for its gestational age. LBW also occurs in full-term 
babies, who are thereby at increased risk for retarded mental development and 
for other developmental problems, such as behavioral adjustment, learning dis­
abilities, and poor scholastic performance. Throughout the full range of LBW, 
all of these developmental risks increase as birth weight decreases. For present 
purposes, it is important to note that a disproportionate number of the babies 
born to black women are either premature or of LBW. Although black women 
have about 17 percent of all the babies born in the United States today, they 
have about 32 percent of the LBW babies.1941

The mother’s age is the strongest correlate of LBW and is probably its chief 
causal factor. Teenage mothers account for about one-fourth of LBW babies. 
Even teenage girls under age eighteen who have had proper health care during 
pregnancy are twice as likely to have premature or LBW babies as women in 
their twenties. One suggested explanation is that teenage girls are still in their
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growing period, which causes some of the nutrients essential for normal devel­
opment to be diverted from the growing fetus to the growing mother. In addition 
to teenage pregnancy, other significant correlates of LBW are unmarried status, 
maternal anemia, substance abuse of various kinds, and low educational levels. 
SES per se accounts for only about 1 percent of the total variance in birth 
weight, and race (black/white) has a large effect on birth weight independently 
of SES. M ost of the W-B difference in birth weight remains unaccounted for 
by such variables as SES, poverty status, maternal age, and education. Prenatal 
medical care, however, has a small effect.1951

LBW, independently of SES, is related to low maternal IQ. Controlling for 
IQ reduces the B-W disparity in the percentage of LBW babies by about one- 
half.1961 But even college-educated black women have higher rates of LBW ba­
bies and therefore also higher rates of infant mortality than occur for white 
women o f similar educational background (10.2 per thousand vs. 5.4 per thou­
sand live births). When black babies and white babies, both born to college- 
educated parents, are statistically equated for birth weight, they have the same 
mortality rates in the first year of life. In the general population, however, black 
infants who are not of LBW have a mortality rate almost twice that of white 
infants.1971

The cause o f the high rate of LBW (and the consequently higher infant mor­
tality rate) in the black population as compared with other racial or ethnic 
groups, including those that are less advantaged than blacks, remains a mystery. 
Researchers have been able to account for only about half of the disparity in 
terms of the combined obvious factors such as poverty, low levels of SES, 
education, health and prenatal care, and mother’s age. The explanations run the 
gamut from the largely genetic to the purely environmental. Some researchers 
regard LBW as an inherent, evolved, genetic racial characteristic.95 98 Others 
have hypothesized that black mothers may have subtle health problems that span 
generations, and some have suggested subtle but stressful effects of racism as a

gocause.
Since the specific causes of LBW largely remain unidentified while the sur­

vival rate of LBW babies has been increasing over the past 20 years, researchers 
are now focusing on ways to mitigate its risks for developmental disabilities 
and to enhance the cognitive and behavioral development of LBW babies. The 
experimental treatment was highly similar to that provided in the Abecedarian 
Project described in Chapter 10 (pp. 3 4 2 ^ 4 ). The largest program of this kind, 
conducted with nearly one thousand LBW infants in eight states, showed large 
Stanford-Binet IQ gains (compared against a control group) for LBW children 
when they were tested at thirty-six months of age. The heavier LBW probands 
(BW between 2,001 and 2,500 grams) scored an average of 13.2 IQ points above 
the untreated control group (98.0 vs. 84.8); the lighter probands (<2,000 grams) 
scored 6.6 IQ points above the controls (91.0 vs. 84.4).,IOOal Because IQ meas­
ured at thirty-six months is typically unstable, follow-up studies are crucial to 
determine if these promising IQ gains in the treated group would persist into
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the school years. The data obtained in the first follow-up, conducted when the 
children were five years of age, show that the apparent initial gain in IQ had 
not been maintained; the intervention group scored no higher than the control 
group.1 '“ h' There was a further follow-up at age eight, but its results have not 
yet been reported."0001

A study of forty-six LBW black and forty-six LBW white children matched 
for gestational age and birth weight (all between 1,000 and 2,500 grams and 
averaging 1,276 grams for blacks and 1,263 grams for whites) showed that when 
the degree of LBW and other IQ-related background variables were controlled, 
the W-B IQ difference, even at three years of age, was nearly the same as that 
found for the general population.1'011 None of the LBW children in these selected 
samples had any chronic illness or neurological abnormality; all were born to 
mothers over eighteen years of age and had parents who were married. The 
black mothers and white mothers were matched for educational level. (Black 
mothers actually had slightly more education than white mothers, although the 
difference was statistically insignificant, t <  1). When the children were tested 
at thirty-three to thirty-four months, the mean Stanford-Binet IQ of the black 
and the white groups was 90 and 104, respectively, a difference of 1.0a. In the 
same study, groups of middle class black and white children of normal birth 
weight and gestational age, matched on maternal education, had a mean Stan- 
ford-Binet IQ of ninety-seven and 111, respectively (a 1.2a difference).

N utrition . A most remarkable study1102a| conducted at Cambridge University 
showed that the average IQ of preterm, LBW babies was strongly influenced by 
whether the babies received mother’s milk or formula while in hospital. The 
probands were 300 babies who weighed under 1,850 grams at birth. While in 
hospital, 107 of the babies received formula, and 193 received mother’s milk. 
The effects of breast feeding per se were ruled out (at least while the babies 
were in hospital), as all of the babies were fed by tube. At 7.5 to eight years of 
age, WISC-R IQs were obtained for all 300 children. Astonishingly, those who 
had received maternal milk outscored those who had been formula-fed by 10.2 
IQ points (103.0 vs. 92.8). The Verbal and Performance scales showed identical 
effects. After a regression analysis that adjusted for confounding factors (SES, 
mother’s age and education, birth weight, gestational age, birth rank, sex, and 
number of days in respirator), the difference between the two groups was still 
a highly significant 8.3 IQ points. Not all of the group who received mother’s 
milk had it exclusively; some received variable proportions of mother’s milk 
and formula. It was therefore possible to perform a critical test of whether the 
effect was genuinely attributable to the difference between mother’s milk and 
formula or was attributable to some other factor. There was in fact a significant 
linear dose-response relationship between the amount of mother’s milk the ba­
bies received and IQ at age 7.5 to eight years. Whether the milk was from the 
baby’s own mother or from donors, it had a beneficial effect on IQ compared 
against the formula. The study did not attempt to determine whether mother’s
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milk has a similarly advantageous effect for babies who are full-term and of 
normal birth weight.

The results, however, would seem to be highly relevant to the IQ of black 
children in contemporary U.S. for two reasons: (1) as was already pointed out, 
black infants are much more frequently of LBW than are those of other racial/ 
ethnic groups, and (2) they are much less frequently breast fed. Surveys of the 
National Center for Health Statistics1102f’1 show that, as of 1987, 61.1 percent of 
non-Hispanic white babies and 25.3 percent of non-Hispanic black babies are 
breast fed. Black women who breast feed also end nursing sooner than do white 
mothers. These data suggest that some part of the average W-B IQ difference 
may be attributable to the combined effects of a high rate of LBW and a low 
frequency of breast feeding. Nationwide in the 1940s and 1950s, breast feeding 
declined markedly to less than 30 percent, as greater numbers of women entered 
the work force. But since the late 1950s there has been an overall upward trend 
in the percentage of babies who are breast fed, now exceeding 60 percent.

The practice of breast feeding itself is positively correlated with SES, maternal 
age and education, and, interestingly, with birth weight. The frequency of breast 
feeding for LBW babies (<2 ,500  grams) is only 38.4 percent as against 56.1 
percent for babies of normal birth weight (>2,500 grams). But as regards mental 
development it is probably the LBW babies that stand to benefit the most from 
mother’s milk. Human milk apparently contains factors that affect nervous sys­
tem development, probably long-chain lipids, hormones, or other nutrients in­
volved in brain growth, that are not present in formulas.

More generally, Eysenck has hypothesized that nutritional deficiencies may 
be major nongenetic cause of the W-B IQ difference and that research should 
be focused on dietary supplements to determine their effect on children’s IQ.no:,al 
He is not referring here to the type of malnutrition resulting from low caloric 
intake and insufficient protein, which is endemic in parts of the Third World 
but rare in the United States. Rather, he is referring to more or less idiosyncratic 
deficiencies associated with the wide range of individual differences in the re­
quirements for certain vitamins and minerals essential for optimal brain devel­
opment and cognitive functions. These individual differences can occur even 
among full siblings reared together and having the same diet. The dietary de­
ficiency in these cases is not manifested by the gross outward signs of malnu­
trition seen in some children of Third World countries, but can only be 
diagnosed by means of blood tests. Dietary deficiencies, mainly in certain min­
erals and trace elements, occur even in some middle-class white families that 
enjoy a normally wholesome diet and show no signs of malnutrition. Blood 
samples were taken from all of the children in such families prior to the sup­
plementation of certain minerals to the diet and later analyzed. They revealed 
that only those children who showed a significant IQ gain (twice the test’s 
standard error of measurement, or nine IQ points) after receiving the supple­
ments for several months previously showed deficiencies of one or more of the 
minerals in their blood. The children for whom the dietary supplement resulted
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in IQ gains were called “ responders.”  The many children who were nonres­
ponders showed little or no blood evidence of a deficiency in the key nutrients. 
Most interesting from a theoretical standpoint is that the IQ gains showed up 
on tests of fluid g (G f), which measures immediate problem-solving ability, but 
failed to do so on tests of crystallized g (Gc), such as general information and 
vocabulary, which measure the past learning that had taken place before dietary 
supplements were begun.110361 Eysenck believes it is more likely that a much 
larger percentage of black children than of white children have a deficiency of 
the nutritional elements that, when supplemented in the diet, produce the ob­
served gain in Gf, which eventually, of course, would also be reflected in Gc 
through the child’s improved learning ability. This promising hypothesis, which 
has not yet been researched with respect to raising black children’s level of g, 
is well worth studying.

D rug A b use during Pregnancy. Many drugs can be more damaging to the 
developing fetus than to an adult, and drug abuse takes a higher toll on the 
mental development of newborns in the underclass than it does in the general 
population. Among all drugs, prenatal exposure to alcohol is the most frequent 
cause of developmental disorders, including varying degrees of mental retar­
dation. Fetal alcohol syndrome (FAS), a severe form of prenatal damage caused 
by the mother’s alcohol intake, is estimated to affect about three per 1,000 live 
births.1104a| The signs of FAS include stunted physical development and char­
acteristic facial features, besides some degree of behavioral impairment— at 
school age about half of such children are diagnosed as mentally retarded or as 
learning disabled. The adverse effect of prenatal exposure to alcohol on the 
infant’s later mental development appears to be a continuous variable; there is 
no safe threshold of maternal alcohol intake below which there is zero risk to 
the fetus. Therefore the U.S. Surgeon General has recommended that women 
not drink at any time during pregnancy. Just how much of the total population 
variance in IQ might be attributed to prenatal alcohol is not known, but in the 
underclass segment of the population its effect, combined with other microen­
vironmental factors that lower IQ, is apt to be considerable.

After alcohol, use of barbiturates, or sedative drugs, by pregnant women is 
the most prevalent source of adverse effects on their children’s IQ. Between 
1950 and 1970, an estimated twenty-two million children were born in the 
United States to women who were taking prescribed barbiturates. Many others, 
without prescription, abused these drugs. Two major studies were conducted in 
Denmark to determine the effect of phenobarbital, a commonly used barbiturate, 
on the adult IQ of men whose mothers had used this drug during pregnancy.1,04bl 
The m en’s IQs were compared with the IQs of controls matched on ten back­
ground variables that are correlated with IQ, such as proband’s age, family SES 
when the probands were infants, parents’ ages, whether the pregnancy was 
“ wanted”  or “ not wanted,”  etc. Further control of background variables was 
achieved statistically by a multiple regression technique. In the first study, IQ 
was measured by the W echsler Adult Intelligence Scale (WAIS), an individually
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administered test; the second study used the Danish Military Draft Board Intel­
ligence Test, a forty-five-minute group test. In both studies the negative effect 
of prenatal phenobarbital on adult IQ, after controlling for background variables, 
was considerable. In the authors’ words: “ The individuals exposed to pheno­
barbital are not mentally retarded nor did they have any obvious physical ab­
normalities. Rather, because of their exposure more than 20 years previously, 
they ultimately test at approximately 0.5 SD or more lower on measured intel­
ligence than otherwise would have been expected.” |l04b' p 15141 Analysis of var­
ious subclasses of the total sample showed that the negative drug exposure effect 
was greater among those from lower SES background, those exposed in the 
third trimester and earlier, and the offspring of an unwanted pregnancy.

AD HOC THEORIES OF THE WHITE-BLACK 10 DIFFERENCE
The totality o f environmental factors now known to affect IQ within either 

the white or the black population taken together cannot account for a larger 
amount of the total variance between groups than does the default hypothesis. 
The total between-populations variance accounted for by empirically demon­
strable environmental factors does not exceed 20 to 30 percent. According to 
the default hypothesis, the remaining variance is attributable to genetic factors. 
But one can still eschew genetic factors and instead hypothesize a second class 
of nongenetic factors to explain the observed differences— factors other than 
those already taken into account as sources of nongenetic variance within groups. 
However, exceptionally powerful effects would have to be attributed to these 
hypothesized nongenetic factors if they are to explain fully the between-groups 
variance that the default hypothesis posits as genetic.

The explanations so far proposed to account for so large a part of the IQ 
variance in strictly nongenetic terms involve subtle factors that seem implausible 
in light of our knowledge of the nature and magnitude of the effects that affect 
IQ. Many researchers in the branches of behavioral science related to this issue, 
as opposed to journalists and commentators, are of the opinion that the W-B 
difference in IQ involves genetic factors. A questionnaire survey11051 conducted 
in 1987 solicited the anonymous opinions of 661 experts, most of them in the 
fields of differential psychology, psychometrics, and behavioral genetics. Here 
is how they responded to the question: “ Which of the following best charac­
terizes your opinion of the heritability of the black-white difference in IQ?”

15% said: The difference is entirely due to environmental variation.
1 % said: The difference is entirely due to genetic variation.
45%  said: The difference is a product of both genetic and environmental variation.
24% said: The data are insufficient to support any reasonable opinion.
14% said: They did not feel qualified to answer the question.

Those behavioral scientists who attribute the difference entirely to the envi­
ronment typically hypothesize factors that are unique to the historical experience
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of blacks in the United States, such as a past history of slavery, minority status, 
caste status, white racism, social prejudice and discrimination, a lowered level 
of aspiration resulting from restricted opportunity, peer pressure against ‘ ‘acting 
white,”  and the like. The obvious difficulty with these variables is that we lack 
independent evidence that they have any effect on g or other mental ability 
factors, although in some cases one can easily imagine how they might adversely 
affect motivation for certain kinds of achievement. But as yet no mechanism 
has been identified that causally links them to g or other psychometric factors. 
There are several other problems with attributing causality to this class of var­
iables:

1. Some of the variables (e.g., a past history of slavery, minority or caste 
status) do not explain the W-B l a  to 1.5a mean difference on psychometric 
tests in places where blacks have never been slaves in a nonblack society, or 
where they have never been a minority population, or where there has not been 
a color line.

2. These theories are made questionable by the empirical findings for other 
racial or ethnic groups that historically have experienced as much discrimination 
as have blacks, in America and other parts of the world, but do not show any 
deficit in mean IQ. Asians (Chinese, Japanese, East Indian) and Jews, for ex­
ample, are minorities (some are physically identifiable) in the United States and 
in other countries, and have often experienced discrimination and even perse­
cution, yet they perform as well or better on g-loaded tests and in g-loaded 
occupations than the majority population of any of the countries in which they 
reside. Social discrimination per se obviously does not cause lower levels of g. 
One might even conclude the opposite, considering the minority subpopulations 
in the United States and elsewhere that show high g and high g-related achieve­
ments, relative to the majority population.

3. The causal variable posited by these theories is unable to explain the de­
tailed empirical findings, such as the large variability in the size of the W-B 
difference on various kinds of psychometric tests. As noted in Chapter 11, most 
of this variability is quite well explained by the modified Spearman hypothesis. 
It states that the size of the W-B difference on various psychometric tests is 
mainly related to the tests’ g loadings, and the difference is increased if the test 
is also loaded on a spatial factor and it is decreased if the test is also loaded on 
a short-term memory factor. It is unlikely that broad social variables would 
produce, within the black and white populations, the ability to rank-order the 
various tests in a battery in terms of their loadings on g and the spatial and 
memory factors and then to distribute their effort on these tests to accord with 
the prediction of the modified Spearman hypothesis. (Even Ph.D. psychologists 
cannot do this.) Such a possibility is simply out of the question for three-year- 
olds, whose performance on a battery of diverse tests has been found to accord 
with Spearman’s hypothesis (see Chapter 11, p. 385). It is hard to even imagine 
a social variable that could cause systematic variation in the size of the W-B 
difference across different tests that is unrelated to the specific informational or
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cultural content of the tests, but is consistently related to the tests’ g loadings 
(which can only be determined by performing a factor analysis).

4. Test scores have the same validity for predicting educational and occu­
pational performance for all American-born, English-speaking subpopulations 
whatever their race or ethnicity. Blacks, on average, do not perform at a higher 
level educationally or on the job, relative to other groups, than is predicted by 
g-Ioaded tests. An additional ad hoc hypothesis is required, namely, that the 
social variables that depress blacks’ test scores must also depress blacks’ per­
formance on a host of nonpsychometric variables to a degree predicted by the 
regression of the nonpsychometric variables on the psychometric variables 
within the white population. This seems highly improbable. In general, the social 
variables hypothesized to explain the lower average IQ of blacks would have 
to simulate consistently all of the effects predicted by the default hypothesis and 
Spearman’s hypothesis. To date, the environmental theories of the W-B IQ dif­
ference put forward have been unable to do this. Moreover, it is difficult or 
impossible to perform an empirical test of their validity.

A theory that seems to have gained favor among some social anthropologists 
is the idea of “ caste status”  put forth by the anthropologist John Ogbu.11061,1 He 
states the key point of his theory as follows: “ The people who have most 
difficulty with IQ tests and other forms of cognitive tasks are involuntary or 
nonimmigrant minorities. This difficulty arises because their cultures are not 
merely different from that of the dominant group but may be in opposition to 
the latter. Therefore, the tests acquire symbolic meanings for these minorities, 
which cause additional but as yet unrecognized problems. It is more difficult for 
them to cross cognitive boundaries.” [l06h' p-3361

Ogbu’s answer to criticism number 2 (above) is to argue that cultural factors 
that depress IQ do so only in the case of involuntary or nonimmigrant minorities 
and their descendants. In the United States this applies only to blacks (who were 
brought to America involuntarily to be sold as slaves) and native Americans 
(who score, on average, intermediate between blacks and whites on tests of fluid 
g). This theory does not account for the relatively high test scores and achieve­
ments of East Indians in Africa, whose ancestors were brought to Africa as 
indentured laborers during the nineteenth century, but Ogbu could reply that the 
indentured Indians were not truly involuntary immigrants. American blacks, in 
Ogbu’s theory, have the status of a caste that is determined by birth and from 
which there is no mobility. Lower-caste status, it is argued, depresses IQ. Ogbu 
cites as evidence the Harijans (untouchables) of India and the Burakumi in Japan 
as examples. (The Burkumi constitute a small subpopulation of Asian origin that 
engages in work the Japanese have traditionally considered undesirable, such as 
tanning leather.) Although it is true that these “ lower-caste”  groups generally 
do have lower test scores and perform less well in school than do higher-status 
groups in India or Japan, the body of psychometric evidence is much less than 
that for American blacks. We know hardly anything regarding the magnitude or
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psychometric nature or the degree of genetic selection for g in the origins of 
these caste-like groups in India and Japan.

Ogbu also argues that conventional IQ tests measure only those types of 
cognitive behavior that are culturally valued by Western middle-class societies, 
and IQ tests therefore inevitably discriminate against minorities within such 
societies. But since such tests have equal predictive validity for blacks and 
whites, this would have to imply that performance on the many practical criteria 
predicted by the tests is also lowered by involuntary but not voluntary minority 
status. According to Ogbu, the “ Western intelligence”  measured by our psy­
chometric tests represents only a narrow set of specialized cognitive abilities 
and skills. These have been selected on the basis of Western values from the 
common species pool of capabilities for adaptation to specific environmental 
circumstances. It logically follows, then, that the g factor and the spatial factor 
themselves represent specialized Western cognitive skills. The question that 
Ogbu neither asks nor answers is why this set of Western-selected abilities has 
not been acquired to the same degree by a population of African descent that 
has been exposed to a Western society for many generations, while first- 
generation immigrants and refugees in America who came from the decidedly 
non-Western Oriental and East Indian cultures soon perform on a par with the 
dominant population of European descent.

A similar view o f racial and ethnic IQ differences has been expressed by the 
economist Thomas Sowell.11071 He does not offer a formal or explanatory theory, 
but rather a broad analogy between American blacks and other ethnic and na­
tional groups that have settled in the United States at different times in the past. 
Sowell points out that many immigrant groups performed poorly on tests at one 
time (usually soon after their arrival in America) and had relatively low edu­
cational standing, which limited their employment to low-paying jobs. The 
somewhat lower test scores of recent immigrants are usually attributable to un­
familiarity with the English language, as evidenced by their relatively superior 
performance on nonverbal tests. Within a single generation, most immigrant 
groups (typically those from Europe or Asia) performed on various intellectual 
criteria at least on a par with the established majority population. Sowell views 
the American black population as a part of this same general phenomenon and 
expects that in due course it, too, will rise to the overall national level. Only 
one generation, he points out, has grown up since inception of the Civil Rights 
movement and the end of de jure segregation.

But Sowell’s analogy between blacks and other immigrant groups seems 
strained when one examines the performance of comparatively recent arrivals 
from Asia. The W-B difference in IQ (as distinguished from educational and 
socioeconomic performance) has not decreased significantly since World W ar I, 
when mental tests were first used on a nationwide scale. On the other hand, the 
children of certain recent refugee and immigrant groups from Asia, despite their 
different language and culture, have scored as high as the native white popu­
lation on nonverbal IQ tests and they often exceed the white average in scho­
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lastic performance.110R) Like Ogbu, Sowell does not deal with the detailed pattern 
of psychometric differences between blacks and whites. He attributes the lower 
black performance on tests involving abstract reasoning ability to poor moti­
vation, quoting a statement by observers that black soldiers tested during World 
War I tended to “ lapse into inattention and almost into sleep” during abstract 
tests.|l07, p 1641 Spearman, to the contrary, concluded on the basis of factor ana­
lyzing more than 100 varied tests that “ abstractness”  is one of the distinguishing 
characteristics of the most highly g-loaded tests.11091

Recently, a clearly and specifically formulated hypothesis, termed stereotype 
threat, has been proposed to explain at least some part of the black shortfall on 
cognitive tests. It should not be classed as a Factor X theory, because specific 
predictions can be logically derived from the hypothesis and tested empirically. 
Its authors have done so, with positive, though somewhat limited, results.1" 01

Stereotype threat is defined as the perceived risk of confirming, as self­
characteristic, a negative stereotype about one’s group. The phenomenon has 
been demonstrated in four independent experiments. Groups of black and white 
undergraduates at Stanford University took mentally demanding verbal tests un­
der preliminary instructions that were specifically intended to elicit stereotype 
threat. This was termed the diagnostic condition, since the instructions empha­
sized that the student’s score (which they would be given) would be a true 
indicator of their verbal ability and of their limitations. Their test performance 
was statistically compared with that of a control group, for whom the prelimi­
nary instructions were specifically intended to minimize stereotype threat by 
making no reference to ability and telling the subjects that the results were being 
used only for research on difficult verbal problems. This was termed the non­
diagnostic condition. Under both conditions, subjects were asked to do their 
best. The theoretically predicted outcome is that the difference in test perform­
ance between the diagnostic and the nondiagnostic conditions will be greater 
for blacks than for whites. With the black and white groups statistically equated 
for SAT scores, the hypothesis was generally borne out in the four studies, 
although the predicted interaction (race X  condition) in two of the experiments 
failed to reach the conventional 5 percent level of confidence.

Standard deviations were not reported for any of the performance measures, 
so the effect size of the stereotype threat cannot be precisely determined. From 
the reported analysis of variance, however, I have estimated the effect size to 
be about 0.3o, on average. Applied to IQ in the general population, this would 
be equivalent to about five IQ points. Clearly, the stereotype threat hypothesis 
should be further studied using samples of blacks and whites that are less highly 
selected for intellectual ability than are the students at Stanford. One wonders 
if stereotype threat affects the IQ scores even of preschool-age children (at age 
three), for whom the W-B difference is about lo . Do children at this age have 
much awareness of stereotypes?

In fact, the phenomenon of stereotype threat can be explained in terms of a 
more general construct, test anxiety, which has been studied since the early days
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LEVEL OF ANXIETY OR DRIVE
F ig u re  1 2 .1 4 . A graphic representation o f the Yerkes-Dodson law, showing that the 
peak task performance (+ )  occurs at different levels of anxiety (or drive) depending on 
task complexity and difficulty.

of psychometrics.1 Test anxiety tends to lower performance levels on tests 
in proportion to the degree of complexity and the amount of mental effort they 
require of the subject. The relatively greater effect of test anxiety in the black 
samples, who had somewhat lower SAT scores, than the white subjects in the 
Stanford experiments constitutes an example o f the Yerkes-Dodson law.|mhl It 
describes the empirically observed nonlinear relationship between three varia­
bles: (1) anxiety (or drive) level, (2) task (or test) complexity and difficulty, and 
(3) level of test performance. According to the Yerkes-Dodson law, the maximal 
test performance occurs at decreasing levels of anxiety as the perceived com­
plexity or difficulty level of the test increases (see Figure 12.14). If, for example, 
two groups, A and B, have the same level of test anxiety, but group A is higher 
than group B in the ability measured by the test (so group B finds the test more 
complex and difficult than does group A), then group B would perform less 
well than group A. The results of the Stanford studies, therefore, can be ex­
plained in terms of the Yerkes-Dodson law, without any need to postulate a 
racial group difference in susceptibility to stereotype threat or even a difference 
in the level of test anxiety. The outcome predicted by the Yerkes-Dodson law 
has been empirically demonstrated in large groups of college students who were 
either relatively high or relatively low in measured cognitive ability; increased 
levels of anxiety adversely affected the intelligence test performance of low- 
ability students (for whom the test was frustratingly difficult) but improved the
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level of performance of high-ability students (who experienced less diffi­
culty).111101

This more general formulation of the stereotype threat hypothesis in terms of 
the Yerkes-Dodson law suggests other experiments for studying the phenomenon 
by experimentally manipulating the level of test difficulty and by equating the 
tests’ difficulty levels for the white and black groups by matching items for 
percent passing the item within each group. Groups of blacks and whites should 
also be matched on true-scores derived from g-loaded tests, since equating the 
groups statistically by means of linear covariance analysis (as was used in the 
Stanford studies) does not adequately take account of the nonlinear relationship 
between anxiety and test performance as a function of difficulty level.

Strong conclusions regarding the stereotype threat hypothesis are unwarranted 
at present, as the total evidence for it is based on fairly small samples of high- 
ability university students, with results of marginal statistical significance. Re­
search should be extended to more representative samples of the black and white 
populations and using standard mental test batteries under normal testing con­
ditions except, of course, for the preliminary instructions needed to manipulate 
the experimental variable (that is, the inducement of stereotype threat). Further, 
by conducting the same type of experiment using exclusively white (or black) 
subjects, divided into lower- and higher-ability groups, it might be shown that 
the phenomenon attributed to stereotype threat has nothing to do with race as 
such, but results from the interaction of ability level with test anxiety as a 
function of test complexity.

In contrast to these various ad hoc hypotheses intended to explain the average 
W-B population difference in cognitive ability, particularly g, the default hy­
pothesis has the attributes of simplicity, internal coherence, and parsimony of 
explanation. Further, it does not violate Occam’s razor by treating one particular 
racial population as a special case that is culturally far more different from any 
other populations. The size of the cultural difference that needs to be hypothe­
sized by a purely environmental theory of the W-B difference is far greater than 
the relatively small genetic difference implied by our evolution from common 
human ancestors.

The default hypothesis explains differences in g between populations in terms 
of quantitative variation in the very same genetic and environmental factors that 
influence the neural substrate of g and cause individual variation within all 
human populations. This hypothesis is consistent with a preponderance of psy­
chometric, behavior-genetic, and evolutionary lines of evidence. And like true 
scientific hypotheses generally, it continually invites empirical refutation. It 
should ultimately be judged on the same basis, so aptly described by the an­
thropologist Owen Lovejoy, for judging the Darwinian theory of human evo­
lution:

Evolutionary scenarios must be evaluated much in the same way that jury members 
must judge a prosecutor’s narrative. Ultimately they must make their judgment 
not on the basis o f any single fact or observation, but on the totality of the available
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evidence. Rarely will any single item of evidence prove pivotal in determining 
whether a prosecutor’s scenario or the defense’s alternative is most likely to be 
correct. Many single details may actually fail to favor one scenario over another. 
The most probable account, instead, is the one which is the most internally con­
sistent— the one in which all the facts mesh together most neatly with one another 
and with the motives in the case. O f paramount importance is the economy o f  
explanation. There are always alternative explanations of any single isolated fact. 
The greater the number of special explanations required in a narrative, however, 
the less probable its accuracy. An effective scenario almost always has a com pel­
ling facility to explain a chain of facts with a minimum o f such special explana­
tions. Instead the pieces o f the puzzle should fall into place.1112p-21

NOTES
1. Rushton, 1989.
2. Jensen, 1994f.
3. The rate of change in the frequency of a particular allele in a population depends 

partly on its relative fitness, or reproductive advantage. It also depends on the amount 
of variation at that gene locus in the population; a rare allele, regardless of its relative 
fitness, spreads slowly at first and then at an accelerating rate. To take an extreme ex­
ample, say that a rare allele occurs with a frequency of only 1 percent in a given pop­
ulation, and this allele enhances fitness by only 1 percent (i.e., those who possess the 
allele have 1 percent more progeny than those who do not possess it). Then, over the 
course o f 1,000 generations, assuming the same reproductive advantage is maintained 
over this period, the percentage of individuals in the population who possess the allele 
will have risen from the original 1 percent up to 99 percent. If a change in the physical 
or social environment for some reason made the same allele disadvantageous in terms 
of fitness, its frequency in the population would gradually decrease, either to zero or to 
its low frequency of occurrence through spontaneous mutation of another allele at the 
same chromosomal locus.

4. One often hears it said that the genetic differences within racial groups (defined 
as statistically different breeding populations) is much greater than the differences be­
tween racial groups. This is true, however, only if one is comparing the range of indi­
vidual differences on a given characteristic (or on a number of characteristics) within 
each population with the range of the differences that exist between the means of each 
of the separate populations on the given characteristic. In fact, if the differences between 
the means of the various populations were not larger than the mean difference between 
individuals within each population, it would be impossible to distinguish different pop­
ulations statistically. Thinking statistically in terms of the analysis of variance, if we 
obtained a very large random sample of the world’s population and computed the total 
variance (i.e., the total sum of squares based on individuals) o f a given genetic character, 
we would find that about 85 percent of the total genetic variance exists within the several 
major racial populations and 15 percent exists between these populations. But when we 
then divide the sum of squares (SS) between populations by its degrees of freedom to 
obtain the mean square (MS) and we do the same for the sum o f squares within popu­
lations, the ratio of the two mean squares, i.e., Between MS/Within MS, (known as the 
variance ratio, or F  ratio, named for its inventor, R. A. Fisher) would be an extremely



Causal Hypotheses 5 1 7

large value and, o f course, would be highly significant statistically, thus confirming the 
population differences as an objective reality.

5. Among the genetically conditioned physical differences in central tendency, nearly 
all attributable to natural selection, that exist between various contemporary breeding pop­
ulations in the world are: pigmentation of skin, hair, and eyes, body size and proportions, 
endocranial capacity, brain size, cephalic index (100 X head-width/head-length), number 
of vertebrae and many other skeletal features, bone density, hair form and distribution, size 
and shape o f genitalia and breasts, testosterone level, various facial features, interpupillary 
distance, visual and auditory acuity, color blindness, myopia (nearsightedness), number 
and shape o f teeth, fissural patterns on the surfaces of teeth, age at eruption of permanent 
teeth, consistency o f ear wax, blood groups, blood pressure, basal metabolic rate, finger and 
palm prints, number and distribution of sweat glands, galvanic skin resistance, body odor, 
body temperature, heat and cold tolerance, length o f gestation period, male/female birth ra­
tio, frequency of dizygotic twin births, degree of physical maturity at birth, physical mat­
uration rate, rate o f development of alpha (brain) waves in infancy, congenital anomalies, 
milk intolerance (after childhood), chronic and genetic diseases, resistance to infectious 
diseases (Baker, 1974; Harrison et al., 1964; Rushton, 1995). Modern medicine has rec­
ognized the importance of racial differences in many physical characteristics and in suscep­
tibilities to various diseases, chronic disorders, birth defects, and the effective dosage for 
specific drugs. There are textbooks that deal entirely with the implications o f racial differ­
ences for medical practice (Lin et al., 1993; Nesse & Williams, 1994; Polednak, 1989). Fo­
rensic pathologists also make extensive use of racial characteristics for identifying skeletal 
remains, body parts, hair, blood stains, etc.

6. Two of the most recent and important studies of genetic distances and human 
evolution are: (a) Cavalli-Sforza et al., 1994; (b) Nei & Roychoudhury, 1993. Although 
these m ajor studies measured genetic distances by slightly different (but highly corre­
lated) quantitative methods based on somewhat different selections of genetic polymor­
phisms. and they did not include all of the same subpopulations, they arc in remarkably 
close agreement on the genetic distances between the several major clusters that form 
what are conventionally regarded as the world’s major racial groups.

7. The genetic distances between the three largest population groupings can be 
represented as a triangle, with the distances between the points directly proportional to 
the genetic distances between the groups, as shown here. (The orientation of the triangle 
is irrelevant and the figure could be rotated so that any group was at the top.)

Caucasoid

Negroid Mongoloid
8. As it is one of the most frequently used methods of multivariate analysis in the 

social sciences, many behavioral scientists are familiar with varimax rotation o f principal 
components and the eigenvalues >  1 rule for determining the number of components to 
be retained for rotation. Therefore, it might be instructive to demonstrate the nonhier- 
archical clustering of population groups by this entirely objective mathematical method.
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To make the presentation of results simpler, instead of using the 42 populations studied 
by Cavali-Sforza et al. (1995), I have used a somewhat different collection of only 26 
populations from around the world that were studied by the population geneticists Nei 
& Roychoudhury (1993), whose article provides the genetic distance matrix among the 
26 populations samples, based on 29 polymorphic genes with 121 alleles. (They calcu­
lated genetic distances by a method different from that used by Cavalli-Sforza et al., but 
the two methods of computing genetic distance from allele frequencies are so highly 
correlated as to be virtually equivalent for most purposes.) As the index of similarity 
between any two populations, 1 used simply the reciprocal o f their genetic distance. 
Although the reciprocals of distances do not form a Euclidian or interval scale, their 
scale property is such as to make for clearer clustering (since that is my purpose here), 
tending to minimize the variance within clusters and maximize variance between clusters. 
As the reciprocals o f distances are not truly correlations (although they have the ap­
pearance o f correlations and therefore allow a principal components analysis), a principal 
components analysis (with varimax rotation) of them can serve no other purpose of a 
principal components analysis than discovering the membership of any clusters that may 
exist in the data. By the eigenvalues >  1 rule, the twenty-six populations yield six 
components for varimax rotation. (Varimax rotation maximizes the variance of the 
squared loadings of each component, thereby revealing the variables that cluster together 
most distinctly.) Table 12.N shows the result. The population clusters are defined by 
their largest loadings (shown in boldface type) on one of the components. A population’s 
proximity to the central tendency of a cluster is related to the size of its loading in that 
cluster. Note that some groups have major and minor loadings on different components, 
which represent not discrete categories, but central tendencies. The six rotated compo­
nents display clusters that can be identified as follows: (1) Mongoloids, (2) Caucasoids, 
(3) South Asians and Pacific Islanders, (4) Negroids, (5) North and South Amerindians 
and Eskimos, (6) aboriginal Australians and Papuan New Guineans. The genetic group­
ings are clearly similar to those obtained in the larger study by Cavalli-Sforza et al. using 
other methods applied to other samples.

9. Gottesman (1968) provides an account of the African origins of the African- 
American population. Dyer (1974) details what is known about the growth of the black 
population in North America since the seventeenth century, the frequency of black-white 
matings, and the changing proportions over time of racially mixed marriages in which 
the grooms were white (the latter with reference to the theoretically possible, but appar­
ently factually negligible, genetic implications o f this proportion for the degree of ad­
mixture o f X-linked characters in American blacks).

10. The two major studies are Reed (1969a) and Chakraborty et al. (1992); these 
articles give references to most o f the scientific literature on this subject.

11. Reed, 1969b.
12. Thompson, 1985, p. 300.
13. Jerison, 1973, 1982; Lynn, 1991b, 1987c.
14. Coren (1994), a psychologist, discusses canine evolution, both natural and arti­

ficial selection, describes a variety of tests of behavioral capacities (“ intelligence” ) of 
dogs, and discusses types of canine “ intelligence.”  He also rates seventy-nine breeds on 
capacity for obedience training and “ working intelligence.”  Coren believes that, much 
as in humans, there is a general factor, as well as a number of specific factors, in dogs’ 
mental abilities and that various breeds differ in both general and specific abilities. His 
book has a bibliography on the psychology and behavioral genetics of dogs.
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Table 12.N
Varimax Rotated Principal Com ponents o f a Genetic Similarity Matrix among 
26 Populations

V a r i m a x  R o t a t e d  C o m p o n e n t s *
P o D u la t io n 1 2 3 4 5 6

Pygmy - - - 6 5 1 - -

N ig e r ia n - - - 734 - -

Ban tu - - - 747 - -

San (Bushman) - - - 4 6 5 - -

Lapp - 5 0 0 - - - -

F in n - 988 - - - -

German - 978 - - - -
E n g l i s h - 9 4 8 - - - -

I t a l i a n - 9 8 9 - - - -

I r a n i a n - 6 3 5 - - - -

N o r t h e r n  I n d i a n - 7 0 4 - - - -

J a p a n e s e 9 3 6 - 2 1 4 - - -
K o rean 959 - 2 2 9 - - -

T i b e t a n 8 5 5 - - - - -

M o n g o l i a n 8 4 2 - 3 5 7 - - -

S o u t h e r n  C h i n e s e 3 3 1 - 7 7 1 - -

T h a i - - 8 1 4 - - -

F i l i p i n o - - 782 - - -
I n d o n e s i a n - - 749 - - -

P o l y n e s i a n - - 5 2 6 - - 2 8 4
M i c r o n e s i a n - - 5 2 1 - - 3 2 8
A u s t r a l i a n  ( a b o r i g i n e s ) - - - - - 706

Papuan (New G u in ean s) - - - - - 7 4 2
N o r t h  A m e r i n d i a n - - - - 8 0 4 -
S o u t h  A m e r i n d i a n - - - - 5 6 3 -
E s k i m o  ___ _ _ _ 7 2 6 _

"Loadings (X 1000); loadings <  200 omitted; loadings >  700 in boldface type.

15. This theme has been interestingly elaborated by Lynn (1991b) and, in the same 
issue, is commented upon from various perspectives by several behavioral scientists, with 
a reply by Lynn.

16. Beals, Smith, & Dodd, 1984. This article is followed (in the same issue) by ten 
commentaries by experts in evolution and physical anthropology. While pointing out 
highly significant average differences in endocranial volume between the world’s major 
populations, Beals et al. add a disclaimer (which nowadays is virtually pro forma doctrine 
for anthropologists) that “ no sufficient evidence has ever been presented that population 
variation in brain size, head size, head shape, or cranial capacity has any connection to 
intelligence”  (p. 324). Some physical anthropologists are perhaps less guarded. Vincent 
Sarich (1995), for instance, while noting the threefold increase in brain size in the course 
of human evolution, has argued:
[L]arge brains could not have evolved unless having large brains increased fitness through minds 
that could do more. . . . individuals with larger brains must have been, on average and in the long
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run, slightly better o ff than those with sm aller brains. How advantaged? Dare one say it? By being 
smarter. W hat else? If variation in brain size mattered in the past, as it must have, then it almost 
certainly still matters. And if you are going to argue that it does not, then you are going to have 
to explain why it does not. . . . The evolutionary perspective demands that there be a relationship— in 
the form of a positive correlation— between brain size and intelligence. That proposition, I would 
argue, is not som ething that need derive from contem porary data (although . . . those data do give 
it strong support). It is what we would expect given our particular evolutionary history; that is, it 
is the evolutionary null hypothesis, and thus, som ething to be disproved. It seems to me that a 
demonstration o f no correlation between brain size and cognitive performance would be about the 
best possible refutation o f the fact o f human evolution, (pp. 87-88)

17. Rushton & Ankney, 1996. The methods for estimating endocranial capacity from 
external head measurements (and the main references to these methods) are explained in 
this article, which also summarizes virtually the total world literature on the correlation 
between cranial capacity and IQ.

18. (a) Ho et al., 1980a, (b) 1980b, (c) 1980b, Table 5, p. 644; 1981.
19. Haug (1987) gives the regression equation for the number of cortical neurons (in 

billions) =  5.583 + 0.006 X brain volume in cm 3. One cm 3 o f brain tissue weighs 1.036 
grams, or only 0.036 grams more than 1 cm 3 of H ,0  at 4°C.

20. Lynn, 1994b; Ankney, 1992.
21. (a) Ankney, 1992. (b) Witelson et al., 1995. Haug (1987) has also found that the 

number of neurons for any given brain size is greater in females than in males.
22. Schoenemann, 1995.
23. (a) Broman et al., 1987; (b) Fisch, Bilek, Horrobin, & Chang, 1976; (c) Hack et 

al., 1991.
24. (a) Rushton & Osborne, 1995; (b) Nikolova, 1994; Bartley et al., 1997.
25. The information in this section is based on studies by Jensen & Johnson, 1994; 

and Jensen, 1994f. Information on the brain’s growth curve from birth to maturity is 
given in Harrison et al., 1964, Chapter 19.

26. The statistical properties, usefulness, and theoretical and practical rationales for 
using group means (instead of individual measurements) as the basis for correlating 
variables have been fully explicated by Lubinski & Humphreys (1996).

27. Jensen (1997b) explains in greater detail the rationale for this division between 
the basic operating mechanisms of the brain and the aspects o f brain functioning that 
most likely cause individual differences in speed and efficiency of information processing 
and largely account for g.

28. (a) Osborne, 1980; Scarr-Salapatek, 1971. After performing a biometrical and 
statistical analysis of the Scarr-Salapatek study, Eaves & Jinks (1972) concluded, “ There 
is certainly no evidence in Scarr-Salapatek’s studies that the proportion of genetic vari­
ation in either verbal or non-verbal IQ depends on race or social class”  (p. 88). (b) 
Jensen, 1973, p. 111. (c) Loehlin et al. (1975, pp. 103-116) provide an excellent discus­
sion o f these and other studies. They conclude: “ (1) Methods of estimating heritability 
that rely primarily on within-family variation (such as comparisons of identical and fra­
ternal twin differences) tend not to show consistent differences in the heritability of IQ 
between U.S. blacks and whites in the populations so far studied. (2) Methods for esti­
mating heritability that rely primarily on between-family variation (such as twin and 
sibling correlations) sometimes suggest lower IQ heritabilities for blacks, although more 
often they do not. When they do, it tends to be in conjunction with reduced total variance 
among blacks”  (p. 115).
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29. The formal relationship between WGH and BGH was first put forth by an animal 

geneticist, Jay Lush (1968), and was later introduced into the discussion of group dif­
ferences in IQ by behavior geneticist John DeFries (1972). Further explanations and 
discussion of its implications are found in Jensen (1973, pp. 125-150) and in Loehlin et 
al. (1975, pp. 290-291).

30. Loehlin et al. (1975, p. 291) estimated the value of rg from a number o f randomly 
selected blood and protein genetic polymorphisms with known allele frequencies in the 
black and white populations. Entering this value of rg = .04 in the equation, with realistic 
values for IQ of rp =  .20 and WGH =  .75, gives BGH =  .125. But of course the random 
sam ple o f genetic polymorphisms on which rg was based were neutral genes, that is, 
genes for which the observed small population differences in allele frequencies would 
largely be a result o f genetic drift and would reflect little if any effects o f natural selec­
tion. The abilities related to IQ, however, like the rapid increase in brain size that took 
place late in hominid evolution, were most probably highly selected in the course of 
human evolution, as described earlier in this chapter. In general, racial populations differ 
more in allele frequencies for adaptive characteristics that have been subject to a high 
degree o f natural selection than they differ in allele frequencies for neutral or “ house­
keeping”  genes. Since the specific genes that affect the development of mental ability 
as reflected by IQ tests are as yet unknown (with the possible exception of one or two 
recently, and tentatively, identified genes; see Plomon & Neiderhiser, 1992; Plomin et 
al., 1994, 1995; Skuder et al., 1995), a direct empirical determination of rg for any aspect 
of mental ability is not possible. Large-scale research aimed at the discovery of the gene 
loci that affect normal variation in human mental ability, however, is well underway, 
and it seems only a matter of time until it will be possible to determine the allelic 
frequencies o f these genes in different populations.

31. The baseline of the normal curve (shown in Figure 12.N) is conventionally scaled 
in o  units (this is also referred to as the normalized z scale). The total area under the

Figure 1 2 .N. The normal curve (standardized to |i  =  0, c  =  1) divided into standard 
deviation units (a), showing proportional areas under the curve within each o  interval. 
The total area under the normal curve asymptotically approaches 1.
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normal curve is set at unity, or one. The mean, median, and mode of the normal curve 
define the zero point on this scale, which divides the total area under the normal curve 
into equal halves, so the probability, p, of z = 0 is Vi, or .50. Positive or negative 
deviations from c  =  0 have lesser probabilities (i.e., p  <  .50). The probability, p, of a 
given deviation, say X a, from zero is defined as the proportion o f the total area under 
the normal curve that lies beyond a cut at X a  (i.e., the total area to the left o f - X a  or 
to the right o f +  X a). The proportional areas under the curve that fall within each of six 
equal intervals on the a  scale are shown; the areas only sum to .9998, because .0002 of 
the total area under the normal curve falls beyond ±  3a.

32. If the genotypic (GD) and the environmental (ED) differences are correlated rGE, 
then the phenotypic difference (PD) is PD =  Jh2PD2 + e2PD2 + 2rGEhePD2, where h2 is 
the heritability and e2 is 1 — h2, the environmentality. Empirical studies have shown that 
the last term in the equation (called the genotype-environment covariance, or CovGE) 
typically accounts for relatively little of the phenotypic variance. The best meta-analysis 
estimate o f CovGE I could obtain from IQ data on MZ and DZ twins was .07 percent 
of the total IQ variance, with 65 percent of the total variance due to the independent 
effect of genes and 28 percent due to the independent effect of environment (Jensen, 
1976). In this case, rGE =  .08. As I explained in that article, the CovGE would have its 
maximum possible value (equal to one-half of the phenotypic variance) when rGE = 1 
and h2 =  e2 = 0.5. For IQ, a number of empirically estimated values of rGE center around 
.20 (Bouchard, 1993, pp. 74-77).

33. Newman et al., 1937. The pair of separated twins who were called Gladys and 
Helen in this famous study of MZ twins reared apart differed by twenty-four IQ points 
(or 1.5a) on the Stanford-Binet Intelligence Scale, which was standardized to a  =  16 
IQ points. (Their adult IQs were ninety-two and 116.) Not only were these twins reared 
in extremely different environments, but by adulthood one twin had not gone beyond 
the third grade, while the other had graduated from college and was a schoolteacher. 
Moreover, these MZ twins had extremely different health histories and also differed 
physically more than is typical for MZ twins (Jensen, 1972). The fact that their finger­
prints differed even more than the average difference between DZ twins indicates that 
something affected the tw ins’ prenatal development during the first trimester, since an 
individual’s fingerprints do not change after that time. MZ twins typically have virtually 
identical fingerprints. The prenatal factor that caused the tw ins’ fingerprints to differ may 
also have contributed to the difference in their mental development.

34. Jensen, 1973, pp. 137-138.
35. Tavris, 1995. This article is one of six in a pro and con (but mostly con) sym­

posium on The Bell Curve by Herrnstein & Murray (1994) that appeared in Skeptic, Vol.
3, No. 3, pp. 58-93. (Volume 3, No. 2, contained an interview with Charles Murray. All 
the articles are at a level suitable for nonspecialists or undergraduate students.)

36. Turkheimer, 1990, 1991.
37. This mathematical concept is fully explained in any statistics textbook that covers 

regression and correlation.
38. The nature o f microenvironmental effects constituting the within-family environ­

ment is fully discussed in Jensen, 1997a. Also see Turkheimer & Gottesman (1991) on 
a closely related topic— the canalization of certain kinds of behavior, including mental 
ability and the high degree of stability o f individual differences throughout the course 
of development.

39. A few pages in books by Jensen (1973, pp. 228-229) and by Loehlin et al. (1975,
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pp. 125-126) deal with black-white interracial marriage. Almost nothing is known about 
the actual IQs of the males and females in interracial matings, except as may be inferred 
approximately from their educational and occupational status. Generally, white brides 
average lower than their black grooms, and black brides average higher than their white 
grooms, which clearly suggests a trade-off between educational and occupational status, 
on the one hand, and the social status commonly associated with race, on the other, at 
least in these cases where the relationship is carried through to marriage. “ M atings” as 
opposed to “ m arriages”  may not be the same.

40. Dolan, 1992; Dolan et al., 1992; Dolan et al., 1994. For a technical explication, 
with examples, of the distinction between the psychometric (also termed the common 
pathway) factor model and the biometric (or independent pathway) factor model referred 
to in the text, see Neale & Cardon, 1992, pp. 253-259.

41. Osborne, 1980. All o f the data were obtained from the appendices of this book.
42. (a) Rowe et al., 1994. (b) Rowe et al., 1995. (c) Rodgers et al., 1994. (d) Rowe 

& Cleveland, 1996.
43. Bouchard & McGue, 1981.
44. Psychometricians will notice that the correlation coefficient in this formula for 

the standard error of estimate is not squared, as it usually is in calculating the SEcst. The 
squared correlation indicates the proportion of variance in the predicted variable ac­
counted for by its linear regression on the predictor variable. The genetic correlation 
between relatives already is a variance, so it need not be squared in the formula given 
here. A genetic correlation can be defined as the square of the correlation between gen­
otypic and phenotypic values. For further explanation of genetic correlations, see Jensen, 
1971c.

45. There should be no misunderstanding here of the fact that the genetic correlations 
between relatives o f varying degrees of kinship, though based on genetic theory, are 
among the most solidly established and universally accepted parameters of quantitative, 
population, and behavioral genetics. The theoretical basis of this knowledge of genetic 
kinship correlations, which is fundamental in every genetics textbook, was originally 
worked out by Sir Ronald A. Fisher, in 1918, in a paper titled “ The Correlation between 
Relatives on the Supposition of Mendelian Inheritance.”  It has become one of the two 
or three most famous and frequently cited papers in the history of genetics.

46. In terms of purely statistical prediction in a heterogeneous sample, the accuracy 
is improved by including in the prediction equation the mean of the particular group 
from which an individual was selected, along with that individual’s own score. This fact 
represents the same phenomenon as that of Galton’s “ law”  of regression to the mean. 
For example, if we use an individual’s SAT score to predict his or her college freshman 
grade-point average in a given college, we can slightly improve, on average , the accuracy 
of the prediction by also taking account of the mean SAT score of the high school that 
the student attended. This may seem mysterious, but all it means is that the test (SAT) 
does not measure everything that is relevant to success in college (if it did, it would be 
a perfect predictor) and that the individual’s background (e.g., characteristics of the high 
school attended) provides additional information about certain characteristics of that in­
dividual that are not measured by his or her own test score but which are relevant to 
college performance. Similarly, if  in a heterogeneous population we use the parent’s IQ 
to predict the child’s IQ, we can improve the prediction by including the mean of which­
ever subpopulation the child’s parent was selected from. Including the different mean 
IQs of any  (or all) of the subpopulations (e.g., racial, regional, religious, occupational,



524 The g  Factor
social class, etc.) that include the parent will, on average, improve prediction of the 
offspring’s IQ.

47. Paul (1980), in a meta-analysis of the world literature published between 1917 
and 1980 on sibling correlations from sixty-three independent samples totaling more than 
27,000 sibling pairs, found an average r =  + .49. The later compilation of kinship cor­
relations by Bouchard & M cGue (1981) based on sixty-nine independent correlations 
totaling over 26,000 sibling pairs produced a weighted mean correlation of +.47.

48. Jensen, 1973, pp. 107-119.
49. In attempting to match pairs of individuals on whatever ability or trait is meas­

ured by a test, more accurate matching is obtained by matching individuals on their 
estimated true-scores than on their actual obtained scores. An individual’s true-score, XT, 
is a statistical regression estimate of the score the individual would have obtained if the 
test scores had no error of measurement, that is, perfect reliability. The true-score is 
calculated from the individual’s obtained score, XG, the mean of the group from which 
the individual was selected, X, and the empirically known reliability of the test or meas­
uring instrument, rxx. Thus, X , =  rxx(X0 -  X) + X.

50. Detailed descriptions of all of these tests are in Jensen, 1973, pp. 121-124.
51. Scarr & Weinberg, 1976; Weinberg, Scarr, & Waldman, 1992. The first paper 

was followed by three critiques and a rebuttal (in American Psychologist, 32, 1977, pp. 
677-83). My own critique of the first paper is in Jensen, 1981c, in which I argued that 
various selection factors probably biased the sampled adoptees’ IQs upward to some 
extent.

52. An abbreviated version of the WAIS was used, comprising only four subtests 
(Vocabulary, Arithmetic, Block Design, and Picture Arrangement) the combined score 
on which correlates .90 with the Full Scale IQ based on all o f the eleven WAIS subtests.

53. Scarr & Weinberg, 1978.
54. W illerman, Loehlin, & Horn, 1990.
55. Turkheimer, 1986.
56. Capron & Duyme, 1989. Fisch, Bilek, Deinard, & Chang, 1976. The method of 

correlated vectors was applied to the excellent adoption data in the study by Capron and 
Duyme (1989, 1996) and showed that the g loadings of the various W echsler subtests 
reflect the degree of resemblance between adoptees and the socioeconomic status (SES) 
of their biological parents (hence a genetic effect) more strongly than they reflect the 
SES of their adoptive parents (an environmental effect). The environmental effect of the 
adoptive environment was not significantly reflected in the adoptees’ mean g factor 
scores, but the SES of the adoptees’ biological parents was very significantly reflected 
in the adoptees’ mean g factor scores (Jensen, 1998). It was also noted that the relative 
effects o f the adoptees’ biological background and their adoptive environmental back­
ground on the WISC-R subtests scores are significantly correlated with the magnitude of 
white-black differences on these subtests, consistent with the hypothesis of genetic (and/ 
or prenatal environmental) causation of the mean W-B difference in g.

57. Clark & Hanisee, 1982; Frydman & Lynn, 1989; Winick, et al., 1975.
58. Fisch, Bilek, Deinard, & Chang, 1976.
59. The authors reported a multiple correlation (R) of the ten environmental variables 

with IQ of .41 and of the two biological variables with IQ of .40. (The two sets of 
variables combined give a R with IQ of .48; the unbiased R  is .35.) A direct comparison 
o f two raw multiple correlations, when each is based on a different number o f inde­
pendent variables, is not appropriate, because the value of R is partly a function of the
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number of independent variables included in the regression equation. There is a well 
known standard correction for this source of bias in the R , often referred to as the 
“ shrinkage”  formula. The raw or “ unshrunken”  value of R  applies only to the particular 
subject sample on which is was based; the shrunken R estimates the population value of 
the correlation. As the unbiased (or shrunken) Rs should have been applied in this study, 
I have given these values in the text. Although the same point was made by all three of 
the critics of the 1976 study (American Psychologist, 1977, 32, 677-681), the “ unshrun­
ken”  values were also used in the 1986 follow-up (Weinberg et al., 1992). Also, as 
pointed out by the critics of the 1976 study, the two-step hierarchical regression analysis 
(used in both studies) is unable to disentangle the confounded effects of the adoptive 
variables from the genetic variables. This is mainly because, in this data set, the race of 
the adoptees’ mothers is so confounded with the age of adoption that these variables 
cannot be meaningfully assigned to distinct categories labeled “ genetic”  and “ environ­
m ental.”  Thus each of these variables acts more or less as a proxy for the other in the 
prediction of the adoptees’ IQs. The authors note, “ Biological mothers’ race remained 
the best single predictor of adopted child 's IQ when other variables were controlled” 
(W einberg et al., 1992, p. 132) and then suggest that their results may be due to unmea­
sured social variables that are correlated with the mothers’ race rather than a racially 
genetic effect.

60. (a) Levin, 1994, (b) Lynn. 1994a. (c) Waldman et al. (1994) reply to Levin and 
Lynn. Their footnote 4 (p. 37) criticizing Levin’s estimates of the between-groups heri­
tability (BGH) o f the mean IQ difference between blacks and whites is itself incorrect 
and fails to identify the actual errors in Levin’s estimates of BGH. In his first estimate, 
for example, on the assumption that the BB adoptees (whose IQs averaged 89.4) were 
representative of the U.S. black population (with mean IQ =  85), Levin calculated the 
effect of the superior adoptive environment on IQ as (89.4 -  85)/15 0.3a. That is, 
the adopted BB group presumably scored 0 .3c  higher in IQ than if they had been reared 
in the average black environment. Levin reasoned that if 0 .3 a  of the average W-B IQ 
difference o f l a  is environmental, l a  -  ,3 a  =  .7 a  o f the difference must be genetic. 
He then squared this genetic difference to determine the BGH, i.e., ,72 »  .50. But if the 
environmental proportion o f the phenotypic difference is e, then the BGH is not (1 -  
e)2, as Levin calculated, but 1 — e2, which in this case is 1 — ,32 =  1 — .09 =  .91. For 
the same reason, Levin’s (p. 17) three other estimates of BGH (.66, .70, .59) are similarly 
off the mark (being .97, .98, and .86, respectively). But even if corrected, the estimates 
o f BGH are suspect, as they are based on certain improbable assumptions. One estimate, 
for example, is derived from the average IQ of the biological offspring of the white 
adoptive parents. Levin implicitly assumed that the difference of nine IQ points between 
the average IQ (109) of the white biological offspring of the adoptive parents and the 
white population’s average IQ (100) is entirely the result of the superior home environ­
ment provided by the adoptive parents, thus neglecting any effect of the genetic corre­
lation between parents’ IQ and offsprings’ IQ.

61. (a) Reed, 1971; (b) Reed, 1973.
62. Loehlin, Vandenberg & Osborne, 1973.
63. Scarr et al., 1977.
64. (a) M acLean et al., 1974. In this study, the diastolic blood pressure (DBP) of a 

large sample of American blacks was regressed on their percentage of Caucasian admix­
ture (estimated from blood groups), and showed at a high level o f statistical significance 
that the average B-W  difference in DBP is negatively correlated with the blacks’ per­



526 The #  Factor
centage o f Caucasian admixture. Given the obvious parallels between blood pressure and 
IQ, the methodology of the study by MacLean et al. is a model for applying exactly the 
same method for answering the same question for IQ (Reed, 1997). Both BP and IQ are 
continuous or polygenic traits, with similar reliability of measurement and similar heri­
tability. Therefore, Reed (1997) has commented on the applicability o f the methodology 
used by M acLean et al. for the study of racial differences in IQ. He argued that if this 
method had been applied in the Scarr et al. (1977) blood-group study, it would have 
been more apt to reveal a significant relationship between the degree of African/Causasian 
admixture and IQ than the “ odds” method used in that study, (b) In preparing a detailed 
commentary (Jensen, 1981c, pp. 519-522) on the Scarr et al. study, I asked a professor 
o f quantitative genetics at the University of California, Berkeley, to calculate the expected 
correlation between the “ odds”  index of African ancestry and mental test scores, assum­
ing that 62.5 percent o f the mean W-B difference in scores was genetic (i.e., the midpoint 
of the interval hypothesized in Jensen, 1973, p. 363). Given the reliability of the test 
scores (.90), the reliability of the blood-group index of African ancestry (.49), and the 
restriction o f range o f the ancestral index, the expected correlation is - .0 3 . This value 
is not appreciably different from the reported correlation ( - .0 5 )  o f the ancestral odds 
index with the first principal component of the four most g-loaded tests used in the study. 
In her reply to my critique (in the same volume, pp. 519-522), Scarr disagrees with my 
conclusion that the study lacks the power to reject either the null or a reasonable alter­
native hypothesis, but provides no argument to disprove this conclusion. Since IQ is even 
more heritable than blood pressure (see Note 64a), then if the same methodology and 
sample size as were used in the blood pressure study by MacLean et al. (instead o f the 
statistically weaker method used in the Scarr et al. study), a more convincing test o f the 
genetic hypothesis should have been possible. However, there is little or no assortative 
mating for BP (within racial groups), while for psychometric g there is a higher degree 
of assortative mating than for any other human metric trait, either physical or mental. 
This factor therefore introduces a degree of uncertainty regarding the average magnitude 
of genetic difference in IQ between the African and white ancestry of the hybrid probands 
for any present-day study. Therefore, any study, however methodologically sound, would 
be unlikely to yield a compelling test of the critical hypothesis. Until the technical crit­
icisms of the Scarr et al. study are adequately addressed, this study cannot be offered in 
good faith as direct evidence that the mean W-B IQ difference involves no genetic 
component.

65. Type II error also occurs in other published studies of racial differences. For 
example, see Jensen, 1985e.

66. Keith & Herring, 1991.
67. A review of these studies and complete references to them are provided in Jensen, 

1973, pp. 219-230.
68. Eyferth, 1959, 1961; Eyferth et al., 1960. This study is described in some detail 

by Loehlin et al., 1975. Flynn (1980, pp. 219-261) offers a quite detailed summary and 
analysis of the study in support of his view that it probably constitutes the strongest of 
what he terms “ direct”  evidence against the hypothesis that the mean W-B IQ difference 
has a substantial genetic component.

69. Nagoshi & Johnson (1986) reported g factor scores averaging ,26a higher for 
interracial European-Asian offspring than for the offspring o f same-race parents who 
were matched with the interracial parents in education and SES. Heterosis was greater



Causal Hypotheses 527
on the more highly g-loaded tests; the vector o f heterotic effects on fifteen tests correlated 
+  .44 (p =  .10) with the vector of the tests’ g loadings.

70. Vining, 1982.
71. A weighted mean is just an arithmetic mean in which different values (i.e., 

weights) are given to each of the N  elements to be averaged. The weighted mean is 
calculated by (1) multiplying each element (X) by its assigned weight (w), (2) summing 
all the products, and (3) dividing their total by the sum of the weights. Symbolically, 
the simple mean is x  =  ZX//V; the weighted mean is x ,  =  Z(X  X w )/2> , where X 
means “ the sum of.”

72. (a) Herrnstein & Murray, 1994, pp. 355-356. (b) These authors calculated the 
mean W-B IQ difference for the mothers and the children in several different ways (see 
their Note 46, p. 737), excluding or including different age groups; the part of the mean 
W-B difference attributable to the dysgenic effect varied across these estimates from 1.9 
to 6.1 IQ points, with a mean of 4.1 IQ points.

73. (a) D. G. Freedman (1979), who is probably the leading contemporary researcher 
on this topic, has reported studies o f the behavior o f white, Asian, black, Amerindian, 
African, and Australian aborigine infants at various ages from the day of birth and into 
early childhood; he interprets many of his findings in an evolutionary context, (b) Nearly 
all of the research on this subject before 1972 has been cited and summarized in Jensen, 
1973, Chapter 16.

74. Post (1982) reviews most of the literature on population differences in visual 
defects, including myopia.

75. This literature has been reviewed by Jensen & Sinha, 1993, pp. 212-217.
76. Cohn et al., 1988.
77. Spuhler & Lindzey. 1967.
78. Skuder et al., 1995; Plomin et al., 1995.
79. The theory and empirical evidence for the microenvironmental component of IQ 

variance are spelled out in Jensen, 1997a.
80. Selected groups can be literally matched, person-by-person, on the measure of 

SES, thereby making the frequency distributions perfectly equal. Or groups can be 
equated statistically by regressing the variable of primary interest (say, IQ) on the meas­
ure of SES, yielding what are called SES-regressed IQ scores. Another method is to 
express the group difference in IQ as a point-biserial correlation and then calculate the 
partial correlation between race and IQ with the effect of SES removed. Values of the 
point-biserial correlation smaller than 0.60 have a virtually linear relationship to the size 
of the mean group difference. (Formulas relating these statistics are given in Jensen, 
1980a, p. 121.)

81. (a) Jensen & Reynolds, 1982; (b) Reynolds & Jensen, 1983.
82. Humphreys et al., 1977.
83. Grissm er et al., 1994. This is the acclaimed RAND study of changes in student 

performance over the course of twenty-five years. The regression analyses referred to are 
fully described on pages 57-63.

84. (a) Jensen, 1974b. (b) Jensen, 1977.
85. (a) Jensen, 1971b. (b) Strauch, 1977. (c) Roberts, 1971.
86. Scholastic achievement batteries (California Achievement Test and Stanford 

Achievement Test), however, showed considerably larger F-M differences for blacks than
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for whites. Blacks sam pled in the Southeastern states showed the largest sex difference 
in scholastic achievement (0 .24a overall); the sex difference increased with grade level 
from 0.01 in grade one to 0 .50a in grade six.

87. The results of this interaction analysis of the raw score data in Roberts (1971) 
are as follows, where the WISC-R subscales are V =  Vocabulary, BD =  Block Design. 
The raw score means are in boldface, the standard deviations are in parentheses, and the 
group differences are given in a  units. Note that (1) the sex difference is greater for 
whites than for blacks and that (2) black males perform slightly better than black females 
on both Vocabulary and Block Design. Both findings are opposite to the expectation of 
the race X sex X ability interaction hypothesis.

M-F Sex
Male Female Difference

White V 27.5 (10.3) V 25.7 (9.8) V: 0.18a
BD 14.3 ( 11.1) BD 13.0 (10.4) BD: 0.12a

Black V 19.8 (8.6) V 18.9 (8.1) V: 0.1 la
BD 7.1 (6.72) BD 6.7 (5.6) BD: 0.06a

W-B Race V 0.81(7 V 0.76a
Difference BD 0.78a BD 0.76a

88. Jensen & Johnson (1994), Table 5 (p. 318), gives the means and SDs of the four 
race X sex groups used to evaluate the interaction hypothesis at ages four and seven years.

89. This massive study is summarized by Broman et al., 1975.
90. M ultiple regression analysis is a statistical procedure in which the predictor var­

iables (usually termed independent variables, e.g., mother’s age, baby’s birth weight) are 
entered in the order determined by the amount of variance they account for (indepen­
dently of all the other variables) in the predicted variable (termed the dependent variable, 
e.g., IQ). Beginning with whatever independent variable accounts for the most variance 
in the dependent variable, the second independent variable entered is the one that ac­
counts for the next largest proportion of the variance that has not already been accounted 
for by the first; the third variable entered is the one that accounts for the most variance 
that has not been accounted for by the first and the second variable, and so on— until 
the proportion of variance accounted for by the next variable entered is too small to be 
statistically significant (at some specified level of significance, such as p <  .05), at which 
point the analysis ends. The final result of this procedure is the squared multiple corre­
lation (R2) between the statistically selected set of independent variables and the de­
pendent variable. R2 is defined as the proportion of variance in the dependent variable 
that is accounted for by the set o f independent variables.

The independent variables can also be entered stepwise in some fo rced  order that the 
investigator may regard as most appropriate for examining a particular hypothesis. For 
example, in the Collaborative Perinatal Project, the independent variables were entered 
in three stages: (1) the prenatal variables, (2) the prenatal and neonatal variables together, 
and (3) the prenatal, neonatal, infancy, and childhood variables together. This permitted 
assessment of how much the set of variables measured at different stages of the probands’ 
developm ent predicted the total variance in their IQs at age four.

91. Statistics on m other’s age (in years) in the study sample:
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Group N Mean SD Range
White 12,210 24.74 6.04 13—47
Black 14,550 23.67 6.42 12-47

Although the mean age of mothers differs by only 1.07 years, the percentage of mothers 
under twenty years of age was 28.8% for blacks, 17.5% for whites.

92. O f the fifty variables that were significantly [p <  .001) correlated with IQ in 
both the black and white samples, only one variable had correlations with opposite signs. 
The variable “ Cigarettes smoked per day during pregnancy”  was correlated with IQ 
- .0 8  for whites and + .04  for blacks (Broman et al., 1975, p. 280). This variable did not 
enter into any of the multiple regression analyses, as it made no significant independent 
contribution to the prediction of proband IQ. This is probably because maternal smoking 
habits are highly correlated with demographic, socioeconomic, and probably genetic var­
iables that are correlated with IQ. The earlier entrance o f these variables into the regres­
sion procedure left only a statistically insignificant proportion of the IQ variance to be 
explained by maternal smoking.

93. National Center for Health Statistics: Vital Statistics of the United States (1988). 
Characteristics o f American Indian and Alaska native births: United States, Monthly Vital 
Statistics Report, 36, No. 3, Supplement, 1984.

94. Scientific American, April 1996, p. 25.
95. Naylor & M yrianthopoulos, 1967.
96. Herrnstein & Murray, 1994, figures on pp. 215 and 334.
97. Schoendorf et al., 1992.
98. Rushton (1995, pp. 150-152) points out consistent racial differences in LBW and 

mortality rates, not only for infants but throughout the life span, with Orientals showing 
the lowest rates, blacks the highest, and whites intermediate. He finds that this rank order 
holds up internationally wherever mortality rate statistics are available. Rushton sees the 
mortality data as part of a much broader evolutionary phenomenon that places whites 
intermediate between Orientals and blacks (of African origin) on some sixty physical 
and behavioral traits. His controversial theory explains these phenomena in terms of a 
sociobiological hypothesis that posits evolved differences in reproductive strategies.

99. Dr. Jam es Collins, a researcher on LBW at Northwestern University, is quoted 
in the New York Times (June 4, 1992): “ It’s coming down to the fact that we are left 
with either it’s genetic or it’s some stress related to racism. At this point, there is no 
data to completely disprove either one.”  Another researcher, Dr. Paul Wise of Harvard 
Medical School, is quoted in the same article: “ Clearly a major portion is racism. But 
it’s difficult as a scientist to begin to determine what specific elements in racism are 
being expressed in infant mortality rates.”

100. (a) The Infant Health and Development Program (1990). Enhancing the outcomes 
of low-birth-weight, premature infants: A multisite, randomized trial. Journal o f  the 
American M edical Association, 263, 3035-3042. (b) Brooks-Gunn et al., 1994. (c) Bau- 
meister & Bacharach (1996) provide a comprehensive bibliography on this project and 
a trenchant critique of it, in which they conclude, “ The bottom line is that it is unclear 
that there was a meaningful intervention effect at 3 years, much less at 5 years. Claims 
to have prevented mental retardation were decidely premature, turning out to be clearly 
erroneous”  (p. 97).

101. M onde & Fagan, 1988.
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102. (a) Lucas et al., 1992. (b) Ryan et al., 1991. Leary, 1988.
103. (a) Eysenck, 1991. (b) Eysenck, 1995; Eysenck & Schoenthaler, 1997.
104. (a) Olson (1994) provides a review and extensive bibliography on the psycho­

logical effects of fetal alcohol syndrome, (b) Reinisch et al., 1995.
105. Snyderman & Rothman, 1988, pp. 128-130, 294.
106. (a) Ogbu (1978) is the most comprehensive presentation of this view, (b) Ogbu 

(1994) summarizes his views on cultural determinants of intelligence differences.
107. Sowell, 1981, 1994; Chapter 6 specifically deals with race and mental ability.
108. The conspicuous success of Asian immigrants in intellectual pursuits in America 

is extensively documented in P. E. Vernon (1982), Flynn (1991), Caplan et al. (1992).
109. Spearman & Jones, 1950, p. 72.
110. Steele & Aronson, 1995; Steele, 1997.
111. (a) Spielberger & Sydeman (1994) provide a review and bibliography of research 

on test anxiety. See also Jensen, 1980a, pp. 615-616. (b) Yerkes & Dodson, 1908. (c) 
Spielberger, 1958.

112. Lovejoy, 1993.



Chapter 13
Sex Differences in g

Past studies of a sex difference in general ability have often been 
confounded by improper definitions and measurements of “ general 
ability”  based on simple summation of subtest scores from a variety 
of batteries that differ in their group factors, by the use of unrepre­
sentative groups selected from limited segments of the normal dis­
tribution of abilities, and by the interaction of sex differences with 
age-group differences in subtest performance. These conditions often 
yield a mean sex difference in the total score, but such results, in 
principle, are actually arbitrary, of limited generality, and are 
therefore of little scientific interest. The observed differences are 
typically small, inconsistent in direction across different batteries, 
and, in above-average samples, usually favor males.

In this chapter sex differences are specifically examined in terms 
of their loadings on the g factor for a number of test batteries ad­
ministered to representative population samples. When the sex dif­
ferences (expressed as a point-biserial correlation between sex and 
scores on each of a number of subtests) were included in the cor­
relation matrix along with the various subtests and the correlation 
matrix was subjected to a common factor analysis, sex had negli­
gible and inconsequential loading on the g factor, averaging about 
.01 over five test batteries. Applying the method of correlated vec­
tors to these data shows that the magnitude of the sex difference on 
various subtests is unrelated to the tests’ g loadings. Also, the male/ 
female variance ratio on diverse subtests (generally indicating 
greater male variability in scores) is unrelated to the subtests’ g 
loadings. Although no evidence was found for sex differences in the 
mean level of g or in the variability of g, there is clear evidence of 
marked sex differences in certain group factors and in test specific-
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ity. Males, on average, excel on some factors; females on others.
The largest and most consistent sex difference is found on a spatial- 
visualization factor that has its major factor loadings on tests re­
quiring the mental rotation or manipulation of figures in an 
imaginary three-dimensional space. The difference is in favor of 
males and within each sex is related to testosterone level. But the 
best available evidence fails to show a sex difference in g.

Research on sex1 differences in mental abilities has generated hundreds of 
articles in the psychological literature, with the number of studies and articles 
increasing at an accelerating rate in the last decade. As there now exist many 
general reviews of this literature,121 I will focus here on what has proved to be 
the most problematic question in this field: whether, on average, males and 
females differ in g.

It is noteworthy that this question, which is technically the most difficult to 
answer, has been the least investigated, the least written about, and, indeed, even 
the least often asked.

The vast majority of studies have looked at sex differences in more specialized 
abilities, such as can be subsumed under the labels of certain well-established 
primary (first-order) or group factors in the psychometric domain. In the three- 
stratum hierarchy of ability factors, sex differences also appear at the second 
stratum.

The differences observed for specific tests and for first-order and second-order 
factors are now well established by countless studies. They constitute an em­
pirical fact and the frontier of research now lies in discovering the causes of the 
clearly identified cognitive differences between the sexes. However, a brief ex­
amination of these first-order psychometric differences is necessary in order to 
understand the problem of determining whether the sexes differ in g.

SEX D IFFEREN C ES IN SPECIFIC T E S T S  AND IN FIRST-O RD ER  
FACTORS

Neither Binet, in the development of his test, nor Terman, in creating the 
American version and the initial standardization of Binet’s test (known as the 
Stanford-Binet), took account of sex differences. Because a sex difference in 
the overall test scores was of negligible size (although a minority of the indi­
vidual items showed sex differences, some favoring girls and others favoring 
boys, and these differences at the item level largely averaged out in the com­
posite score), it was assumed that the sexes did not differ significantly in what 
the test as a whole was intended to measure, namely, general intelligence. 
Therefore, in all subsequent revisions of the Stanford-Binet (including the latest 
revision, the Stanford-Binet IV) any items that showed exceptionally large and 
statistically significant sex differences were eliminated in order to counterbal­
ance the sex differences for the remaining items. This counterbalancing is pos­
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sible, o f course, only if roughly equal numbers of sexually discriminating items 
favor each sex, and these discriminating items must be found throughout the 
range of item difficulty. Given these built-in features, obviously, the Stanford- 
Binet scale is hardly a suitable research instrument for studying sex differences. 
The negligible sex difference in Stanford-Binet IQ could be just an artifact of 
item selection.

A number of other standardized tests were similarly designed to minimize sex 
differences, the best known being the W echsler Intelligence Scales. Because the 
W echsler test consists of a dozen distinctive subscales, half of them verbal and 
half nonverbal (or performance), it is not easy, or perhaps not even possible, to 
equate the sexes on each of the subscales. These tap not only g, but also certain 
first-order factors (particularly verbal, spatial, and short-term memory). If the 
sexes actually differ on subtests that are aggregations of items that mainly reflect 
different first-order factors, the overall difference on a given subtest cannot be 
eliminated by item selection and still be differentiated factorially from the other 
subtests in the battery. This is in fact the case with the Wechsler scales. Even 
though the few most sexually discriminating items have been eliminated from 
each subtest, males and females still differ significantly on the various subtests. 
Females slightly but significantly exceed males on some verbal tests and on 
short-term memory; males exceed females on some of the performance tests, 
particular those calling for spatial visualization. The fact that these differences 
largely balance out in the overall IQ score could be a result of selection of the 
types of subscales used in the Wechsler, whether intentional or inadvertent. So 
the W echsler IQ per se permits no conclusion about a sex difference in intelli­
gence. Because sex differences were taken into account in the construction of 
the W echsler scales, we can infer sex differences in the special abilities meas­
ured separately by each of the subtests but cannot convincingly estimate their 
magnitudes. For that we must turn to tests that were constructed entirely without 
reference to sex.

In these studies the sex difference is typically measured in terms of standard 
deviation units, termed the “ effect size”  or the d  statistic. The value d  is defined 
as the quantity male mean minus female mean divided by the average within- 
group standard deviation, i.e., d  =  (XM -  XF)/a.

V isual-Spatia l A b ilities. These abilities favor males and have the largest and 
most consistent sex differences of any psychometric abilities. The factor analysis 
of various kinds of tests of visual-spatial abilities reveals about ten distinct 
subfactors.1,1 All of these analyses show a sex difference favoring males, but 
the largest difference is on tests that require visualizing 2-dimensional or 3- 
dimensional figures that have to be rotated or manipulated mentally in 3- 
dimensional space. For example, the testee must determine which of the 
following four figures on the right are the same as the figure on the left flipped 
over and rotated rather than merely rotated in its own plane? (Answer: b 
and c.)
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It is important to note that not every test of figural material involves the spatial 
ability factor. Raven’s Progressive Matrices, for example, does not qualify as a 
spatial test. This is shown by the fact that when the Raven is factor-analyzed 
among a variety of tests including several tests that define a spatial factor, it 
does not significantly load on the spatial factor. The defining characteristic for 
spatial problems is that, in order to obtain the correct solution, the subject must 
visualize and manipulate the figural material mentally as if it were an object in 
three-dimensional space. Men, on average, excel women in this type of per­
formance. Meta-analyses of the sex difference on various composites of spatial- 
visualization tests yield average d  values in the range of .30 to.50 for the general 
population.[2c,d'i'41

The only sex differences favoring males that are larger than this do not in­
volve broad factors as such, but occur on tests in which spatial ability is com­
bined with types of specific knowledge content with which males are typically 
more familiar (such as information about tools, auto mechanics, and electronics). 
Tests involving such knowledge were developed to measure vocational aptitudes 
for selecting individuals, usually men, for certain skilled jobs or job training. 
On some of these tests males exceed females by a d  of about 1.0 ± .3 . Such 
large sex differences occur only on tests that reflect specific achievement rather 
than the broad abilities that emerge at the second order in factor analyses.

Since the sex difference in spatial ability is ubiquitous throughout the human 
species (and is even found in other mammalian species), the consensus of expert 
opinion today doubts that the phenomenon is explainable purely in terms of 
environmental or cultural factors. The sex difference in spatial ability appears 
to be a sex-limited trait, which means that the genetic basis of individual dif­
ferences in the trait is the same for both sexes, but that some other factor that 
differs between the sexes has the effect of limiting the expression of the trait in 
one sex. The best present evidence is that this additional factor involves the 
individual’s estrogen/testosterone balance, which of course differs quite mark­
edly in men and women.151 Within each sex there is a nonlinear (inverted-U) 
relationship between an individual’s position on the estrogen/testosterone con­
tinuum and the individual’s level of spatial ability, with the optimal level of 
testosterone above the female mean and below the male mean. Generally, fe­
males with markedly above-average testosterone levels (for females) and males 
with below-average levels of testosterone (for males) tend to have higher levels 
of spatial ability, relative to the average spatial ability for their own sex. Other
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hypotheses based on sexual dimorphism in certain brain structures (particularly 
the corpus callosum) and sexual differences in the development of hemispheric 
dominance are also being considered, as is the evolutionary basis of these dif­
ferences.161

M ath em atical R easoning A bility . Because mathematical or quantitative rea­
soning is a prominent feature of many scholastic and employment aptitude tests, 
including the most widely used of all such tests (the SAT), the repeated finding 
of a rather marked sex difference in this aptitude has given rise to a great amount 
o f research. In recent years, this topic has even become a prominent research 
specialty o f behavioral scientists.171

The sex difference favoring males does not include ability in arithmetic cal­
culation, in which females slightly excel males, but exists for quantitative 
“ thought problem s” and especially for the more advanced and complex aspects 
of mathematics taught in high school and college. The sex difference in math 
ability in the general population is not large, with d  values mostly between .10 
and .25 for various tests given to nationally representative samples. Much larger 
differences appear in subject samples that were selected from the upper-half of 
the distribution of math ability; the further above the general population mean, 
the larger the sex difference. One reason for this is the considerably greater 
variance of males in math ability. The variance of males’ math test scores av­
erages about 1.1 to 1.3 times greater than the variance for females. Almost twice 
as many males as females fall into the upper tail (>90th percentile) of the bell- 
curve distribution of math scores. However, males also outnumber females in 
the lower tail (<  10th percentile) of the math score distribution. This phenom­
enon of greater male variance, which is most conspicuous in the extreme tails 
of the distribution, is generally found for most psychometric abilities. But it is 
more extreme in both math and spatial abilities than in any other broad ability 
factors. Data collected between 1970 and 1990 or so suggest that there has been 
a slight decrease in the sex difference in math ability in representative population 
samples.

Causal theories of the math sex difference are still tentative and debatable, 
pending further investigation. Some theorists attribute the math difference to the 
somewhat larger sex difference in spatial ability, in part because some types of 
math problems can be visualized graphically or in terms of spatial relations. But 
the moderate correlation of math ability with spatial ability (independent of g) 
is generally too small to account for more than a minor fraction of the sex 
difference in math ability. Space and math have independent determinants be­
sides the source of variance they share in common. Biological and evolutionary 
psychologists have proposed theories similar to those for spatial ability, explain­
ing the well-substantiated sex difference in math ability in terms of natural 
selection for the different roles performed by males and females in the course 
of hominid evolution and their genetically transmitted neurophysiological and 
hormonal mediators.|7a bl

V erbal A b ilities. The sex difference on verbal tests for young adults fluctu­
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ates around zero across various tests and studies, and seems to depend more on 
specific properties of each verbal test rather than reflecting any consistent dif­
ference. Girls show more rapid maturation than boys in verbal expression, but 
this difference begins to disappear after puberty. In general, verbal tests with 
the largest g loadings, such as tests of verbal reasoning, show differences av­
eraging close to zero. It is possible to devise tests that use a verbal medium but 
that emphasize abstract reasoning more than verbal knowledge or fluency. The 
one type of verbal ability that most consistently favors females is verbal fluency. 
A typical, test requires the subject to produce as many common nouns beginning 
with a given letter within a limited time (say, thirty seconds). Scholastic-type 
achievement tests involving verbal content, such as reading, writing, grammar, 
and spelling, also consistently favor females. Tests of general information and 
especially science information and technical knowledge favor males.

S m aller G roup F actors. Perceptual speed and short-term memory both favor 
females, with d  values of — .20 to —.30. One of the larger sex differences 
favoring females is on a factor identified as “ speed and accuracy”  or “ clerical 
checking.”  This factor is measured by the digit symbol or coding test of the 
W echsler battery. Typical d  values fall between —.30 and —.40. A sex difference 
on a test of this factor as high as —.86 was found for male and female twelfth- 
grade high school students taking the General Aptitude Test Battery’s subtest Q 
( “ clerical perception” ), which makes a great demand on perceptual speed and 
accuracy.

THE g  FACTOR: A NEAR-ZERO SEX DIFFERENCE
The study of a sex difference in general ability has often been confused by 

the use of different concepts of “ general ability,”  and by failing to recognize 
that the typically greater variance of males in test scores may cause both the 
direction and magnitude of the mean sex differences in test scores to vary across 
different segments of the total distribution for the general population. The ob­
served sex difference will therefore often vary across groups selected from dif­
ferent segments of the population distribution.

Many investigators have taken the sum total of the subtest scores on one or 
another IQ test as their operational definition of general mental ability. The total 
IQ is usually based on the sum of the standardized scores on the various subtests. 
Because there are sex differences on various types of subtests, as previously 
noted, the direction and magnitude of the summed sex differences will depend 
on the particular selection of subtests in the battery. For example, including 
more tests loaded on the spatial factor will favor males; including more tests 
loaded on verbal fluency and on clerical speed and accuracy will favor females. 
Thus the simple sum or mean of various subtest scores is a datum without 
scientific interest or generality. It cannot be considered a proper measure of 
general ability. If, for a particular battery, it happened to be an adequate measure 
of general ability, it would be so only inadvertently, as a result of averaging out
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sex differences that have more or less equal and opposite signs on the various 
subtests. This becomes more likely the greater the number of different types of 
subtests averaged. The essential problem is that the concept of general ability, 
defined as g, rests on the correlations among test scores rather than on their 
simple summation. The latter, which might be referred to as “ ability in gen­
eral,”  is an arbitrary variable that fails to qualify conceptually as a scientific 
construct, although by happenstance it may correlate highly with general ability 
defined as g.

But even if there are many subtests in a battery, thereby tending to average 
out sex biases, a simple summation of sex differences over subtests is contam­
inated if the method of test construction included selecting test items on any 
criteria involving sex differences in item responses (as was done in creating the 
Stanford-Binet and the W echsler intelligence scales). IQ scores on such tests 
can hardly be informative about the magnitude of possible sex differences in 
general ability, at least in principle. The study of sex differences must depend 
on tests in which item selection was based exclusively on the psychometric 
criteria used to maximize the reliability, validity, discriminability, and unidi­
mensionality of the subtests.

Studies that are based on selected samples of males and females are highly 
questionable if the results are generalized to any population other than the one 
from which the study sample was selected. Because males’ scores are more 
variable on most tests than are those of females, there are more males at both 
the upper and the lower extremes of the distribution. This is most markedly true 
for tests of spatial and quantitative abilities. Many of the published studies of 
sex differences have been based on self-selected or institutionally selected 
groups that score mostly in the upper half or even the upper quarter of the 
normal distribution o f abilities, groups such as college applicants, university 
students, and people in highly skilled occupations, such as Air Force officers. 
Generally, the higher the cut-score for selection, the larger is the proportion of 
exceptionally high-scoring males in the group. The mean sex difference in such 
an above-average group would not accurately estimate the magnitude of the sex 
difference in the general population, but would yield a biased estimate favoring 
males. The opposite bias would appear if the sexes were compared in a group 
that scored well below the general population mean. Although greater male 
variance is typically found in American and north European studies, this phe­
nomenon is not generalizable across all nations and cultures.181 A study of sex 
difference in general ability intended to be generalizable to recent North Amer­
ican or north European populations should be based on representative samples 
of those populations. There are few such data sets available after excluding the 
national standardization samples for tests in which item selection took sex into 
account.

The age of the study sample must also be taken into account. Girls mature 
earlier than boys, which favors girls’ language development and verbal facility 
in childhood. Also, sex differences in spatial and quantitative abilities, which
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are relatively nascent in childhood, are affected by the hormonal changes after 
puberty, although some part of the effect of testosterone on spatial ability occurs 
prenatally. The study of asymptotic sex differences, therefore, is focused on 
representative samples in adolescence and early maturity. In later maturity and 
old age, sex differences in health factors and in longevity interact with sex 
differences in cognitive abilities, limiting the generalizability of the findings. 
The following studies of sex differences in g are based largely on representative 
population samples of individuals in adolescence and early maturity, except for 
one test on children and adolescents (WISC-R, ages 5 to 16) that is included 
for comparison with a parallel test for young adults (WAIS, ages 23 to 34).

Factor Analyzing Sex Differences. The best method for determining the sex 
difference in psychometric g is to represent the sex difference on each of the 
subtests of a battery in terms of a point-biserial correlation and include these 
correlations with the full matrix of subtest intercorrelations for factor analysis.9 
The results of the analysis will reveal the factor loading of sex on each of the 
factors that emerges from the analysis, including g. The g factor loading of sex, 
therefore, is equivalent to the point-biserial correlation between g and the sex 
variable (quantitized as male =  1, female =  0). This method is preferable to 
the use of g factor scores (which I used in an earlier study110' of sex differences 
on the WISC-R), because g factor scores are not a pure measure of the g factor 
of the test battery from which it was extracted. An individual’s g factor score 
is calculated as a ^-weighted mean of the individual’s standardized scores on 
each of the subtests; it is therefore necessarily somewhat contaminated by in­
cluding small bits of the other factors and test specificity measured by the var­
ious subtests. This contamination of g factor scores can either increase or 
decrease the mean sex difference, depending on the types of subtests in the 
battery. Therefore, it is better to factor analyze the matrix of all the subtest 
intercorrelations, including the correlations of sex with each of the subtests.

I have performed this analysis with five test batteries in which data were 
available for large and representative samples that encompass the full range of 
ability in the general population. The results are shown in Table 13.1. Its inter­
pretation requires some information about the test batteries and the key variables 
derived from them.

For all of the test batteries, the subject samples were expressly selected to be 
representative of the stated age groups in the general population. For every test 
there were either equal or very nearly equal percentages of males and females, 
the largest difference (GATB) being only 1.8 percent.

The W ISC-R and the WAIS are the child and adult versions of the Wechsler 
Intelligence Scales; the data are from the national standardization samples.11131 
The various subtests are of the same types in both batteries, but differ in the 
level of difficulty. Although items (within each subtest) that showed marked sex 
differences were eliminated in the construction of the Wechsler tests, neither the 
items nor the subtests were selected with any reference to factor analysis. What­
ever relationship emerges between sex differences and the factor composition
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Table 13.1
Relationship of Sex Differences to g  in Five Test Batteries

T e s t B a t t e r v *
V a r i a b l e W I S C - R WAIS GATB ASVAB BAS M e a n M e d i a n

N u m b e r  o f  S u b t e a t s 13 11 8 10 14

g L o a d i n g  o f  S e x  
D i f f e r e n c e 6 . 0 9 4 . 0 0 6 - . 2 5 5 . 1 8 0 - . 0 0 1 .011 . 0 0 6

d  E q u i v a l e n t  o f  
g L o a d i n g . 1 8 9 . 0 1 2 - . 5 2 7 . 3 6 6 - . 0 0 2 . 0 0 8 . 0 1 2

I Q  E q u i v a l e n t  o f  d 2 . 8 3 0 . 1 8 - 7 . 9 1 5 . 4 9 - 0 . 0 3 0.11 0 . 1 8

P e r c e n t  o f  T o t a l  g 
V a r i a n c e  D u e  t o  
S e x  D i f f e r e n c e s 0 . 1 9 0.00 2 . 2 7 0 . 5 4 0.00 0 . 6 0 0 . 1 9

C o r r e l a t i o n  ( r , )  o f  
T e s t s '  g L o a d i n g s  
W i t h  S e x  D i f f e r e n c e s . 3 6 4 - . 0 3 6 . 0 2 4 . 1 2 7 . 1 0 3 . 1 1 6 . 1 0 3

C o r r e l a t i o n  ( r , )  o f  
T e s t s '  g L o a d i n g s  
W i t h  M / F  V a r i a n c e  
R a t i o s - . 2 6 1 . 3 1 8 - . 7 3 8 . 0 7 9 - . 0 3 3 - . 1 2 7 - . 0 3 3

'W echsler Intelligence Scale for Children-Revised (W ISC-R), U.S. standardization sample, ages 5 
to 16 years; W echsler Adult Intelligence Scale (W AIS), American standardization sample, ages 
25 to 34 years; General Aptitude Test Battery (GATB), unselected twelfth-grade high school 
students; Armed Services Vocational Aptitude Battery (ASVAB), a  nationally representative 
sam ple of Am erican youths, ages 18 to 23 years; British Ability Scales (BAS), British stan­
dardization sample, ages 14 to 17 years.

'’Positive and negative loadings indicate male superiority and female superiority, respectively.

and relative magnitudes of factor loadings of the Wechsler tests, therefore, is 
not an artifact of the method of test construction.

The GATB analysis was based on the normative data for twelfth-grade stu­
dents in high school.11 Ib| Sex differences were not considered in the construction 
of the GATB.

The ASVAB data are based on a large probability sample of the U.S. youth 
population.11 Ici The mean sex differences used in this analysis were based on 
only non-Hispanic whites. Sex differences did not enter into the construction of 
the ASVAB, and the various subtests show very marked sex differences, espe­
cially on subtests involving technical information to which men are generally 
more exposed (e.g., auto shop, mechanical reasoning, electronic informa­
tion).11 Id| However, the factor structure per se of the 10 ASVAB subtests com­
bined with 17 psychomotor tests is the same for adult males and females and 
the g loadings of the 27 tests are correlated +.999 between males and fe­
males.1 11,1

From a strictly psychometric standpoint, the British Ability Scales (BAS) are
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probably as well constructed a battery of cognitive ability tests as one can find 
at present. Each of the fourteen subtests was constructed by means of item 
selection based on item response theory, or a latent trait model (in this case the 
Rasch model), which, for this type of test, is the optimal psychometric proce­
dure. Test construction is based entirely on procedures that maximize psycho­
metric desiderata without reference to sex or other subclassifications of the 
normative population. The normative samples for ages fourteen to seventeen 
were used in the present analysis.

Most of the variables listed in Table 13.1 are self-evident: The g loading of 
the sex difference is equivalent to the point-biserial correlation of sex with the 
test battery’s g factor (here represented by the first principal factor of a common 
factor analysis).

The d  equivalent of the g loading represents the size of the mean sex differ­
ence on g expressed in standard deviation units.12 

The sex difference in IQ units is simply 15d
The percent of the total g variance due to sex differences is the squared g 

loading for sex divided by the total variance of the g factor (excluding sex 
variance) X 100.

The Spearman rank-order correlation (rs) of the column vector of subtests’ g 
loadings with the vector of the sex differences (d) on the subtests indicates the 
degree to which g is related to the rank order of the sex differences on the 
various subtests.

The method of correlated vectors was also applied to the vector of the M/F 
variance ratios for the various subtests, which measures the degree to which 
males are more variable than females. For all but one test (WAIS), greater male 
variability on the subtests is negatively correlated with the subtests’ g loadings. 

Several points are especially worth noting:
• The g loadings of the sex differences are all quite small; the largest difference (GATB) 

favors females ( —.255). (The GATB results are somewhat discrepant from those of the 
other batteries because o f the rather unusual psychometric sampling, with an excess of 
psychomotor tests designed to measure particular vocational aptitudes. This slightly 
compromises the g factor by diminishing its loadings on the more cognitive varia­
bles.1')  The BAS, probably the best constructed of all of the tests from a psychometric 
standpoint, shows a near-zero g loading ( - .0 0 1 )  on sex. The mean and median g 
loadings over the five tests are near-zero and completely nonsignificant.

• The method of correlated vectors shows that in no case is there a correlation even 
approaching significance between subtests’ g loadings and the mean sex differences on 
the various subtests.

• The method o f correlated vectors shows mostly negative (but nonsignificant, except 
for the GATB) correlations between the M /F variance ratios on each of the subtests 
and the subtests’ g loadings.
The two main conclusions supported by the analyses in Table 13.1:

• The sex difference in psychometric g is either totally nonexistent or is of uncertain 
direction and o f inconsequential magnitude.
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• The generally observed sex difference in variability of tests scores is attributable to

factors other than g.

Consistent with this finding of a near-zero sex difference in g is the fact that 
there is no consistent sex difference on Raven’s Standard Progressive Matrices 
(SPM) test (for adults) or on the Colored Progressive Matrices (CPM) test (for 
children). In numerous factor analyses, the Raven tests, when compared with 
many others, have the highest g loading and the lowest loadings on any of the 
group factors. The total variance of Raven scores in fact comprises virtually 
nothing besides g and random measurement error. In a review of the entire 
literature (117 studies from five continents) reporting sex differences on the 
Raven tests, Court1141 found positive and negative mean differences in the var­
ious studies distributed about equally around zero, for both the SPM and the 
CPM. Court concluded that there is no consistent evidence of a sex difference 
in the Progressive Matrices and that the most common finding is of no significant 
sex difference.

Some of the recent research on sex differences in IQ has been prompted by 
the finding of a significant sex difference in brain size, even when body size is 
statistically controlled (see Chapter 6, p. 148). The fact that brain size is cor­
related with IQ, and particularly with g , would seem to make the absence of a 
sex difference enigmatic. In an attempt to resolve this paradox, Lynn15 has ar­
gued that a difference of only four IQ points, favoring males, would be consis­
tent with the prediction from the sex difference in brain size and the within-sex 
regression of IQ on brain size.

In a review of several tests in several population samples, he has found an 
overall sex difference of about four IQ points. For the reasons pointed out above, 
any small overall difference (even if significant) on an arbitrary collection of 
subtests has questionable generality across different batteries and, in principle, 
cannot answer the question concerning a sex difference in general ability defined 
as g. Moreover, the sex difference in brain size may be best explained in terms 
of the greater “ packing density”  of neurons in the female brain, a sexual di­
morphism that allows the same number of neurons in the male and female brains 
despite their difference in gross size. Also, the relationship of brain size to the 
well-established sex difference in spatial ability (independent of g) has not yet 
been studied. But if any feature of sex differences in brain anatomy or physi­
ology is likely to be related to cognitive abilities, spatial ability is the best bet. 
In any case, variation in total brain size (or in whatever causes it, such as the 
number of neurons, arborization of dendrites, amount of myelin, etc.) accounts 
for only a minor part the total variance in g or in IQ. Other physiological factors 
unrelated to brain size, in addition to certain experiential factors, must also 
contribute a large part of the g variance.

The theoretical importance of finding a negligible sex difference in g is that 
it suggests that the true sex differences reside in the modular aspects of brain 
functioning rather than in whatever general conditions of the brain’s informa­
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tion-processing capacity cause positive correlations among all of the modular 
functions on which there is normal variation and which account for the existence
of g.

NOTES
1. Much of the recent literature on sex differences is unfortunately indexed and cat­

alogued under the heading of gender differences, which is clearly inappropriate termi­
nology for the topic of sex differences, as will be readily perceived by anyone who looks 
up the meaning of gender in an unabridged dictionary. A sex difference is any statistically 
significant difference in a characteristic between groups of individuals who posses the 
XY (male) and those who possess the XX (female) chromosome pairs.

2. Some key references on sex differences in mental abilities: (a) Brody, 1992, pp. 
317-328; (b) Feingold, 1993, (c) Halpern, 1992; (d) Hedges & Nowell, 1995; (e) Hyde, 
1981; (f) Jensen, 1980a, Chapter 13; (g) Kimura & Hampson, 1993; (h) Maccoby & 
Jacklin, 1974; (i) Mackintosh, 1996; (j) Stumpf, 1995.

3. Lohm an’s (1988) article on the nature of spatial abilities is the best treatment I 
have found of this topic.

4. Lubinski & Humphreys, 1990, Table 3.
5. Nyborg, 1984; Halpern, 1992, pp. 110-135; Kimura & Hampson, 1993; Feingold, 

1996.
6. McKeever, 1995; Geary, 1995.
7. (a) Benbow, 1988; (b) Geary, 1996; (c) Lubinski & Humphreys, 1990. The ref­

erences and peer commentaries for these key articles provide a fairly comprehensive 
bibliography o f the modern research on sex differences in mathematical ability.

8. Feingold (1994) reviewed cross-national and cross-cultural differences in the var­
iability o f males and females on cognitive tests, concluding, “ Cross-cultural comparisons 
. . . revealed large fluctuations in sex differences [in variability] across samples from 
diverse countries, suggesting that cultural factors are implicated in the results found in 
American sam ples” (p. 81).

9. The point-biserial correlation (rphs) is simply a Pearson product-moment correla­
tion that expresses the relationship between a metric variable (e.g., test scores) and a 
dichotomous variable (in this case sex, quantitized as male =  1, female =  0). As the 
value of rpte is reduced by the amount of inequality in the sample sizes of males and 
females, it was corrected for this inequality where such an inequality in Ns exists. Also, 
as rphs is reduced by an inequality of male and female standard deviations in test scores, 
the rphs was adjusted accordingly. Adjustments for the inequality of Ns and SDs are 
accomplished simultaneously by use of the following formula for rpbs:

, pbs = d/2j(cP/A) + 1,

where d  is the mean difference (males -  females) divided by the averaged male and 
female standard deviations (a), calculated as a  =  Jam2 +  a f2)/2.

Including the sex rpbs for each of the subtests in the correlation matrix to be factor 
analyzed had no effect on the factor structure and only a negligible effect on the subtests’ 
g loadings (congruence coefficients for all batteries are .999) when the factor analyses 
that include rpbs in the correlation matrix were compared with the analyses that excluded 
rpbs from the matrix. Therefore, it was not necessary to perform a Dwyer (1937) extension 
analysis (a mathematical maneuver that would be used in this case to isolate the sex
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variable itself from influencing the psychometric factors while showing its loadings on 
the psychometric factors).

10. Jensen & Reynolds (1983, Table 3) found a sex difference (M-F) of d = +.161 
in g factor scores obtained from the national standardization sample (ages five to sixteen 
years) of the W echsler Intelligence Scale for Children-Revised (WISC-R).

11. (a) The W ISC-R and WAIS data (separately for males and females) were obtained 
from the publishers of the W echsler tests. Factor analyses of the data separately by sex 
show the sam e factor structure for both sexes; the male X female congruence coefficients 
on the g factor are .9 9 + ; in the present analyses the within-sex g factor loadings were 
averaged, (b) The GATB data for high school seniors are from Tables 20-3 and 20-20 
in the GATB Manual (U.S. Dept, o f Labor, 1970). (c) From the Office of the Assistant 
Secretary of Defense, 1982, pp. 65 and 77. (d) A detailed discussion of sex differences 
on each of the ten ASVAB subtests and their occupational implications is provided by 
Bock & Moore, 1986, pp. 114-148. (e) From the Technical Handbook of the British 
Ability Scales (Elliott, 1983, pp. 63-88 and p. 152). (0  Carretta & Ree, 1997.

12. The g loading (or any point-biserial correlation, rpbs, with equal Ns and equal SDs 
of the dichotomous groups on the metric variable) is converted to d  by the formula:

d =  v ^ l d V 2) -  ']•
13. Besides containing subtests o f verbal (V), numerical (N), and spatial (S) abilities, 

which are common to many other test batteries intended to measure general cognitive 
ability, the GATB also contains a number of subtests intended to measure specific vo­
cational aptitudes that strongly involve perceptual-motor abilities, such as perceptual 
speed of matching figures (P), clerical speed and accuracy (Q), motor coordination (K), 
finger dexterity (F), and manual dexterity (M). (Females slightly exceed males to varying 
degrees on V, P, Q, K, and F.) The greater number of perceptual-motor subtests in the 
GATB causes its first principal factor (PF1) to differ considerably from that of any of 
the other batteries, in which strictly cognitive abilities are relatively more represented 
than they are in the GATB. A factor analysis of the correlation matrix including the sex 
difference with just the cognitive variables (i.e., V, N, S) shows a sex loading on the 
general factor (PF1) of + .021, which is negligible. The general factor of the five per­
ceptual-m otor variables (P, Q, K, F, M) shows a sex loading of - .3 2 9 , in favor of 
females.

14. Court, 1983.
15. Lynn (1994b), in a review o f the sex differences (M-F) on W echsler IQ (WISC- 

R and WAIS) obtained in several countries, reported Full Scale IQ differences ranging 
from 1.0 to 5.0 IQ points, with a mean of 3.08. Lynn’s review also includes other tests, 
which show an average M-F difference of about four IQ points. He noted that the four 
IQ points male advantage is “ precisely the advantage that can be predicted from their 
larger brains”  (p. 269). His prediction is based on a reported correlation of .35 between 
in vivo brain size (measured by magnetic resonance imaging) and WAIS IQ and a re­
ported sex difference o f 0.78o in adult brain size (based on autopsied brains), hence a 
predicted M -F difference in IQ of .35 X 0 .78a =  0 .27a X 15 =  4 IQ points.
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Chapter 14

The g factor derives its broad significance from the fact that it is 
causally related to many real-life conditions, both personal and so­
cial. These relationships form a complex correlational network, or 
nexus, in which g is a major node. The totality of real-world vari­
ables composing the g nexus is not yet known, but a number of 
educationally, socially, and economically critical elements in the 
nexus have already been identified and are the subject of ongoing 
research.

Complex statistical methods have been developed for analyzing 
correlational data to help determine the direction of causality among 
the elements of the g nexus. These elements include personally and 
socially significant variables, such as learning disabilities, level of 
educational attainment, illiteracy, poverty, employment and income, 
delinquency, crime, law abidingness, and personal integrity.

The limitations of g as an explanatory variable in personal 
achievements have also been recognized. A person’s level of g acts 
only as a threshold variable that specifies the essential minimum 
level required for different kinds of achievement. Other, non-g spe­
cial abilities and talents, along with certain personality factors, such 
as zeal, conscientiousness, and persistence of effort, are also critical 
determinants of educational and vocational success.

Since the psychometric basis of g is now well established, future 
g research will extend our knowledge in two directions. In the hor­
izontal direction, it will identify new nodes in the g nexus, by stud­
ying the implications for future demographic trends, employment 
demands, and strategies for aiding economically developing coun­
tries. Research in the vertical direction will seek to discover the
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origins of g in terms of evolutionary biology and the causes of in­
dividual differences in terms of the neurophysiology of the brain.

The g factor is not a mere statistical construct. Rather it has significant real- 
world importance. The effects of g encompass a broader range of uniquely 
human phenomena than any other psychological construct. Empirical research 
on g extends well beyond psychometrics. The search for the causal basis of g 
draws upon research in experimental cognitive psychology and mental chronom­
etry, brain anatomy and physiology, quantitative and molecular genetics, and 
primate evolution. Applied research has concentrated on the importance of g in 
education, employment, economic development, health, welfare dependency, 
and crime.

Researchers in the applied fields have found that variation in scores on com­
posites o f g-Ioaded tests (those measuring IQ or “ general intelligence” ), what­
ever its causal basis, provides vital information for the interpretation of many 
nonpsychometric behavioral and social variables. The new field of “ sociology 
of intelligence”  uses individual and group differences in g and other cognitive 
variables to explain significant social outcomes.1

This chapter, however, will be restricted to a review of phenomena outside 
the field of academic psychology in which g is most probably a causal agent.

CORRELATION AND CAUSATION IN THE NEXUS OF 
g-RELATED VARIABLES

A nexus is a network of various separate but interconnected elements, or 
variables. The nexus may contain as few as 3 or 4 variables to as many as 30 
or 40, or more. The degree of relation between any two variables is usually 
measured as a correlation coefficient (or, less often, as a covariance). In dis­
cussing the correlation of g (or other cognitive variables) with some variable Y 
outside the psychometric domain (particularly social variables) we should rec­
ognize that g is but one of many variables that are correlated with both g and 
Y. A correlation coefficient indicates the direction (+  or —) and the degree (0 
to 1) of relationship between any two variables. By itself, however, a correlation 
can never prove either the direction or the degree of causation. Causation, in 
this context, means that variable X can only be said to have some degree of 
causal effect on variable Y if the experimenter-controlled variation in X results 
in significant concomitant variation in Y. This can only be determined by the 
investigator’s actually controlling the values taken by variable X (termed the 
independent variable) while observing the effect on variation in variable Y 
(termed the dependent variable). This paradigm is that of a true experiment.

Controlling a variable statistically (either by nonrandom selection or matching 
of subjects on one or more variables, or by using formulas that partial out 
[remove] the variation in one or more statistically controlled variables from the
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correlation between the two variables of primary interest) is not equivalent to 
experimentally controlling the independent variable by direct manipulation. Nei­
ther of these purely statistical types of control can rule out with certainty the 
effect of some unmeasured or unknown variable besides those that were statis­
tically controlled and which therefore could be the causal agent in the correlation 
of primary interest. In a true experiment, however, both the known and the 
unknown variables whose causal effects we wish to remove in order to determine 
the causal effect of the manipulated variable X (the independent variable) on 
the outcome variable Y (the dependent variable) are controlled by the strictly 
random assignment of individuals to different groups that are each given dif­
ferent treatments (i.e., values of X).

In differential psychology and in other social sciences, true experiments are 
seldom possible. When we are confronted with a number of uncontrolled but 
intercorrelated variables, the determination of the direction and magnitude of 
causality between any given pair of correlated variables is problematic. Many 
variables deemed important in human affairs, of course, cannot be experimen­
tally controlled.

Given this limitation, social science research can apply several different meth­
ods for interpreting a nexus. The particular method chosen depends on both the 
researcher’s purpose and the availability of additional information that can help 
interpret the correlation of interest (say, rXY).

• If we know only rXY, the best we can do is to note the sign and size of the 
correlation and its standard error (or its confidence interval). Variable X may 
be a pragmatically useful predictor of variable Y, regardless of whether there 
is a directly causal connection between X and Y. If one’s aim is merely pre­
diction for some practical purpose, such as selection for college admission or 
employment, one need not go further than establishing the reliability and validity 
of the correlation for the subpopulations in which predictions are to be made.

• If the correlation between X and Y is reliable and we have a theoretical 
interest in the causal status of the relationship, we may examine the status of 
rXY among some nexus of other variables that are also correlated with the var­
iable of primary interest (rAX, rAY, rnx, rBY, . . . ) .  It could be the case that var­
iable that has no causal effect on Y at all, but is correlated with a number of 
other variables that together have a causal (or partially causal) effect on Y. For 
example, variation in X and Y could both be caused by the third variable, A. 
Or X could be only one among many other variables (X, A , B ), each of which 
has a small but independent effect on Y. The causal system could consist of 
anything from a simple linear chain (e.g., A - ^ B —->X-»Y) to a complex nexus 
of intercorrelated variables having multiple and interactive causal effects upon 
one another.

Several multivariate analytic methods121 are available to extract particular 
types of information from such a nexus. Initially the nexus is represented as a 
matrix of the correlations among all of the variables. (Simple examples of these 
methods, all based on one set of actual data, are shown in Appendix C.)
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• A principal components analysis of the correlation matrix reveals which 
variables form more or less distinct clusters based on their degree of relationship 
to each another. Variables with substantial loadings on the same mathematically 
extracted component have more in common (for whatever cause) than variables 
that have their largest loadings on different components, the components them­
selves being completely uncorrelated. The first principal component, which is 
always the largest and most general component (the component comprising the 
largest proportion of the total variance in the matrix) is usually the most in­
formative. A components analysis shows which variables or subsets of variables 
have the most in common. But because the input data consist only of correla­
tions, causal determination is not possible. (In scientific research, of course, 
causal speculation is always permissible, and indeed necessary, as a source of 
empirically testable hypotheses.)

• A multiple regression analysis reveals the degree to which any subset of 
the variables (called the independent variables) in the whole nexus predicts any 
given variable (called the dependent variable) in the nexus. The degree of pre­
diction is measured as the multiple correlation coefficient (/?), while R2 is the 
proportion of the total variance in the dependent variable that is “ accounted 
for,”  or “ explained,”  by the predictor variables (also called independent vari­
ables). The proportion of “ unexplained”  variance is 1 — R2; its square root 
(v/l — R2) is termed the coefficient of alienation. The terms “ accounted for” 
and “ explained”  are perfectly synonymous in the context of any type of purely 
correlational analysis lacking experimental control, but they do not imply cau­
sality, nor do they imply its absence. Generally, if no additional variables can 
be found that, when included in the set of independent variables, significantly 
increase the multiple correlation (R) with the dependent variable, one can ten­
tatively assume that some causal relationships exist between the independent 
variables and the dependent variable. The larger the squared multiple correlation 
(i.e., the proportion of the total variance accounted for) and the more numerous 
and diverse the sampling of variables in the nexus, the less probable it becomes 
that most of the causal variance lies outside the nexus of intercorrelated varia­
bles. The differing relative weight (technically termed the standardized partial 
regression coefficient) of each of the independent variables, however, does not 
indicate the relative magnitude of each independent variables’ causal influence 
on the dependent variable.

The mathematical algorithm for performing a multiple regression analysis 
offers no leverage for discovering causality. It only ensures that the one inde­
pendent variable (say, A) that has the largest correlation with the dependent 
variable is given the largest weight (i.e., the highest regression coefficient). The 
independent variable (B) that is assigned the next largest weight, then, is the 
one that has the highest correlation with the residualized dependent variable, 
that is, with the remaining portion of the dependent variable’s total variance that 
was not accounted for by variable A; and the same for independent variable C, 
and so on, through each of the independent variables that were entered into the
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multiple regression equation. Variables in the nexus that contribute no increment 
to the predicted variance in the dependent variable that is greater than what 
would be expected by chance error (an example would be including an inde­
pendent variable that consists only of random numbers) are termed redundant. 
They are redundant in the sense that all of their true-score predictive power has 
already been contributed by the other variables in the equation. The degree of 
causal influence of any one variable in the analysis cannot be determined from 
the regression weights (coefficients), because, for example, the one predictor 
variable with the largest weight may register the composite effects caused by 
several other predictor variables, each of whose weight, in turn, is relatively 
small, though they (rather than the first variable) may be the direct causes of 
the dependent variable. The relative weights of variables discovered in the mul­
tiple regression analysis, however, may provide clues for hypothesizing the most 
likely causal relationships. These relationships may be examined further by per­
forming separate multiple regression analyses on specific subsets of variables in 
the whole nexus to determine which subset best predicts some highly salient 
variable in the nexus.

• The most appropriate type of statistical analysis for inferring causality, 
though it is seldom definitive (except in genetics), is the class of methods known 
as structural equation models, of which path analysis is most commonly applied 
in the behavioral sciences. (A path diagram is shown in Appendix C.) Like all 
the other methods described so far, these methods also begin with the matrix of 
correlations among the variables in a nexus. But the analytic method is intended 
to yield a causal explanation, or a path model, of the relationships between the 
variables in the nexus, that is, the various paths of causal influence flowing from 
certain variables to other variables. The direction and relative strength of each 
causal element are indicated by an arrow  and its path coefficient, respectively. 
The path diagram does not actually prove the causal connection among the 
variables, but it may be consistent (or inconsistent) with the empirical data. This 
is determined by a statistical assessment of the “ goodness of fit”  between the 
data and the model and by comparing the measure of “ goodness of fit”  across 
alternative models to determine which model best fits the data. The model with 
the poorer fit is discontinued, while the model with the better fit is really no 
more than just that. It does not constitute proof (in the sense of experimental 
control) that the hypothesized cause-and-effect relationships depicted by the path 
model correctly represent the true causal relationships. But it may be the best 
explanation one can provide when experimental control is unfeasible or impos­
sible.

The obvious temporal order of some of the variables in a nexus may lend 
plausibility, or even compelling evidence, for the causal connections shown in 
a path model. Path analysis was invented by the geneticist Sewall Wright, and 
its use is most appropriate in quantitative genetic analysis. This is because the 
direction of genetic influence is always inarguable; genes flow from parents to 
their offspring, never the reverse. A correlation of .50 between parents’ height
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and their children’s height would hardly lead anyone to suggest that the direction 
of the causal path was from child to parent. Or, if parents’ IQ at age 12 is 
correlated with offsprings’ IQ at age 12, one could not plausibly argue that the 
child’s IQ caused the parent’s IQ when the parent was 12 years old. But even 
for these seemingly unambiguous examples of parent-child correlations we still 
need additional information in order to determine that the direction of causality 
is direct (that is, transmitted from parent to child) rather than indirect, whereby 
parents and their children alike are affected by some external variable that in­
fluences height (or IQ) in each generation. Families might differ, for example, 
in dietary habits that persist across generations and influence physical or mental 
growth. To differentiate between direct and indirect causation of the parent-child 
correlation, researchers in human genetics have resorted to “ natural experi­
ments,”  such as studying genetically unrelated children reared together and 
monozygotic twins reared apart. Such studies (see Chapter 7) have led to the 
conclusion that the correlation between parents and children, both for height and 
for IQ, is, for the most part, directly causal, by the transmission of the parents’ 
genes to their offspring.

• Still another way to disentangle a nexus is to examine the correlations among 
group means on each of the variables in the nexus. (Other statistical measures 
of central tendency, such as the median and the mode, may be used in the same 
way.) This method is used much less often in the behavioral sciences than the 
other methods previously mentioned, but it is commonly seen in epidemiological 
research.3

In this method, the units of analysis are groups’ means. The method requires 
a fair number of diverse groups, each comprising a large number of individuals 
(e.g., every sixth-grade class in a large city, different schools, colleges, different 
college majors, various racial, ethnic, national, or socioeconomic groups, age 
groups, groups differing in education, etc.). For each group in the sample we 
obtain the mean on each of a number of variables. Examples are diverse psy­
chometric tests, family background characteristics, occupational data, health re­
cords, or any other social and economic indices that describe the various groups 
in ways that are of interest to the investigator. The group means on these var­
iables can then be entered into almost any type of correlational or multivariate 
analysis (e.g., multiple regression, principal components, factor analysis) that 
best suits the researcher’s purpose.

The value of using group means instead of measurements on individuals as 
the units of correlation analysis is that correlated means have the effect of mag­
nifying or highlighting correlations that may be hardly detectable when individ­
uals are the units of measurement. Some variables may have considerable 
significance for discovering causal factors in group differences, while they are 
practically useless for individual prediction. A variable X that has a small cor­
relation with Y (and therefore makes only a negligible contribution, without 
practical significance, to the prediction or explanation of individual performance 
on variable Y) when both X and Y are measured on individuals may show a
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very large correlation between X and Y when both variables are measured as 
group means. The reason is that correlating group means removes (i.e., averages 
out) all o f the individual variability on each measure within each group. The 
pattern of correlations between those variables that best describes group char­
acteristics, therefore, shows up very clearly, unobscured by the (typically large) 
amount of individual variability in the characteristics of interest. Conversely, 
two variables that are substantially correlated among individuals will have neg­
ligible correlations when measured as group means if the groups do not differ 
on both variables. The scatter diagrams for correlated means can also clearly 
reveal nonlinear trends in the regression of one variable on another, even when 
nonlinearity is totally obscured by a correlation scatter diagram based on indi­
viduals.

STUDIES OF THE g  NEXUS
The methods described above have been used in the many studies of how g 

affects real life. These studies show that psychometric g, represented by IQ or 
other highly g-loaded tests, figures prominently in a large nexus of personal and 
social variables that most people consider important. One may wonder why 
individuals’ scores on a single test, which has so little apparent resemblance to 
the practical activities of everyday life, should be correlated with so many piv­
otal outcomes in peoples’ lives. (And the means of the same outcome variables 
for different subpopulations are even more highly correlated among themselves 
and with g.)

The answer, as sociologist Robert Gordon has spelled out in detail with many 
actual examples, is that everyday life itself acts as an intelligence test,141 and 
increasingly so as technology becomes more and more a part of everyday life.

Every semantic discrimination, every decision, every choice-point, every chal­
lenge, every opportunity for performance in everyday life has some degree of 
g loading, however slight it may be. In almost every particular instance of 
individual behavior, the “ signal”  (g variance) is very small compared to the 
“ noise”  (all sources of variance other than g). Now these single instances of 
real-life behavior are perfectly analogous, statistically, to the single items of a 
highly heterogeneous test. Although each single item in an IQ test reflects g 
only to a very slight degree, the aggregation of a large number of similar items 
results in a highly reliable measure of the common factor that is reflected, how­
ever slightly, by each item. Any single item has a very small signal-to-noise 
ratio (typically about .05 on a scale of 0 to 1)), but the aggregation of 100 
diverse items yields a total score with a signal/noise ratio of over .90. The 
analogy between test items and instances of everyday behavior is aptly drawn 
by psychologist David Lubinski:151

[A]s more items are responded to (like successive opportunities in life), they begin
to paint a reliable picture o f the individual with respect to the attribute under
analysis. When slightly correlated items are added up (much like one’s track record
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in life), the uniqueness associated with each individual instance does not contribute 
much to the final portrait because, collectively, they share nothing in common. 
The unique chunks o f each do not coalesce. Each comprises little of the total 
picture. What does coalesce, however, are the slight slivers of communality run­
ning through each item (the dominant theme running through each opportunity). 
These bits o f communality pile up. Their influences are successively augmented 
in a composite (in one 's overall track record). The composite’s variance consists 
mostly o f the signal that the items share. What the items do not share is noise, 
which aggregation attenuates to a minuscule sliver within the composite. Aggre­
gation turns the large noise/signal ratio on its head. The composite is mostly signal 
even though the individual items are mostly noise, (p. 197)

Of course, there are also other “ signals,”  or stable traits, besides g that aggre­
gate in the same way to have important cumulative effects on the individual’s 
overall “ track record”  in life, as discussed later in this chapter. Sociologist 
Linda Gottfredson161 has put it well: “ The effects of intelligence— like other 
psychological traits— are probabilistic, not deterministic. Higher intelligence im­
proves the odds of success in school and work. It is an advantage, not a guar­
antee. Many other things matter”  (p. 116).

Some sociologists regard individual and group differences in the level of g 
as wholly a result of inequalities in schooling and in social and economic priv­
ilege. In this view, g is merely an epiphenomenon in the nexus of all the socially 
valued variables with which g is so ubiquitously correlated. However, there are 
compelling reasons for believing that g is a central and generative causal force 
in the nexus. As pointed out, while multivariate statistical methodologies, by 
their inherent nature, cannot prove causality but at best can only increase its 
plausibility, there are empirical facts which, if taken into consideration, make it 
extremely probable that g itself is a causal force in the greater social nexus.

First, there is the high heritability of g, which simply means that the single 
largest source o f individual differences in g  is attributable to genetic factors. We 
therefore know that various social, economic, or environmental variables are not 
a main cause or explanation of most of the observed variance in g. Moreover, 
the part of the nongenetic variance in IQ that is commonly attributed to between- 
families differences in socioeconomic status (SES) constitutes only a very small 
proportion of the total environmental variance, most of which results from 
within-family environmental effects. In fact, large IQ differences exist among 
individuals when SES is taken account of, but SES factors are not related to 
individuals’ IQs after genetic variability is accounted for. Attempts to discredit 
the evidence for the heritability of g, or to belittle its magnitude, are motivated 
by the wish to explain all of the variance it has in common with many real-life 
variables entirely in terms of socioeconomic variables, thereby denying the 
causal role of g (and along with it, genetics) in human affairs.

The most effective method for controlling what sociologists refer to as family 
background and socioeconomic variables (e.g., parents’ education, occupation, 
income, and other variables that are correlated with g) is the use of within-
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family correlations. About one-half of the total population variance in adult IQ 
exists among full siblings who have shared the same family background from 
birth to maturity. Yet the IQs of full siblings (measured when they are children 
or adolescents) are positively correlated ( + .30 to .+ 40) with measures of their 
educational, occupational, and economic status as adults. That is, IQ predicts 
these and many other kinds of individual outcomes independently of differences 
in family and social background, which, independently of IQ, typically have 
lesser predictive power than does IQ.7

It is obvious to parents as well as to teachers in all levels and types of 
education that providing equal opportunities to learn does not result in equal 
rates of learning or in the level of performance after a given amount of instruc­
tion and practice. This is true for every kind of learning, though certain types 
of learning are much more (or much less) g loaded than other types. This is true 
regardless of social class, race, or family background. Yet highly g-loaded tests 
can predict learning outcomes under equal opportunity for learning far in ad­
vance of the actual learning experience. Additional measures of group factors, 
special abilities, or talents, o f course, can usually improve the prediction (or 
explanation) of success for certain types of learning— music, art, mechanics, 
athletics, manual skills, and athletics, to name a few. Individual differences in 
certain ability factors, especially g, are measurable or identifiable long before 
the initiation of many of the learning opportunities whose outcomes are corre­
lated with the measures of g that were obtained much earlier. To infer that the 
causal path goes in the direction from g to the learning outcome is certainly 
more plausible than the reverse.

Causal interpretation of the pathways in a nexus should be informed by the 
results of experimental and quasi-experimental studies of the direct effects of 
social, cultural, and educational variables on g. When massive and long-term 
interventions, such as the Milwaukee Project, the Abecedarian Project, the M in­
nesota Transracial Adoption Study, and adoption studies in general (see index), 
produce only slight or transitory effects on g-loaded performance, imputing large 
causal effects to variables that empirically have proven to be exceedingly weak 
is implausible and improbable. A classic example is the so-called “ Pygmalion 
effect,”  or “ teacher expectancy” — the claim that children’s IQs can be raised 
or lowered by such a subtle condition as the classroom teacher’s being told 
(even falsely) that certain children have either a low or a high potential for 
mental growth. A meta-analysis of eighteen studies of the purported effect of 
this kind of teacher expectancy on children’s IQ lends no support for its reality.181 
The overall average effect size for seventeen studies (excluding the methodo­
logically defective original Pygmalion study) is + .025o, that is, less than one- 
half of an IQ point.

Low Levels of g. Applied psychologists working in personnel selection have 
established that low IQ is more reliably predictive of vocational outcomes than 
is high IQ. This is because g is only one of the many psychological factors and 
personal characteristics that affect how one responds to the various challenges
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of life and thereby influences the opinions of other people— parents, teachers, 
classmates, employers, and co-workers— with whom one interacts. Ability cre­
ates opportunity to a large extent. A person with a high IQ but lacking other 
desirable traits can fare worse in life than many people with a low IQ who have 
these other qualities. A low IQ, however, provided it is a valid assessment of 
the individual’s standing on g, invariably restricts an individual’s educational 
and occupational options, the more so, the further their IQ falls below 100 (the 
average level). This is true regardless of the person’s standing on other traits, 
which, when favorable, to some extent mitigate the disadvantaging effects of 
low g.

Contrary to much popular wisdom, the IQ score per se does not act as a self- 
fulfilling prophecy. IQ predicts and is related to certain life outcomes not be­
cause the person’s IQ happens to have been measured, or because anyone 
happens to know the person’s IQ as such. If mental tests had never been in­
vented, parents, teachers, and employers would still be able to make successful 
predictions about individuals. The IQ is simply a rough index of g, which reflects 
underlying individual differences in the efficiency of certain brain processes that 
are manifested as one of the important factors in human affairs.

A critical threshold in the distribution of g lies near the tenth percentile, that 
is, the level of general ability below which 10 percent of U.S. adults fall, with 
90 percent being above that level. The tenth percentile corresponds to an IQ of 
eighty-one in the nationally representative standardization sample of the Wechs­
ler Adult Intelligence Scale. Considering the standards of today’s education- 
demanding, knowledge-intensive society, the American Association on Mental 
Retardation has classified IQs between seventy and eighty-five as “ borderline 
retarded.”  Most persons in this IQ range exhibit about a fifth- or sixth-grade 
level of educational achievement, even after twelve years of school attendance.

The U.S. Congress recognized this critical threshold when it mandated that 
the minimum mental ability requirement for induction into any branch of the 
armed services be set at the tenth percentile on the Armed Forces Qualification 
Test (a highly g-loaded scale), even in time of war. This mandate was based on 
the practical experience gained in training recruits for the various jobs required 
in the armed services. The problem is not just that individuals below the tenth 
percentile lack the specific knowledge and skills needed in the armed services, 
but rather it is a problem in trainability. All new recruits, regardless of IQ, have 
to undergo training for the specific jobs they will perform in the military. But 
when recruits scoring below the tenth percentile have been admitted on an ex­
perimental basis, it has generally been impossible, given the time that can prag­
matically be devoted to training, to bring them up to a useful standard of 
performance on even the least complex jobs available in the military. Nor is 
this a literacy problem per se (although the vast majority of illiterates are found 
in this group). Rather, it is essentially a comprehension problem; trainees below 
the tenth percentile typically cannot understand verbal instructions any better
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when they hear them clearly read aloud than when they are required to read the 
instructions by themselves.

In a largely urbanized industrial and technological society, with its ever- 
increasing information-intensive demands, life for those with IQs below eighty 
becomes a series of frustrating trials. Using a telephone directory, getting 
through a voice-mail system, reading bus or train schedules, banking, keeping 
financial records, filling out forms and dealing with the bureaucracy, using a 
VCR, cooking food in a microwave, following directions on prescriptions or 
over-the-counter drugs, passing drivers’ tests, knowing where, when, and how 
to shop economically, and countless other routine demands of daily life in mod­
ern society are all cognitive challenges for individuals with low IQ, and are 
often beyond their capability.

Specific training for any one of these demands can only do so much. Earl 
Hunt, a leading researcher in cognitive psychology, provides the following ex- 
ample[9al from the U.S. Arm y’s experience in training Category IV personnel 
for specialized jobs. (Category IV recruits are those whose scores on the Armed 
Forces Qualification Test fall between the tenth and thirtieth percentiles [equiv­
alent to IQs of about 81 to 92]): “ [T]he Category IV soldier did quite well so 
long as it was clear exactly what was to be done. For instance, these soldiers 
were able to perform engine maintenance operations that involved long se­
quences of operations, providing that there were no choices at each step. On 
the other hand, the same soldiers were unable to carry out relatively simple 
repairs in situations where they had to decide what had to be done”  (p. 10). 
The two types of tasks described by Hunt clearly differ in their g demand. The 
first represents a well-learned and routinized skill, the second involves thinking 
and problem solving. It is the latter type that, so far, has been least responsive 
to training in the below-eighty IQ range, probably because the very process of 
learning the kinds of algorithms, schemata, and strategies that constitute the 
teachable aspect of thinking and problem-solving skills are themselves too g- 
demanding to be mastered by persons of low IQ. Productive thinking and prob­
lem solving depend upon having a store of relevant information that can be 
readily accessed from long-term memory. However, the amount and level of 
complexity of the information that can be acquired through training and expe­
rience are highly correlated with g. And therein lies the problem.

In a recent book,I9t>] Hunt examined the problem of supply and demand for 
cognitive ability and the higher levels of specialized skills needed for employ­
ment in the coming decades. Making a legitimate distinction between g and 
acquired skills, he proposes using methods based on cognitive theory to improve 
the required work-related thinking and problem-solving skills for persons at 
almost every level of general ability. The methods are not intended as a pre­
scription for equalizing people in general ability or, for that matter, even in 
specific skills, but for increasing the level of various needed skills in the whole 
population, especially those in the lower half of the IQ distribution, in order to 
increase the supply of workers who can better fulfill demands that will be made
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on our future work force. Whether Hunt is overly optimistic about the efficacy 
of these methods for the lower IQ segment of the population remains to be seen. 
So far, most advances in technology (for example, the use of personal comput­
ers) have accentuated the effects of individual differences in g, dividing the 
population into those who can and those who cannot become proficient in using 
the new technology. Those who cannot are then further disadvantaged.

Lloyd Humphreys1'0111 coined the term inadequate learning syndrome (ILS) to 
describe deficits in basic intellectual skills and information. He believes ILS is 
a social epidemic “ as serious in its way as the AIDS epidemic.”  ILS is primarily 
a result of an insufficient level of g and is seen in the presence of adequate 
educational opportunity. This is what makes ILS so visible. The adverse con­
sequence of ILS in the nation’s work force is not a result of any marked change 
in the total population distribution of g. It is a product of the increasing demand 
for formal educational credentials in today’s job market. As such credentials 
and diplomas have become spread over a greatly increased range of individual 
differences in actual educational achievements and qualifications, many em­
ployers have found today’s high school diploma, or even a college degree, of 
little value in the absence o f additional information about a job  applicant’s 
ability. Employers increasingly come to rely on specific screening tests to assess 
actual levels of relevant achievement. And what these tests too often reveal 
is ILS.

For the most part, ILS only comes to public attention because of its dispro­
portionate frequency among identifiable subpopuiations whose distribution of g 
is considerably below the overall national average. Humphreys is much less 
optimistic than Hunt, not only because ILS is so strongly g related, but because 
it is so often enmeshed in the whole nexus of other ^-related variables that are 
inimical to the development of employable skills. Humphreys notes “ the prev­
alence of ILS among parents and other relatives, neighborhood adults, and 
peers”  and how it is “ embedded in a complex of problems that include teen 
pregnancy, illegitimacy, female-headed families, welfare, drugs, prostitution, 
and violent crim e”  (p. 259).

People with IQs below eighty commonly run into difficulties unless assisted 
in the management of their affairs by relatives or social agencies. The problem 
is accentuated socially and politically by the visibility of marked disparities 
between the proportions of different subpopulations that fall below this critical 
threshold. The social importance of these proportional below-threshold differ­
ences is that they are also reflected in statistical differences in many “ real life” 
variables that constitute the g nexus— education, employment, income, poverty, 
crime, and other social pathologies.

The major social problems involving g arise from the dual conditions of 
critical threshold and critical mass. Largely because of economic selection, peo­
ple in the lower segment of the normal distribution of g gradually become 
segregated from the rest of the community, not only in regard to where they 
live but also in how they live. People of a given ability level tend to be less
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conspicuous among a community of similar individuals and operate more com­
fortably within it. People’s environments, or their perceptions of them, differ in 
complexity and cognitive demands. One might even characterize different en­
vironments in terms of their g loadings. As the selection process accelerates, the 
percentage of low-ability persons residing in the same locality approaches what 
might be called a critical mass, in which a majority of the inhabitants of the 
neighborhood segregated by low g  falls below the critical threshold. The more 
able and ambitious residents leave the area; its economic viability dwindles; and 
those left behind come to constitute what is now referred to as the under­
class}'0̂  This is the blight of the so-called “ inner city”  of many metropolitan 
areas. The “ culture of poverty”  spontaneously engendered by these conditions 
hinders upward mobility, most unfortunately even for those youths who possess 
an average or above-average level of g and would predictably succeed in a 
decent environment. This is indeed the gloomy side of the g nexus.

The problems of inner-city schools are g related and epitomize what Hum­
phreys has referred to as the inadequate learning syndrome, or ILS. Observing 
educators’ attempts to improve learning in inner-city schools, M aero ff111 noted: 
“ [Tjhere is a tendency to revel in delusions of improvement. Order may be 
restored, but oppression reigns. Test scores may rise, but concepts remain un­
grasped. Facts may be memorized, but students cannot apply them in solving 
problems. Dropouts may be kept in school, but the diplomas they receive are 
not backed by skills and knowledge”  (p. 638).

Persons of subthreshold g who are not members of the underclass constitute 
a relatively small percentage of the general population that is gainfully employed 
and lives in wholesome neighborhoods. Although low IQ persons who are reared 
in the favorable environment of fully capable parents and relatives experience 
the usual cognitive disadvantages of subthreshold g  in scholastic performance 
and level of employment, their disadvantage in dealing with novelty and com­
plexity is generally “ buffered”  by their relatives and caring neighbors, who can 
mediate for them when necessary in their encounters with the more g-demanding 
problems of daily life. When the cognitively disadvantaged are sparsely dis­
persed among responsible relatives and neighbors of average and higher IQ, 
they escape the multiplier effect of their disadvantage that results when many 
low-IQ persons are segregated together in a neighborhood. In a neighborhood 
that has reached “ critical mass,”  on the other hand, cognitive disadvantage is 
the majority condition for parents and children and their extended families and 
neighbors, who can provide little if any mediation or “ buffering”  when 
needed.1'21 There are families, and even whole apartment blocks, that require 
almost daily intervention by social workers to help in the management of what 
most people would consider routine contingencies in the affairs of daily life.

EDUCATION AND FUNCTIONAL LITERACY
After g itself, education is the most important variable in the nexus. This is 

because the effects of general education and of specialized intellectual skills
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(whether acquired in school or elsewhere) are the main mediators for the indirect 
effects of g as manifested in present-day society. Performance in life (outside 
the testing room) reflects in large part the interaction of g and education. The 
effects of education and g are not additive, but multiplicative. (That is, their 
joint effect can be represented as the product of g X  education.) When educa­
tional opportunity is equalized, g becomes the major predictor of performance. 
(Only when g is held constant does education become the major predictor.) For 
persons in the same educational setting and at every level from first grade to 
graduate school, highly g-ioaded tests predict more of the variance in educational 
performance than any other single variable or set of variables independent of g, 
including all of the usual SES or family background variables that are so com­
monly regarded as the major determinants of educational achievement. (As 
selection for and by education, from elementary school through college, pro­
gressively reduces the variance in g, special talents and certain noncognitive 
traits come to play an increasingly important role in successful performance.) It 
is important to note that, independent of g, the variables of race or ethnicity per 
se contribute virtually nothing to the prediction of educational achievement.

It is instructive in this regard to look at multiple regression analyses based 
on four data sets from large independent samples that were given various tests 
at different stages of schooling.

• Psychometric data from the National Longitudinal Study of Youth (NLSY) 
provide test scores that measure two core aspects of scholastic achievement 
(mathematics and verbal/reading skills) obtained on large regional samples of 
youths fifteen to eighteen years of age. The National Education Longitudinal 
Survey (NELS) provides achievement scores in mathematics and reading skills 
obtained from large regional samples of eighth-graders (aged twelve to fourteen 
years). The NLSY and NELS data sets both include the same measures of family 
background, along with the region of the country, as independent (predictor) 
variables. The family background variables include family income, father’s and 
mother’s education, age of mother at child’s birth, number of siblings, mother’s 
marital status, mother’s employment status, and ethnicity (black, Hispanic, and 
non-Hispanic white).1131 If we use all of the background variables, except race/ 
ethnicity, as independent variables in a multiple regression to predict scholastic 
achievement in math and reading, the multiple correlation, R, in each study is:

NLSY NELS
Math .39 .39
Reading .47 .37

All of the correlations are highly significant (p <  .001). It is apparent that the 
background variables are substantial predictors of achievement. Among all of 
the independent variables, by far the largest share of the predictive weight is 
carried by the parents’ level of education. We know from other studies that the 
level of education is also related (r «  .60) to the mid-parent IQ, which is 
correlated (r .50) with the offspring’s IQ. IQ is highly predictive r ** .75 of
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the child’s overall level of scholastic achievement from grades one through 
twelve. Most, though not quite all, of the power of parental education as a 
predictor of their offspring’s achievement, therefore, is mediated both by the 
parents’ level of g and by the substantial (narrow) heritability of g.

When race/ethnicity is included among the predictor variables in the multiple 
regression, the Rs are:

NLSY NELS
Math .53 .53
Reading .60 .48

Comparing these values of R with those in the preceding table, it is apparent 
that the addition of race/ethnicity to the prediction equation increases R sub­
stantially.

From the difference14 between these two tables, we can determine the pre­
dictive value of the race/ethnicity variable independent of all of the other back­
ground variables, that is, when the total effect of all of the other measured 
background variables has been statistically removed. Thus the R for the inde­
pendent effect of race/ethnicity on scholastic achievement in this analysis is:

NLSY NELS
Math .37 .35
Reading .38 .31

These are also substantial predictive values, which appear to contradict the ear­
lier statement that race/ethnicity contributes nothing to the prediction of scho­
lastic achievement. That statement is true, however, when we take individual 
differences in level of g into account in addition to background variables. This 
tells us that the effect of the variable labeled race/ethnicity on educational 
achievement is largely mediated by other variables and especially by g.

• Consider the following study1151 of nearly 6,000 pupils (2,237 white, 2,025 
Hispanic [Mexican-American], and 1,694 black) in grades one through eight in 
one California school district in which the test scores of the three groups closely 
matched the normative distribution of scores for these populations on two na­
tionally standardized tests. Multiple regression analyses were performed sepa­
rately within each school grade. Race or ethnicity was included as a binary 
variable in three separate analyses— white/black, white/Hispanic, and black/His­
panic.

The predictor variables were age, sex, a SES index that summarized 25 fam­
ily and home background variables in 4 separate scores, a battery of 7 highly 
diverse cognitive ability tests chosen to not measure scholastic subject matter 
(1 verbal IQ test and 5 nonverbal tests whose composite score is highly g 
loaded), and a personality inventory for assessing introversion-extraversion and 
neuroticism (anxiety) in children (not used below fourth grade).

The predicted variables were each of the nine subtests of the Stanford
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Achievement Test battery, which assess basic elements of scholastic achieve­
ment such as various aspects of reading, spelling, language, and arithmetic. 
Scores on each subtest were regressed separately on the set of predictor variables 
(described above).

The results of these analyses were highly similar for all nine achievement 
variables. The predictive validity of the independent (predictor) variables in­
creased monotonically with grade level, the overall average value of R increasing 
from .37 at grade 1 to .76 at grade 8, averaging .70 across grades 1 to 8. This 
set of independent variables thus predicts educational achievement to a high 
degree.

Now look at the simple correlation of race or ethnicity with achievement 
(averaged over all subtests and grades): For white/black, r  =  .38; for white/ 
Hispanic, r =  .31, and for Hispanic/black, r =  .12. These correlations are mod­
est but significant (all with p  <  .01). But when we partial out (remove) the 
effects of the set of predictor variables (absent race/ethnicity) from these cor­
relations, the corresponding values of the partial correlations drop to .05, - .0 8 , 
and .08, each of which is nonsignificant (average p >  .30). That is, race/ethnicity 
made no significant contribution to the prediction of achievement independent 
of the effects of the measures of individual differences in the cognitive abilities 
and family background variables that constitute the core of the whole g nexus. 
No uniquely racial or ethnic characteristics of the students or racial biases im­
posed by the schools need be invoked to explain the observed racial/ethnic 
differences in educational achievements.

• In data obtained from 339 college students, the g factor proved to be the 
central element in the path analysis1'61 of a nexus of nine intercorrelated variables 
that included college aptitude (SAT-Verbal, SAT-Math, ACT college aptitude 
test), academic performance in high school and college (high school grade av­
erage, college grade average in math and in English, and fam ily variables (in­
come, parent’s age, family size).

Five different path models were fitted to the data. The path model that best 
explained the nexus, that is, the model that provided the most parsimonious or 
“ best fit”  to the data, is shown in Figure 14.1. Both g and academic perform­
ance (AP) are called latent traits in this model, as they are not observed vari­
ables; that is, they are not measured directly, but are derived as factors from the 
observed data. (Latent traits are conventionally shown in path analyses as circles, 
observed variables as squares.) Note that there are no direct paths connecting 
any of the three family variables (or their common factor) to the common factor 
of academic performance or to any of its three elements. Including another path 
that directly connects the family variables (or from their common factor) to 
academic performance (AP) does not improve the model’s fit in the least. In 
the best-fitting model (Figure 14.1), g is shown with a path coefficient of .672 
going to AP; thus g accounts for (.672)2, or 45.2 percent of the variance in AP. 
The circles containing E  represent measurement error and unmeasured sources 
of true-score variance in the observed variables. The square of the path coeffi-
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Figure 14.1. Path analysis of a nexus consisting of 3 college aptitude measures: SAT-M 
(math), SAT-V (verbal), ACT (American College Test); 3 family variables: INC (family 
income), FM SZ (family size), PAGE (parent age); and 3 measures of academic perform­
ance: HSGA (high school grade average), CM T (college math grades), CEN (college 
grades in English, g  and A P (academic performance) are derived general factors, or the 
latent variables in the path model. E and D are “ error”  or unexplained sources of 
variance in the respective variables. Arrows indicate the hypothesized paths between the 
latent variables (in circles) and the observed variables (in squares). (Brodnick, R. J. & 
Ree, M. J., A structural model of academic performance, socioeconomic status, and 
Spearman’s g. Educational and Psychological Measurement, 55, pp. 583-594, copyright 
© 1995 by R. J. Brodrick and M. J. Ree. Reprinted by permission of Sage Publications, 
Inc.)

cient coming from any E is the proportion of variance in the given variable that 
remains unexplained by the latent variables in the model. Similarly, D2 is the 
unexplained variance in the latent trait labeled AP. [Note: (.672)2 +  (.740)2 = 
1.00.]

Functional L iteracy. The general level of literacy in America, partly as a 
result of comparisons with that of other industrialized nations, has become a 
major concern to educators and an issue of acute public awareness.1171 The skill 
known as reading comprehension is certainly a major element in the g nexus. 
Reading comprehension is a complex information-processing skill, the acquisi­
tion of which, like other complex processing skills, reflects individual differ­
ences in g.

Although literacy and illiteracy are often treated as “ either-or categories,” 
there is actually a perfect continuum of individual differences in the ability to
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comprehend the meaning of printed text and to express one’s thoughts in writing. 
Illiteracy once meant the complete lack of reading or writing skills. Since this 
lowest-level definition now applies to only about 1 percent of American adults 
and therefore conveys little information, illiteracy has come to be defined as the 
inability to read and write well enough to function adequately in modern society. 
iMore specifically, the U.S. Public Health Service, in 1971, adopted the definition 
of functional literacy as being the average level of reading comprehension at­
tained by school children at the beginning o f  fourth grade (at about age nine). 
The mean on an objective test of reading comprehension given to a represen­
tative sample of children just entering the fourth grade was used as the cut-score 
for classifying persons as either functionally literate or functionally illiterate. 
This test was given to a national probability sample, ages twelve to seventeen.1181 
The estimated relative frequency (and its standard error) of functional illiteracy 
among seventeen-year-old Americans in 1971 was 4.4 ±  0.73 percent (white, 
2.8 ±  0.65; black, 14.8 ±  4.32). In the years from 1971 to 1984, however, 
surveys by the National Assessment of Educational Progress (NAEP) have 
shown significant gains in the level of reading proficiency, especially for racial/ 
ethnic minority groups (see Figure 14.2). The reading tests are all scored on a 
common scale representing different levels of the complexity and difficulty of 
the reading material. Key scores on the reading scale are characterized as fol­
lows:

Score R eading Level
150— Rudimentary (typical 2nd-grade readers)
200— Basic (4th-grade reading matter)
250— Intermediate (8th-grade reading matter)
300— Adept (high school college preparatory material)
350— Advanced  (4-year college reading level)

The cause of the increase in scores for each age group (9, 13, and 17 years) 
between 1971 and 1984 is uncertain, but is probably related to the schools’ 
increased focus on the improvement of reading instruction and the increased 
attention given to raising the achievement levels of minority students. Other 
contributing factors are possibly secular changes in birthrates in different soci­
oeconomic levels of the population and the conditions hypothesized as causes 
of the “ Flynn effect”  (see Chapter 10, pp. 318-32).

From first grade through high school, reading proficiency (defined as reading 
comprehension), becomes increasingly g loaded. Skill in word reading per se 
normally becomes automatized in the early grades. Unusual difficulty in ac­
quiring automatized word reading, or decoding, if it persists into the fourth 
grade, becomes relatively unrelated to g. It is then typically taken as evidence 
of a specific learning disability, or dyslexia, which occurs in about 5 to 15 
percent of the school population, the precise frequency depending on the diag­
nostic criteria used. Beyond fourth grade, however, the correlation of reading
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F ig u re  1 4 .2 . Trends in average reading proficiency as a function of race/ethnicity, age, 
and the year o f testing (1971-1984), in a national probability sample of the U.S. popu­
lation. The “ hourglass”  figures indicate the estimated population mean level o f reading 
proficiency and the 95 percent percent confidence interval around the mean (i.e., the level 
of certainty that the mean reading proficiency in the given population falls within the 
interval between the top and bottom of the “ hourglass” ). See text for explanation of the 
scale of reading proficiency. (Source: National Assessment of Educational Progress, 
1985, p. 32.)



The fi Nexus 563
comprehension with IQ and its g loading in factor analyses of reading tests 
along with various other kinds of cognitive tests is almost as high as the relia­
bility of the tests themselves. Also, mean racial/ethnic group differences in read­
ing comprehension are highly comparable to the corresponding mean differences 
in verbal and nonverbal IQ for native-born, English-speaking groups. The sex 
difference in reading— females are higher at every age— is one instance where 
the group differences in reading proficiency and in g are slightly at variance. 
Most of the sex difference occurs at the lower levels of reading proficiency; for 
example, among persons seventeen years of age, more than twice as many males 
as females are functionally illiterate (6.5 percent vs. 2.3 percent).1181 The sex 
difference is negligible in the functionally literate segment of the population.

Because reading is a learned skill, of course, it improves with training and 
practice, and reading comprehension increases with growth in vocabulary and 
with the increasing fund of information stored in long-term memory. But as 
reading is a complex information-processing skill, all these aspects of reading 
also reflect individual differences in the efficiency of information processing, 
which includes speed of intake of information, working memory capacity, and 
the accessibility of information from long-term memory.1191 It is these basic 
processing components in reading that are less easily influenced by training and 
practice. In the absence of a specific reading disability (such as dyslexia or 
aphasia), reading comprehension and listening comprehension are highly cor­
related. It is comprehension itself that is by far the more complex aspect of the 
skill involved in reading. Reading comprehension is correlated nearly as much 
with nonverbal as with verbal IQ. Even performance on a task as simple as 
reaction time (RT) measured with the Hick paradigm, which does not use al­
phanumeric symbols at all (see Chapter 8, pp. 211-14), shows correlations with 
scores on a reading comprehension test comparable to those for the highly g- 
loaded Raven’s matrices (a nonverbal test of reasoning). Intraindividual trial-to- 
trial variability in RT, which has the highest g loading of any measure derived 
from the RT procedure, showed a correlation of — .71 with reading comprehen­
sion in a group of ninth graders, while total RT correlated —.54 with reading 
comprehension.1201

EMPLOYMENT AND INCOME
Adam Sm ith’s dictum that a nation’s wealth depends on the developed abil­

ities of its people is the basis of the public concern in this technological era that 
we have a well-educated work force. In the information age, a nation’s most 
important resource in the modern world is not its material natural wealth but its 
human capital, that is, the overall level of its population’s developed abilities 
that are in demand in a free market. The economic value of g, therefore, is a 
function of the particular knowledge and skills in which it is most highly loaded, 
and in which proficiency depends upon education, training, and experience. De­
veloped ability, in other words, is a product of g X education— education that
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inculcates the knowledge and skills that are productively relevant to the culture 
and the times. But, as already noted, there is a strong causal dependence between 
the level of g and the level of educational attainments, a dependence that only 
increases as educational opportunity is extended throughout a nation’s entire 
population. Most economists recognize causal connections between economic 
factors and developed abilities, but they generally underestimate them, because 
the measure o f developed ability most often used in economic analyses is the 
number of years of schooling.1211 This is at best a crude index of actual educa­
tional attainment and poorly reflects its g component, as the correlation between 
years of schooling and g is about .6 as compared with about .8 for the correlation 
between measures of scholastic achievement and g. (The average of school or 
college grades is also only moderately correlated with psychometric assessments 
of actual attainments.) Specialized tests of the types of knowledge and skills 
that are most relevant to certain occupations may have more predictive validity 
for personnel selection, but they, too, have a large g component when all the 
applicants have had equivalent training for the specialized job.

R. B. Cattell’s1221 formulation of the supply/demand relationship between the 
supply of developed abilities and the economic demand for these abilities in a 
particular culture at any given time can be depicted as two bell-like curves, one 
curve representing the supply distribution of developed ability in the population, 
the other curve representing the demand distribution at a given time. When the 
two distribution curves completely overlap or coincide, supply and demand are 
in perfect equilibrium, which is presumably the ideal condition. When the two 
curves are markedly offset, however, there is a scarcity of supply at the higher 
end of the ability spectrum and an excess supply at the lower end, as shown in 
Figure 14.3. (This is intended as a theoretical model and does not represent 
actual data or measurements.) The model predicts that changes in the unem­
ployment rate due to fluctuations in the economy mostly affect the lower seg­
ment of the ability spectrum. The supply distribution is shown as quite skewed 
to the right, because it represents the distribution of developed ability, which is 
a form of achievement. (Because achievement is a product of a number of more 
basic, normally distributed traits, it always has a skewed distribution when meas­
ured on an absolute scale.) Note that in any complex industrialized society the 
demand distribution spans a very wide range on the ability scale, although the 
actual population frequencies (supply) at each point on the scale may depart 
markedly from the frequency of demand. The cognitive requirements for various 
occupations, of course, fall in different segments of the ability scale.

The economic value per se (and hence the monetary reward) for persons at 
any given point on the ability scale is a positive function of the ratio of demand 
(D) frequency to supply (S) frequency (i.e., demand/supply). For example, at 
— l a  below the mean (zero) in Figure 14.3, the demand/supply ratio (D ^S,) is 
.3; at + l c  above the mean, the demand/supply ratio (D2/S2) is 2.4.23 At the 
mean (M) of the ability scale, the demand is only slightly less than the supply 
(a Dm/Sm ratio of .8 in Figure 14.3). Developed ability in most of the population
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Supply Demand
Distribution Distribution

Scale of Developed Ability = g x Education

Figure 14.3. Theoretical frequency distribution of the supply (S) of developed abilities 
in a population and the distribution of the economic demand (D) for those abilities in a 
given culture at a given time, represented on a z scale (|i = 0, a  = 1) of developed 
ability, which is conceived as a product of g and education (or training) and experience. 
(Adapted from Cattell, 1983, p. 163.)

is mainly a product of g X education (or training), but this ability continuum 
may be conceived as also including special artistic and athletic talents and per­
sonality traits that potentiate developed ability, such as conscientiousness, drive, 
persistence, emotional stability, and stress tolerance.

The regions of the IQ scale from which various occupations are typically 
recruited have been determined empirically using large data sets that sample 
virtually the entire employed population of adults. An analysis based on the 
Wonderlic Personnel Test (WPT), for which the normative data comprise many 
thousands o f persons employed in every level of the occupational status, was 
summarized, along with other descriptive indices of ability, in a figure devised 
by Gottfredson,1241 as shown in Figure 14.4.

Various subpopulations have more or less bell-shaped frequency distributions 
with different means and different standard deviations on the scale of developed 
ability. In recent years, the relevance of these statistical differences to problems 
of unemployment, unequal representation of various subpopulations at different 
levels of the job  status hierarchy, and related disparities in personal income have 
been widely discussed in newspaper and magazine articles. These inequalities 
are most conspicuous at the higher levels of the scale of developed ability, 
particularly in science, engineering, and computer technology— fields in which 
the supply generally lags far behind the demand. In fact, large numbers of 
workers are imported from Asia and Europe to fill the employment opportuni-
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F ig u re  14.4 . Overall life chances associated with different ranges in the normal distri­
bution of IQ in the general population. The sources of data on which this figure is based 
are referenced by Gottfredson (1997, Figure 3, p. 117). (Used with permission of Ablex.)

ties. At the same time, there is extreme underrepresentation of U.S. blacks and 
(to a lesser degree) Hispanics in science and engineering. This disparity is of 
such major concern that the American Association for the Advancement of Sci­
ence devoted a large part of one issue of its official journal, Science,1251 to an 
examination of the topic. Despite an increase in population between 1979 and 
1988, the total number of blacks earning Ph.D. degrees in science and engi­
neering declined by 20 percent over that period. Although blacks make up 11 
percent of the working-age population, they constitute only 1 percent of all 
doctoral degrees in all of the natural sciences and engineering. The range of 
developed ability (as assessed by the SAT) that includes all those high school 
students who go on to college and major in science or engineering comprises 
nearly 8 percent of white students, 1.2 percent of Hispanic students, and .3 
percent of black students.1261 There is no evidence that these disparities are due 
to racial or ethnic bias or discrimination in the selection of students who major 
in science and engineering. The National Science Foundation commissioned a 
large-scale investigation of this question, and found that although a larger pro­
portion of blacks than of whites were interested in majoring in science when
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Tabic 14.1
Theoretically Predicted versus Actual Percentages o f Blacks and Whites Em­
ployed in Various O ccupations That Differ in Mean IQ

Occupation
B%/W% in 

Recruiting Range
B%/W% in 

1970
Occupation

1980

Physician 0.05 0.23 0.30
Engineer 0.05 0.12 0.25
Secondary teacher 0.10 0.59 0.59
Real estate sales 0.10 0.18 0.23
Fireman 0.49 0.27 0.65
Policeman 0.49 0.69 0.87
Electrician 0.49 0.33 0.50
Truck driver 0.72 1.59 1.48
Meat cutter 0.72 0.98 0.98

Source: A dapted from G ottfredson, 1986, pp. 40CM01.

they entered college, only 34 percent of blacks as compared with 60 percent of 
whites ended up majoring in any science field. On the basis of measured apti­
tudes related to a science major, the study concluded that “ equal developed 
ability among students interested in science predicts equal persistence, regardless 
of ethnic or racial affiliation.” 1271

This question can be broadened to include examination of a wide spectrum 
of occupations for which there are different percentages of blacks and whites 
(and other subpopulations). Sociologist Linda Gottfredson1281 began with the 
observation that various occupations “ recruit” their members from different 
segments of the normal distribution of IQ in the general population (see Figure 
14.3). Then, from employment and test data gathered in 1970 and in 1980, she 
determined empirically the percentage of the white population and of the black 
population that fall in the “ recruiting range”  of IQ for each of nine occupations 
that vary widely in central tendency on the nationally normed IQ scale. The 
black/white ratio (i.e., B%/W%) within each IQ recruiting range was then com­
pared with the ratio o f blacks to whites (B%AV%) actually employed in each 
occupation, in 1970 and 1980. These ratios are shown in Table 14.1. Obviously, 
many other personal characteristics besides IQ, in addition to circumstances and 
opportunities, determine a person’s occupation. However, this does not contra­
dict the essential point conveyed by Table 14.1, which is that if recruitment 
standards were the same for blacks and whites with respect to the g demands 
in each occupation (as indicated by its IQ recruitment range) the B%/W% ratio 
in the recruitment range for a given occupation should be equal to the B%/W% 
ratio actually employed in that occupation. If there were racial discrimination
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against blacks, we should expect the recruitment ratio to be larger than the 
employment ratio. But in fact the opposite is true for many of the more g- 
demanding occupations, in which blacks are quite considerably overrepresented, 
especially in the 1980 data. For some of these occupations (and probably many 
others) it appears that blacks were recruited from a somewhat lower IQ range 
than whites. This is consistent with independent data showing that mean IQs 
are lower for blacks than for whites in the same occupational category. Gott­
fredson28 concluded: “ //’ black-white differences in g remain large and i/jo b s  
remain g loaded, then black-white parity in employment may be possible only 
by lower intelligence recruitment standards for blacks. Unless blacks possess 
compensatory non-g traits in greater measure than do whites for any particular 
job, then lower intelligence standards for blacks than for whites will also result 
in lower mean performance levels for blacks than for whites in those jobs”  (p. 
402).

Incom e. In the g nexus, earned income is closely related to education and 
occupational status. But even when education, occupation, and socioeconomic 
background are held constant, income is correlated with IQ. The correlation of 
income with IQ, which averages about .40, increases with age and stabilizes 
when people are middle-aged and have reached their highest career potential. 
Also, the IQ-income correlation itself increases at higher levels of education; 
the lower the level of education, the weaker is the relation of income to IQ. 
This is because the variation in IQ decreases going from low-status to high- 
status occupations; the lower bound of the IQ range in different occupations 
rises markedly in the upper half of the occupational scale, while the upper bound 
of the IQ range increases relatively little. Typical path analyses best fit a causal 
model leading from IQ independently to each of the three variables in the nexus 
(education, occupation, income), with paths also causally connecting the these 
variables (education —> occupation -»  income). The causal direction of IQ has 
been established in studies in which the IQ was measured in childhood and 
parental SES is statistically controlled. Individuals’ IQ, even when measured in 
childhood, is a considerably larger independent source of variance in educational 
attainment and occupational status than is parental SES.1291 Intergenerational mo­
bility in SES is largely determined by IQ; for example, a son whose IQ is higher 
(or lower) than his father's IQ, on average, moves up (or down) the scale of 
occupational status and income, and siblings with quite different IQ, though 
reared together, often differ in occupational status and earned income as adults. 
In fact, full siblings who were reared together differ, on average, almost as much 
in occupational status as persons picked at random in the population.

Economists Brown and Reynolds1301 have formulated a mathematical model 
of the relationship between IQ and income. It states: K,j =  +  fr|(IQ, — 1j) +  
eM, where is the income for the fth individual in the jth  occupation; /, is the 
threshold IQ for occupation j; bt is a slope parameter >  0; IQ; is the ;th indi­
vidual’s IQ; and el} is a random effect (uncorrelated with IQ) with an expected
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value of 0 and a constant a . The model theoretically makes a number of pre­
dictions that accord with empirical findings:
1. Mean IQ in higher occupations exceeds mean IQ in lower occupations.
2. Variation in IQ is greater in lower occupations.
3. Mean earnings are greater in higher occupations.
4. Implied by items 1 and 2: There is a negative correlation between mean IQ and IQ 

variance across occupations.
5. Variation in earning is greater in higher occupations.
6. In two subpopulations, A and B, where the mean IQ o f A is less than the mean IQ 

o f B and the groups have the same IQ variance, then, if the population ratio o f A to 
B is R, the relative frequency of A will increasingly fall further below R at each 
higher level of the occupational hierarchy.

7. Assuming that all individuals with the same IQ earn equal incomes (on average), the 
average earnings o f A will be less than those o f B within all occupations.

8. If the mean IQ of subpopulation A is less than the mean IQ of subpopulation B, then 
within occupations A will have a smaller range and variance in both IQ and income.

9. Within a given occupation, the correlation between earned income and IQ will be 
lower for subpopulation A than for subpopulation B. and the slope of the regression 
of earnings on IQ will be lower for A than for B.

Brown and Reynolds show empirically how the model fits the above predic­
tions and also helps to explain the occupational patterns of certain minority 
groups (Chinese Americans, Jews, and blacks) that have historically been vic­
tims of discrimination but, on average, attain different levels in the occupational 
hierarchy. As the IQ-based model of income differences predicts slightly less 
than half of the black-white earnings gap, however, there are obviously other 
factors that must account for the remaining income difference, such as disad­
vantages in non-g characteristics that are related to job performance, and perhaps 
racial discrimination in hiring and promotion.

The fact that the average black-white difference in g cannot explain entirely 
the black-white differences in various educational, occupational, economic, and 
social variables is clearly shown by the differences that remain after the black 
and white groups are statistically equated for IQ. This has been done with a 
national probability sample from the National Longitudinal Study of Youth13' 1 
(see Table 14.2).

CRIME, DELINQUENCY, AND MORALITY IN THE g  NEXUS
Chapter 9 (pp. 297-98) discussed the relationship between antisocial behavior 

and the predictive validity of g. However, it is only within the context of the 
whole g nexus that the causal role of g in these societal variables can be properly 
understood. This is especially so since some criminologists, sociologists, and 
psychologists have argued that individual and group differences in mental
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Percentages of Blacks and Whites (Statistically Matched for 10) in Various Ed­
ucational and Social Conditions
Table 14.2

Condition1
Percentaae 

Blacks Whites

High school graduation (103) 91 89
College graduation (114) 68 50
High-Level Occupation (117) 26 10
Living in poverty (100) 14 6
Unemployed for 1 month or more (100) 15 11
Married by age 30 (100) 58 79
Unwed mother with children (100) 51 10
Has ever been on welfare (100) 30 12
Mothers in poverty receiving welfare (100) 74 56
Having a low birth-weight baby <5.5 lbs (100) 6 3
Average annual wage (100) $25,001 $25,546

'The num ber in parentheses is the IQ on which blacks and whites were statistically equated within 
each category.

Source: Herrnstein & M urray, 1994, Chapter 14.

abilities are important causal effects in delinquency and crime.1321 The argument 
that some part of the conspicuous racial differences in crime rates is related to 
the statistical differences between races in the measures of cognitive ability that 
are empirically correlated with antisocial behavior1331 is based on four established
facts:

• There is a negative correlation ( — .3 to - .5  in various studies, slightly more 
so for verbal than for nonverbal tests) between IQ and measures of delinquency 
and criminality, such as police and court records and self-reports of criminal 
activity. Delinquents and adult criminals typically average ten to twelve IQ 
points below law-abiding persons living in similar circumstances. Juvenile de­
linquents who become adult criminals have lower IQs than delinquents who do 
not become criminals. Recidivists have lower IQs than one-time offenders. In 
home environments or in neighborhoods that are conducive to delinquent or 
criminal behavior, an above-average IQ acts as a protective factor against the 
influences toward antisocial behavior.

• The above-mentioned correlation between crime and IQ is clearly nonlinear. 
That is, the rate of serious crimes against persons, such as robbery, assault, rape, 
and homicide, is very low and nearly constant across IQ levels above IQ 100, 
but below IQ 100 the rate rises steeply, and then declines rapidly below IQ 70. 
The peak crime rate occurs in the IQ range from 75 to 90, with the highest rate 
for violent crime in the IQ range from 80 to 90. The vast majority of both petty
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crimes and violent crimes are committed by the segment of the population rang­
ing from IQ 60 to 100. (So-called white-collar criminals and leaders of organized 
crime generally have IQs above 100.) These findings apply to both males and 
females, although the rate for most types of antisocial behavior is much lower 
for females, especially violent crime.

Low IQ is obviously not the only, or even the main, causal factor in crime, 
since the vast majority of people with IQs in the sixty to 100 range never become 
delinquents or criminals. However, in addition to all other causes of criminal 
behavior, whatever these may be, low IQ is clearly a statistical risk factor. But 
no single factor has been identified as either a necessary or a sufficient cause 
of antisocial behavior.

• IQ is a more important statistical predictor of delinquency and crime than 
is socioeconomic status (SES) independent of IQ (when SES is controlled, the 
inverse correlation between IQ and delinquency or crime is hardly diminished). 
The correlation exists largely within-families. That is, delinquents average about 
ten IQ points lower than their nondelinquent siblings reared by the same par­
e n ts )  in the same social-class environment. So for individuals with IQs below 
100, having a lower IQ than one’s siblings or classmates increases the risk for 
antisocial behavior.

• The above observations apply to the population in general and to different 
racial and ethnic groups. Group differences in crime rates are attributed, at least 
in part, to the proportion of each group with IQs in the range of maximum risk 
for antisocial behavior. Groups with a mean IQ above 100, therefore, show lower 
crime rates than groups with a mean IQ below 100. For example, the Asian 
(Chinese and Japanese) population of the United States, which has an average 
IQ of about 105 and only about 15 percent falling below IQ 90 (the region of 
highest crime rates), has a crime rate lower than that of the white population 
(which has a mean IQ of 100, with 25 percent falling below IQ 90). Jews, 
another group with a mean IQ well above 100, also have a relatively low crime 
rate.1341 The black population, with a mean IQ of 85 and approximately 60 
percent falling below IQ 90, has higher rates of delinquency and criminality 
than any other racial or ethnic group in the United States.35 On the basis of such 
statistics, sociologist Robert Gordon has coined the term IQ-commensurability 
for his discovery that nearly all of the mean black-white differences in delin­
quency and crime rates can be accounted for in terms of the mean black-white 
difference in IQ.1361 Within any given segment of the IQ distribution, the black 
and white crime rates are approximately the same, so much so as to leave little, 
if any, variance needing to be explained by any other variables. In statistical 
terms, Gordon’s analysis means that one and the same regression line for the 
regression of mean crime rates on mean IQ levels would fit the data on the IQ 
X crime rate X race interaction.

Why should there be a negative correlation between g (or IQ) and delinquent 
or criminal behavior? Three explanations have been proposed. They are not 
mutually exclusive and all three probably play a part.
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One hypothesis is that low IQ causes difficulty in school and in failure to 

receive the rewards of scholastic success, which, in turn, lowers both self-esteem 
and the respect of one’s peers; the resulting frustration leads to the individual’s 
failure to internalize the rules by which approval is normally gained, instead 
resorting to aggressive and delinquent acts. Membership in a gang of youths 
who also have rejected the usual sources of self-esteem provides a means of 
gaining peer approval and self-esteem through antisocial behavior. The rewards 
that cognitive deficiencies make it difficult or impossible for these individuals 
to obtain by conventional and legitimate means are obtained in illegitimate and 
socially disapproved ways.

Another hypothesis posits a more direct causal relationship between low IQ 
and most forms of criminal behavior. It claims that low IQ individuals have a 
short time horizon', that is, they are more present-oriented and more lacking in 
foresight than most people. Persons with low IQ fail to adequately and realis­
tically imagine the future consequences of their actions. Their immediate be­
havior is therefore less thoughtful and more impulsive. And they are also less 
apt to be guided by the recall of past experience because long-range foresight, 
imagination, and recall of past experience are all g-loaded cognitive functions.

A third hypothesis emphasizes the individual’s level of moral reasoning. Re­
search in child development has shown that moral reasoning, like most other 
forms of reasoning, develops as a function of mental age. A certain level of 
mental maturity is necessary for the kind of reasoning that underlies moral and 
ethical behavior. Hence there is a correlation between IQ and moral reasoning. 
In specific moral-dilemma situations, for example, high IQ children are able to 
give reasons for moral behavior that are on a level of sophistication comparable 
to that of less exceptional youths four or five years older than themselves.1371 In 
fact, understanding moral principles forms a series of steps going all the way 
from the simple rule of “ don’t do what you were told is wrong, otherwise you 
might be caught and punished” to a deep appreciation of Kant’s Categorical 
Imperative. At least an average level of reasoning ability (g) is probably needed 
to apply this most universal principle of morality in every specific situation. 
Persons who are unable to understand the Kantian ethic or who do not compre­
hend what is wrong with their transgressions, or their seriousness, within the 
broad social context, are more prone to offensive or immoral behavior. In his 
research on the personal correlates of g, Raymond Cattell concluded, “ There is 
a moderate tendency . . .  for the person gifted with higher general ability, to 
acquire a more integrated character, somewhat more emotional stability, and a 
more conscientious outlook. He tends to become ‘morally intelligent’ as well as 
‘abstractly intelligent.’ ” 1381

THE LIMITATIONS OF g
As this book is about the g factor, more has been said about g than about 

any other aspects of human variation. This fact, however, should not leave read­
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ers with the impression that g is the all-important, or even the most important, 
variable in life. To be sure, it is one of the psychobiological variables having 
many important personal and societal correlates. But its expression in any per­
son’s life and in the character of a society depends on other factors, equally 
important, that are independent of g per se. Indeed, it is the interaction between 
g and these other factors that accounts for much, probably most, of the enormous 
variance in the visible aspects of what most people regard as worldly success. 
Success in life, of course, is not at all unidimensional. It has many dimensions, 
forms, and facets, and g plays an important part in only some of them.

The distinctness of g from many other valued personal characteristics was 
clearly recognized within ten years after Spearman discovered it. In 1915, one 
of Spearman’s doctoral students, E. Webb, published a factor analysis of a ma­
trix of correlations including a number of highly g-loaded tests and a number 
of ratings of character, or personality.[39a] The particular personality traits chosen 
for study and obtained from ratings by students’ teachers and associates were 
actually selected because they were expected to be related to g, and hence to 
show significant loadings on the g factor. This expectation, however, was com­
pletely contradicted by W ebb’s analysis, which yielded two wholly distinct fac­
tors— g and a general “ character”  factor, which Webb labeled w and 
characterized as “ will”  and “ persistence of motives.”  The types of items most 
highly loaded on the w factor were described as: perseverance, as opposed to 
willful changeability; perseverance in the face of obstacles; kindness on prin­
ciple; trustworthiness; and conscientiousness. It seemed puzzling that this cluster 
of traits would emerge independent of g. Teachers’ and other people’s subjective 
impressions of any given person’s level of intelligence create a “ halo effect”  
which biases the observers’ ratings of that person’s personality traits. Despite 
this bias of the personality ratings by halo effects, W ebb’s factor analysis, be­
cause it included objective tests of g, gave a clean-cut separation of the two 
domains. W hat W ebb’s study and subsequent studies seemed to indicate was 
that g, even as fallibly measured by psychometric tests, is an entirely cognitive 
variable.

Later studies of the relationship between personality factors and g have fully 
substantiated this conclusion.11391,1 The most thorough and systematic research I 
have found in this vein is that by Philip Ackerman and his associates.1401 They 
have correlated the so-called “ Big Five”  personality factors (Neuroticism, Ex­
traversion, Openness, Agreeableness, Conscientiousness), which account for 
most of the variance measured by many different personality inventories, with 
measures of fluid and crystallized ability, or G f  and Gc. (Recall from Chapter 
5 [pp. 122-25] that when a large number of diverse tests are factor analyzed, 
the second-order factor G f and the third-order g are virtually identical.)

The G off and Ackerman study1401 found that the correlations between thirteen 
personality scales and G f (or g) were nonsignificant (p >  .05) and close to zero 
(r ranging from —.167 to +.131, with the average r =  —.034, the average 
absolute Irl =  .071). Crystallized abilities, or the Gc factor, showed three sig­
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nificant (p <  .05) but small correlations (r ranging from - .1 3 8  to +.238 with 
the average r =  +.087, Irl =  .109). The pattern of the thirteen G f  correlations 
is quite different from that of the thirteen Gc correlations, as these two column 
vectors of correlations are correlated with each other —.263.

The difference between G f and Gc in relation to personality variables, how­
ever, is consistent with a key hypothesis advanced by Ackerman, which holds 
that “ when considering the development and expression of intellect in adult­
hood, no theory can be comprehensive if it does not portray how personality, 
interests, and ability interact to determine the level of knowledge that individuals 
develop throughout the adult lifespan.” 1411 Ackerman makes an important dis­
tinction between the individual’s level of maximal performance on highly g- 
loaded tests and that individual’s level of typical performance in everyday life, 
or what Ackerman labels as Typical Intellectual Engagement (or TIE). Most 
people perform at near their maximum level while taking a cognitive test. How­
ever, even among persons who show exactly the same level of g , there is great 
variation in TIE, which is assessed with a fifty-nine-item self-report question­
naire. The TIE inventory assesses the degree to which the individual typically 
engages in g-demanding activities, vocationally and especially avocationally, 
and has what would ordinarily be regarded as intellectual interests (reading, 
learning, thinking, a wide range of interests, particularly in literature, science, 
and mentally challenging activities, such as chess, being absorbed by the sub­
jects of one’s interests and delving into them in depth).

TIE is much more a personality factor than an ability factor. It does not 
correlate at all with G f (or a third-order factor g), but has significant but small 
correlations (r =  + .3  to + .4) with verbal IQ and Gc. (Tests for IQ and Gc 
involve specific knowledge content and hence reflect intellectual achievement 
as well as the information-processing capacity that is measured more purely by 
Gf.) For a given level of g, a higher level of TIE in adulthood leads to somewhat 
higher levels of real-world intellectual achievement. But TIE itself clearly be­
longs in the personality domain, as shown by its correlations of about + .60 with 
two of the “ Big Five”  personality factors (“ Openness”  and “ Conscientious­
ness” ), as well as with another personality factor, “ self-directed activity,” 
which reflects energy level, absorption, and lack of distractibility. Ackerman and 
Heggestad summarize as follows, “ [Ajbilities, interests, and personality develop 
in tandem, such that ability level and personality disposition determine the prob­
ability of success in a particular task domain, and interests determine the mo­
tivation for attempting the task. Thus, subsequent to successful attempts at task 
performance, interest in the task domain may increase. Conversely, unsuccessful 
attempts at task performance may result in a decrement in interest for that do­
main.” 1421

This is all reminiscent of R. B. Cattell’s investment theory, |431 which is essen­
tially a theory of the experientially acquired components o f mental abilities, 
particularly crystallized abilities (Gc) and other non-g second-order factors. Dif­
ferent types and levels of achievement result from the different ways that persons
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“ invest”  their g resources. These, in turn, are largely determined by interests 
and personality factors, which themselves have both genetic and environmental 
variance components.

An individual’s investment of g is never spread equally or randomly over 
every type of knowledge or skills offered by the environment. Rather, it is highly 
selective, depending on interests and personality and chance events. These non- 
cognitive factors are themselves hardly, if at all, correlated with g, yet they are 
strong determinants of achievement, provided the individual’s level of g exceeds 
the threshold required for initially acquiring the basic knowledge or skills in a 
particular field of achievement. A particular interest tends to focus one’s g re­
sources. But I would hypothesize that there is also what might be termed the 
“ spread of g ” effect in knowledge acquisition (analogous to E. L. Thorndike’s 
“ spread of effect” ), which would account for the fact that high-g persons show 
a lot of incidental learning; that is, they soak up bits of information from the 
environment even on subjects in which they have little or no interest. (Hence 
the high g loading of tests of “ general information,”  which sample a wide 
variety of factual information.) More of their experience of the world “ sticks” 
in their incidental knowledge repertoire, even though much of this experience 
is adventitious and never really aroused the person’s interest or focus of atten­
tion.

What are the chief personality traits which, interacting with g, relate to in­
dividual differences in achievement and vocational success? The most universal 
personality trait in this respect is conscientiousness, that is, being responsible, 
dependable, caring, organized, and persistent. It applies to every kind of job 
success from professional and managerial to semiskilled work. It is commonly 
thought that persons who are high in conscientiousness are not apt to be suc­
cessful in the creative arts. But this is a false perception based on observation 
of the often highly egocentric, unconventional, nonconformist, or eccentric life­
style of certain famous composers, artists, and writers. The one thing that the 
biographies of such individuals consistently show, however, is that, without 
exception, they have been exceedingly conscientious in the work for which they 
are famous. W hile their personal lives may often seem chaotic, their work habits 
and their work products are not.

Besides a reasonably high level of g, those who are successful in the realm 
of intellectual achievement also have high levels on two highly correlated per­
sonality factors, TIE (typical intellectual engagement) and “ openness to expe­
rience.”

The sine qua non of truly exceptional achievement, or greatness, in any field 
is an extraordinary level of ambition and zeal in one’s endeavors. It is the 
opposite of a lackadaisical attitude toward one’s work. Zeal is probably what 
makes possible the enormous amount of diligent practice in one’s pursuit with­
out which a world-class level of performance is simply not possible. The ex­
traordinary level of virtuoso skill seen in great musicians, Olympic athletes, 
world-class mathematicians, chess champions, and top-level surgeons, for ex­
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ample, owes at least as much to their many years of disciplined study and 
practice as to their inborn talent. Their talent, in fact, might actually consist in 
large part of their unusual drive and capacity for assiduous persistence in de­
veloping their specialized skills over many years.[44al Ten years seems to be 
about the minimum amount of “ practice time”  needed for attaining a high level 
of expertise in one’s vocation, even for famous geniuses.[44bl

Ambition seems to consist of a high level of goal-directed drive, persisting 
in the face of difficulties and obstacles. It is possessed to an extraordinary degree 
by the world’s greatest achievers. The personal sources of the immense ambition 
that overrides all obstacles are scarcely understood and, as yet, have not been 
very much studied by psychologists. Dean Simonton, the leading contemporary 
researcher on the origins of high-level achievement, has remarked that the source 
of the- exceptional level of drive and ambition evinced by the most illustrious 
achievers in history is still one of the great mysteries of psychology.1451 Psy­
chologists often speak of “ achievement motivation,”  but this simply names the 
phenomenon without explaining it. The topic is crying out for scientific research.

Other personality traits are less universal in their importance, although they 
are important for success in vocations in which effective interpersonal relations 
are especially important. Among the major personality factors that enhance the 
predictability of success in these types of work are e x tra vers io n  (or sociability), 
a g ree a b len ess ,  being d ec is ive  and actio n -o rien ted , s tre ss  to lerance, em o tio n a l 
s ta b ility , and the trait known as lo cu s o f  con tro l, that is, the belief that one has 
control over what happens in life through one’s own actions and efforts and is 
not a helpless victim of circumstances.

The term “ emotional intelligence”  has gained momentary popularity,1461 but 
it is something of a misnomer, as it is not a cognitive variable at all. It actually 
comprises several relatively uncorrelated personality traits, mainly management 
o f feelings (low neuroticism), motivation, zeal, and persistence of optimism and 
effort in the face of obstacles and setbacks, empathy for others and the ability 
to read their unspoken feelings, self-awareness, and social skills. To note that 
these traits are independent of g  and factor-analytically fall within the personality 
domain rather than the cognitive domain does not at all lessen their importance 
in life, and no one would argue that positive values on any of these facets of 
personality are not desirable and advantageous personal qualities.

What has been termed “ social intelligence”  is better termed so c ia l c o m p e­
tence, or the tendency to act wisely in human relations. It is not a unitary 
dimension of personality, but is analyzable into a number of distinct factors 
(seven, in the most comprehensive study1471), each of which is correlated with a 
number of well-known personality factors. The dimensions of social compe­
tence, however, surprisingly lie outside the domain of cognitive abilities and 
therefore are distinct from g. They show remarkably low correlations with psy­
chometric abilities, both verbal and quantitative. In summarizing the results of 
their impressive studies of social competence, Schneider, Ackerman, and Kan- 
fer1471 have noted that “ it is time to lay to rest any residual notions that social
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competence is a monolithic entity, or that it is just general intelligence [g] ap­
plied to social situations”  (p. 479). Because most people live and work in a 
world in which much depends on interpersonal relations, the traits that constitute 
social competence are unquestionably of major personal and societal importance.

Robert Sternberg’s view of practical intelligence as being something distinct 
from general intelligence, or g , is best understood, I believe, in terms of Cattell’s 
investment theory. Practical intelligence refers to various kinds of knowledge 
and skills ( “ practical know-how” ) that lie outside the sphere of abilities asso­
ciated with scholastic or academic aptitude and achievement.1481 Rather, it con­
sists of abilities required by problems and tasks faced in the everyday world. 
Hence practical intelligence consists of various types of achievement, in which 
individuals differ as a result of their unique experiences and the specialized 
investment of their g resources. Measures of practical intelligence arc of such a 
nature that, if they were included in a factor analysis along with many diverse 
cognitive tests, most of their variance would consist of specificity, and the rest 
would be absorbed into the other well-established factors, and mostly into g.

Practical intelligence is not really a unitary factor, because it consists of skills 
or “ know-how”  or “ tricks of the trade”  specific to particular fields. The several 
tests of practical intelligence that I have seen are designed to tap specific items 
of knowledge relevant to these different fields and appear to have very little 
variance in common, other than g. As yet there has been no systematic factor 
analytic study of the relationship between practical intelligence and the estab­
lished cognitive factors. Any specific and highly practiced skill in a particular 
occupation would be expected on theoretical grounds to have little communality 
with many other abilities and little correlation with g. The fact that many such 
narrow types of knowledge and skills have been found, and that they are scarcely 
correlated with each other or with already established cognitive factors, is to be 
expected. But there is no evidence that the various examples of practical intel­
ligence intercorrelate highly enough to form a single group factor independent 
of g.4*

Creativity and genius are unrelated to g except that a person’s level of g acts 
as a threshold variable below which socially significant forms of creativity are 
highly improbable. This g threshold is probably at least one standard deviation 
above the mean level of g in the general population. Besides the traits that 
Galton thought necessary for “ em inence” (viz., high ability, zeal, and persist­
ence), genius implies outstanding creativity as well. Though such exceptional 
creativity is conspicuously lacking in the vast majority of people who have a 
high IQ, it is probably impossible to find any creative geniuses with low IQs. 
In other words, high ability is a necessary but not sufficient condition for the 
emergence of socially significant creativity. Genius itself should not be confused 
with merely high IQ, which is what we generally mean by the term “ gifted” 
(which also applies to special talents, such as music and art).1501 True creativity 
involves more than just high ability. It is still uncertain what this is, but the 
most interesting theory that I have seen spelled out in detail is Eysenck’s. He
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hypothesizes that the essential personality factor in creative genius is what he 
terms trait psychoticism, which has a genetic basis and is explainable in part in 
terms of brain chemistry and physiology. Explication of Eysenck’s rather com­
plex theory is beyond the scope of this chapter, but those with an interest in the 
subject will find Eysenck’s comprehensive and fascinating book15' 1 well worth 
reading.

THE FUTURE OF g
Since its discovery by Spearman in 1904, the g factor has become firmly 

established as a major psychological construct. Further psychometric and factor 
analytic research is unlikely either to disconfirm the construct validity or pre­
dictive validity of g, or to add anything essentially new to our understanding.

How then will research on g proceed in the future? I see two directions, which 
I refer to as the horizontal and the vertical.

The horizontal direction refers to the further exploration and broadening of 
our knowledge of the g nexus, that is, the interactions of g with the many 
variables of importance in the modern world. Those nodes of the g nexus that 
have been well studied were reviewed earlier in this chapter, but investigations 
of other nodes are still at a rudimentary stage. For example, it seems likely that 
g could play a much more prominent role in economic theory than has yet been 
fully recognized. The population distribution of g would also seem an important 
factor in development strategies for countries that have only limited resources 
for public education as well as in allocating international aid.1521 Greater con­
sideration could be given to the relevance of g to domestic policies on poverty, 
welfare, job training, and public education.1531 The demographic study of the 
population distribution of g resulting from differential trends in the birth and 
mortality rates within different segments of the normal curve has recently re­
ceived renewed interest.1541

The vertical direction refers to researching the factors that cause individual 
differences in g, particularly in terms of evolutionary biology, genetics, and brain 
anatomy, chemistry, and physiology. Unlike any of the primary, or first-order, 
psychometric factors revealed by factor analysis, g cannot be described in terms 
of the knowledge content of mental test items, or in terms of skills, or even in 
terms of theoretical cognitive processes. It is not fundamentally a psychological 
or behavioral variable, but a biological one. We know that g reflects certain 
properties of the human brain because of its correlations with individual differ­
ences in a number of brain variables, such as size, metabolic rate, nerve con­
duction velocity, and the latency and amplitude of evoked electrical potentials.

Although correlated with g, these physiological variables have not yet pro­
vided an integrated explanatory theory. The empirically established phenomena 
in this field greatly exceed our theoretical understanding. The known properties 
of neural processes, brain organization, and localization of functions all serve 
to narrow the possible hypotheses to those most likely to prove fruitful for
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integrating all of the disparate facts revealed by research on individual differ­
ences in information processing.

However, it is important to distinguish between the explanation o f intelligence 
and the explanation o f g. The explanation of intelligence calls for the description 
of the operating principles of the nervous system that make the functions of 
intelligence possible in all normal members of the same species. Individual 
differences in the efficiency, capacity, and power of the nervous system with 
respect to its information-processing functions are most strongly reflected by the 
g factor. But the explanation of g per se is an essentially different task from 
that of explaining intelligence, in that it calls for the discovery specifically of 
those features of the nervous system that are associated with individual differ­
ences in the effectiveness of the organism’s neural information processes, par­
ticularly those feature(s) of the nervous system that cause positive covariance 
(or correlation) among virtually all cognitive abilities, which is what g is all 
about.1551 A theory that integrates these empirical discoveries would explain the 
biological basis of psychometric g.

As a possible heuristic for research on the neurophysiological basis of g, 
therefore, I propose consideration of the following working hypothesis: Individ­
ual differences in behavioral capacities do not result from intraspecies differ­
ences in the brain’s structural operating mechanisms per se, but result entirely 
from other aspects of cerebral physiology that modify the sensitivity, efficiency, 
and effectiveness of the basic information processes that mediate the individual’s 
responses to certain aspects of the environment. Thus research on the neuro­
physiology o f mental ability has two aspects, the first dealing with the brain 
structures and neural processes that make possible intelligent behavior, the sec­
ond dealing with the physical conditions that produce individual differences in 
intelligent behavior. The first aspect will probably be more difficult to resolve 
than the second, but investigation of the second need not depend upon a prior 
resolution of the first. Investigation can be directed at discovering the relation­
ship between g and the neural conditions that affect a number of different ele­
mentary cognitive processes or behavioral capacities which, though served by 
different brain modules, are nevertheless correlated for individuals.

The highest priority in g research, therefore, is to discover how certain ana­
tomical structures and physiological processes of the brain cause individual dif­
ferences in g. Advanced technology of brain research has brought g research to 
the threshold presaged by Spearman himself over seventy years ago, that the 
final understanding of g “ must needs come from the most profound and detailed 
direct study of the human brain in its purely physical and chemical aspects.” 1561
MOTES

1. A special issue o f the journal Intelligence (1997, 24, 1-320), edited by Linda 
Gottfredson, is largely devoted to theoretical, methodological, and empirical articles on 
the sociology of intelligence.

2. The methods briefly described here are more fully explicated in verbal and math­



580 The g  Factor
ematical terms in books by Loehlin (1992) and Li (1975), which are suitable for those 
with the equivalent of at least a two-semester college course in statistical methods.

3. This methodology, the interpretation of which presents certain pitfalls to the sta­
tistically unsophisticated, is well explicated and empirically illustrated in articles by Lu­
binski & Humphreys (1996, 1997); also see Humphreys (1994). Lynn (1988) has 
analyzed correlations among IQ and many educational, social, and economic variables 
measured as the mean IQ of each of the regions of Britain, or France, or the districts of 
New York, or the boroughs of London. From his study o f the nexus of IQ and many 
socioeconomic variables in each of these populations, Lynn states, “ It should be apparent 
that social class as such can have no causal effects, and its correlations with educational 
attainment, infant mortality, and so on arise only because social class is itself a correlate 
and effect of a variety of psychological variables of which intelligence is at present the 
best understood and quantified”  (p. 960).

4. Gordon, 1997.
5. Lubinski, 1996.
6. Gottfredson, 1997.
7. Partialing out a measure of parental socioeconomic status or other family back­

ground variables from the proband sam ple’s correlation between IQ and some outcome 
variable (e.g., education, occupation, income, etc.) and then interpreting the partial cor­
relation to mean that IQ accounts for very little, if any, o f the outcome variance is known 
as the “ sociologist’s fallacy.”  It is a fallacy because the measured “ family background”  
includes the direct and indirect effects of the parents’ own level of g, which causally 
accounts for at least 50 percent of the variance in their offspring’s IQ. Therefore, par­
tialing out (or otherwise statistically controlling) “ family background”  spuriously robs 
the IQ of much of its predictive and causal-explanatory power.

8. Snow, 1995.
9. (a) Hunt, 1992; (b) Hunt, 1995.

10. (a) Humphreys, 1988. (b) Mincy et al. (1990) consider various technical definitions 
and characteristics of the underclass, including the conditions of selection I have referred 
to as producing a “ critical m ass”  for social pathology concentrated in certain neighbor­
hoods.

11. Maeroff, 1988.
12. Herrnstein & Murray (1994), in their Chapter 16, clearly and accurately spell out 

the relationship between low cognitive ability and many variables in the g nexus, in­
cluding poverty, employment and unemployment, crime, welfare dependency, illegiti­
macy, low-birth-weight babies, deprived home environments, and developmental 
problems. Using data from the National Longitudinal Study o f Youth (NLSY), they 
present simple graphs which show the relationship of each of these variables to IQ. Kaus 
(1992) provides statistics and describes in considerable detail many o f the characteristics 
o f the underclass culture as it exists at present in the large metropolitan areas of the 
United States.

13. Statistical summaries and multiple regression analyses of these NLSY and NELS 
data are reported in Grissmer et al., 1994.

14. These values of R are obtained from the difference between the two matrices 
above. The difference between two values of R, say, R., and Rh, expressed on the same 
scale, is equal to J R 2 -  Rb2. (R is always without sign, as it is the square root of the 
variance accounted for, and any variance greater than zero is necessarily a positive value.) 
R (instead of R2) was used in this example, because it represents degree of correlation
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on the sam e scale as the simple r, in terms of which correlation and predictive validity 
are usually expressed.

15. Jensen, 1974c.
16. Brodnick & Ree, 1995. This study is instructive in showing how path analysis 

can be used to com pare statistically the “ goodness-of-fit”  of the observed correlations 
for various alternative models o f the hypothesized causal relationships among the vari­
ables in a complex nexus. Besides the observed variables, the path models in this study 
all involve three latent (unobserved) variables implicit in the data, namely, g, scholastic 
aptitude, and SES.

17. National Commission on Education, 1983; Thorndike, 1973.
18. Vogt, 1973.
19. Daneman (1984) provides an excellent exposition of the psychology of reading as 

information processing and its dependence upon the capacity and efficiency of working 
memory. Thorndike (1973-74) argues, on the basis of psychometric data, that reading 
comprehension is a form o f reasoning and therefore reflects individual differences in the 
same fundamental source o f individual differences, namely g, as do tests of IQ, whether 
they are verbal or nonverbal.

20. Carlson & Jensen, 1982.
21. Lerner (1983) provides an excellent essay on the relation of test scores (as opposed 

to merely amount of schooling) as a measure o f what she refers to in economic terms 
as “ human capital.”

22. Cattell, 1971, pp. 477-483; 1983, pp. 161-164.
23. In examining many pages o f “ help wanted”  advertisements in the newspapers of 

large cities and tabulating the types of job  being advertised according to the mean IQ 
levels of em ployees in these jobs (as given in by the U.S. Employment Service), I find 
that virtually all o f the listed openings are for jobs that call for above-average levels of 
developed ability.

24. Gottfredson, 1997. All of the data sources for the elements in Gottfredson’s graph 
are described in her article.

25. Science, 1993, 262, 1089-1134. (November 12 issue.)
26. Pool, 1990, p. 435.
27. Holden, 1995.
28. Gottfredson, 1986. (Also see Gottfredson & Sharf, 1988.) These articles appear 

in two special issues of the Journal o f  Vocational Behavior (edited by Gottfredson and 
by Gottfredson & Sharf) that deal extensively with “ The g Factor in Employment”  
(1986) and “ Fairness in Employment Testing”  (1988), respectively.

29. Duncan, et al., 1972. The key literature on this topic is reviewed by Jencks (1979).
30. Brown & Reynolds, 1975.
31. Herrnstein & Murray, 1994, Chapter 14.
32. W ilson & Herrnstein (1985, Chapter 6) review most of the key references on this 

topic. Levin (1997, Chapter 9), a philosopher, treats the comprehension of moral prin­
ciples in greater depth than any other source on this topic.

33. Gordon, 1975, 1980, 1987a, 1997.
34. Gottfredson & Hirschi (1990, pp. 149-150) report Asian and Jewish crime rates 

in the United States. M ost o f the studies o f Jewish IQ are referenced in MacDonald 
(1994, pp. 188-199). The evidence leaves little question that the mean IQ of Jews is 
above the mean o f the general U.S. population, though by how much is considerably 
less certain; M acDonald claims about seventeen IQ points, the difference being larger
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on verbal than on nonverbal tests. But I have not found a proper meta-analysis of the 
available data that would permit a strong conclusion on this point.

35. Based on 1990 FBI statistics for the United States, the arrest rate for violent crimes 
is about six times higher for blacks than for whites (Reiss & Roth, 1993, pp. 71-72). 
Black and white crime rates and victimization rates are reported for various types of 
crime in Jaynes & W illiams, 1989, Chapter 9. The black-white rate differences are largest 
for serious personal crimes such as robbery, assault, rape, and homicide; they are the 
smallest for impersonal crimes such as tax fraud, embezzlement, counterfeiting, and the 
like (also, Wilson & Hermstein, 1985).

36. Gordon, 1980; Gordon (1997), besides showing evidence for IQ-commensurability 
with respect to racial differences in delinquency and crime, extended this analytic para­
digm to other variables, including opinions and social attitudes, in which there are also 
marked racial differences.

37. Sanders et al., 1995.
38. Cattell, 1950, pp. 98-99.
39. (a) Webb, 1915. Also reported in considerable detail by Spearman, 1927, pp. 345- 

348. Eysenck (1953, see “w ” in the index) described most of the subsequent research 
related to the w  factor and also its distinctness from the g factor (pp. 42-46). (b) P. E. 
Vernon (1971), in factor analyses including tests o f cognitive abilities and of scholastic 
subject-matter knowledge, found two major factors, g and educational achievement, the 
latter interpreted by Vernon as a product of g, interest, and industriousness.

40. G off & Ackerman, 1992; Ackerman & Heggestand, 1997.
41. Ackerman, 1996, p. 237.
42. Ackerman & Heggestad, 1997, p. 239.
43. Cattell, 1971, Chapter 6.
44. (a) Ericsson & Chamess, 1994; Ericsson & Lehmann, 1996; (b) Gardner, 1993.
45. Simonton (1994) has written a fascinating book on the psychology of world-class 

levels of achievement, which he labels “ greatness.”
46. Goleman, 1995.
47. Schneider, Ackerman, & Kanfer, 1996.
48. Sternberg & Wagner, 1986. (Jensen [1988b] provides a critical review of this 

book.) For an updated review of the literature on practical intelligence, see Wagner, 1994.
49. W illis & Schaie (1986), in their chapter in the book Practical Intelligence edited 

by Sternberg & W agner (1986), report a study showing that measures of proficiency in 
a great many practical skills of everyday life are substantially correlated with psycho­
metric g.

50. Jensen, 1996b.
51. Eysenck, 1995b.
52. Klitgaard (1985) deals with the issues involved in selecting those potentially ablest 

members of developing countries who can be most instrumental in the economic ad­
vancement of their society.

53. Hermstein & Murray (1994) in their signal book The Bell Curve broach the topic 
of the public policy implications of g more fully than any other work to date, and their 
effort has elicited extraordinarily vehement pro and con reactions in the media and in 
academe. One should hope that the door will remain wide open for further research on 
the critically important issues raised by their work. A recent but more narrowly focused 
book, Intelligence Policy (Browne-M iller, 1995), deals mainly with the implicit assum p­
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tions about intelligence as they influence college admission policies; Gordon (1996) pro­
vides an insightful review o f this book.

54. Lynn (1996) provides an extensive review of the genetic theory and the empirical 
data on historical changes in intelligence and conscientiousness in Western and non- 
Western societies, which, he argues, have been on a dysgenic trend in the twentieth 
century.

55. Jensen (1997b) further elaborates this theme.
56. Spearman, 1927, p. 403.
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Spearman’s “Law of Diminishing Returns”

Spearman (1927, pp. 217-21) compared the disattenuated correlation matrices 
(based on 12 diverse cognitive tests) of 78 “ normal”  children and 22 “ defec­
tive”  children. He found that the mean r of the matrix for the normal children 
was + .466; for the retarded children the mean r was +.782. Deary and Pagliari 
(1991) performed principal components analyses of Spearman’s correlation ma­
trix for the normal children and the correlation matrix for the defective children. 
The average loadings on the first principal component (PCI) of each matrix 
were + .725 and +.899, respectively. Yet the PCI was clearly the same factor 
in both the normal and retarded groups, as indicated by a congruence coefficient 
o f +.988. Spearman also noted in other data sets that tests’ intercorrelations 
(and average g loadings) were larger for younger children than for older chil­
dren. These findings suggested that the higher the level of g, the less is the 
amount of g variance in any particular mental test.

Spearman rather grandiosely likened this phenomenon to the “ law of dimin­
ishing returns,”  as it applies in physics and in economics. That is, the higher a 
person’s level o f g, the less important it becomes in the variety of abilities the 
person possesses. High-g persons have more diversified abilities, with more of 
the total variance in their abilities existing in non-g factors (i.e., the various 
group factors and specificity). Others have explained this phenomenon in terms 
of what has become known as the differentiation theory, that higher g level (and 
the increase in mental abilities from childhood to early maturity) is accompanied 
by an increasing differentiation of general ability and the development of special 
abilities independent of g. (In the elderly, the reverse occurs for novel tests and 
tasks; there is dedifferentiation of abilities variance and a consequent increase 
in various tests’ g loadings.) One might say that in the course of mental devel­
opment g (or fluid ability, Gf) becomes increasingly invested in specialized 
skills, in which proficiency becomes partly automatized through practice. The 
automatized aspects of the special skills lose their g loading, and the non-g part
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of the skills variance forms first-order group factors and specificity. In this way, 
g is somewhat like money— the poor can only afford to spend their money on 
little besides the few necessities and have nothing left over to invest in other 
things, while the rich can afford to spend their money on a great variety of 
things and have many diversified investments. Like money, g isn’t very impor­
tant if one has enough of it.

In recent times, the British factor analyst A. E. Maxwell (1972b) rediscovered 
Spearman’s “ law of diminishing returns”  by comparing the correlation matrices 
of the subtests of the Wechsler Preschool and Primary School Intelligence 
(WPPSI) test given to children who were good and poor readers, as assessed 
independently by tests of reading ability. (Reading ability, particularly reading 
comprehension, as contrasted with “ word reading,”  is itself highly g loaded.) 
Good readers showed lower correlations (hence lower g loadings) among the 
WPPSI subtests than did poor readers. This would seem to substantiate Spear­
man’s “ law.”

The first really systematic and methodologically convincing study of this phe­
nomenon was conducted by Detterman and Daniel (1989). They demonstrated 
the effect both with a variety of computer-administered cognitive tasks and with 
the subtests of W echsler Adult Intelligence Scale-Revised (WAIS-R) and the 
Wechsler Intelligence Scale for Children-Revised (WISC-R). The latter dem­
onstration, based on very large subject samples on the W echsler tests, was par­
ticularly impressive. The entire subject sample (on the WISC-R and on the 
WAIS-R) was divided into five levels of IQ (< 78 , 78-92, 83-107, 108-122, 
>122), with the IQ equivalent based on only one subtest. In the first analysis 
the Vocabulary subtest was the basis of classification; in the second analysis, 
Information. Within each of the five ability levels, the average intercorrelation 
among all the W echsler subtests (except Vocabulary or Information) was ob­
tained. These average intercorrelations among subtests decreased monotonically 
from about + .7  for the IQ <  78 group to about +.35 for the IQ >  122 group.

The result was interpreted in terms of Detterman’s (1987) systems theory of 
mental retardation. This theory posits that mental ability involves a number of 
distinct systems or processes, and that some processes are more “ central”  than 
others, in the sense that their functioning is crucial to a wider range of cognitive 
operations. A deficiency in a highly central process will therefore handicap a 
great many mental functions and result in low scores on every type of test. 
Variation in less central functions will affect only certain narrow abilities (group 
factors and specificity) but not most abilities. Persons with low IQs have less 
efficient central processes, hence overall low performance on most kinds of 
cognitive tasks. Persons with higher IQs have more efficient central processes 
but may vary considerably in the less central, narrower processes. Consequently, 
there should be higher correlations (and more g variance) among various tests 
in a low-IQ group and lower correlations (less g variance) in a high-IQ group. 
A corollary of this theory is that the “ profile”  or pattern of subtest scores should 
be flatter (i.e., lower standard deviation among the individual’s subtest scores)
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for low-IQ persons than for high-IQ persons. Detterman and Daniel applied 
corrections in each IQ group for restriction of range, so that the observed dif­
ferences in average correlations could not be attributed to differences in the 
variance of test scores within each group. This is a problematic and less than 
ideal practice, because the correction of correlations for restriction of range 
assumes that the “ true”  correlation between the variables in question is the 
same throughout the full range of the latent trait (i.e., g), which is the very 
assumption that is contradicted by Spearman’s “ law of diminishing returns.” 
The only really adequate means for dealing with the restriction-of-range problem 
is to select the high- and low-g groups so that they have the same SD on the 
selection test. The demonstrations of Spearman’s “ law”  in other studies (e.g., 
Lynn, 1992; Lynn & Cooper, 1993, 1994) that did not take test reliabilities or 
restriction of range into account, therefore, provide only weak evidence. Dif­
ferences in average correlations between the higher- and lower-IQ groups in 
these studies could simply be an artifact of the smaller variance of IQ in the 
higher groups. In fact, the test variances in the lower-IQ groups in these studies 
are larger, but whether the test intercorrelations would still be significantly larger 
in the lower- than in the higher-IQ group if the groups were equated for variance 
remains unknown. As these two phenomena (i.e., different test variances and 
different test intercorrelations in high and low IQ groups) are conceptually dis­
tinct effects, they should not be confounded in studies of Spearman’s “ law of 
diminishing returns.”

A large-scale and methodologically sophisticated test of Spearman’s “ law” 
was carried out (Deary et al„ 1996) both on high- and Iow-ability groups (mean 
difference =  lo )  and for younger and older groups (mean ages ~ 170 vs. 201 
months) within each ability level. The test score distributions of the four com­
parison groups were equated for variance but, of course, not for mean ability 
level. (This article also provides a comprehensive review of the history of the 
theory and research on Spearman’s “ law ” and the differentiation hypothesis.) 
The g factor (first principal component) of the subtests of the Differential Ap­
titude Test (DAT) was extracted for each group. As predicted by Spearman’s 
“ law,”  g accounted for more of the total variance in the low-ability groups at 
both age levels, especially when the high- and low-ability groups were selected 
on the basis of the most highly g-loaded tests. Selection of high- and low-ability 
groups on the basis of tests with relatively small g loadings resulted in very 
little difference between the groups in the proportions of total variance ac­
counted for by the g extracted from the Differential Aptitude Test (DAT) battery. 
(Note: Selection of subjects for the high- and low-ability groups was never based 
on a test contained in the DAT battery from which the g was extracted to 
examine Spearman’s “ law.” ) There was little difference in the total g variance 
for either high- or low-ability groups as a function of age. This could be because 
the age groups differed by only about two and a half years. Other studies (re­
viewed by Deary et al., 1997) have shown the differentiation effect in groups 
differing more widely in age.
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H eritab ility  as a F unction  o f IQ  L evel. Because Detterman found higher 
test intercorrelations (hence larger g loadings) for low- than for high-IQ groups, 
he went on to ask whether tests also have higher heritability (h2) in low- than 
in high-IQ groups. A genetic analysis based on MZ and DZ twins seemed to 
show that something akin to Spearman’s “ law”  applied to h2 as well as to g 
loadings (Detterman, Thompson & Plomin, 1990). On the other hand, another 
study conducted in Norway, using very large samples of MZ and DZ twins (Ns 
of 862 and 1,325, respectively), found not the slightest evidence that h2 differs 
across ability levels (Sundet et al., 1994). However, Bailey and Revelle (1991), 
using a simpler but arguably better methodology than that used by Detterman 
et al. (1990), applied to a number of very large twin samples (twenty-one sam­
ples comprising about 3,000 twin pairs) found an opposite result: an increase in 
h2 at higher levels of IQ. Bailey and Revelle concluded, “ [T]he bulk of the 
available evidence suggests that the specific finding of Detterman et al. does 
not reflect a general phenomenon”  (p. 403). Bailey and Revelle tried but were 
unable to come up with any promising hypothesis for the increase in h2 at higher 
levels of IQ. So we have three large and apparently methodologically sound 
studies that have shown entirely different results— positive, negative, and zero. 
The reality of the phenomenon as it applies to the heritability of IQ, therefore, 
remains in question.

I have found (Jensen, 1997a), in some fine-grained twin analyses, that favor­
able and unfavorable nongenetic influences on mental development are not sym­
metrically distributed, and that lower IQs have a larger component of nongenetic 
variance due to largely biological environmental prenatal and early childhood 
influences (e.g., poor nutrition, disease, head trauma, mother-fetus incompati­
bility in blood antigens, prematurity, and low birth weight). This finding would 
seem to favor the hypothesis that h2 decreases at lower levels of IQ.
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Appendix B

The method of correlated vectors is one way of testing whether the g factor 
extracted from a battery of diverse tests is related to some variable, X, which is 
external to the battery of tests. If the degree to which each of the various tests 
is loaded on g significantly predicts the relative magnitudes of the various tests’ 
correlations with the external variable X, it is concluded that variable X  is related 
to g (independently of whether or not it is related to other factors or test spec­
ificity). The significance level is determined from the rank-order correlation 
between the elements in the column vector of the various tests’ g loadings and 
the elements in the column vector of the tests’ correlations with variable X.

As the size of a test’s factor loading (in this case its g loading) and the size 
of the test’s correlation with an external variable (X) are both affected by the 
test’s reliability, and as various tests may differ in reliability, it is necessary to 
rule out the possibility that the correlation between the vector of the tests’ g 
loadings and the vector of the tests’ correlations with X  is not attributable to the 
tests’ differing reliability coefficients. This is accomplished by correcting the g 
loadings and the correlations for attenuation, or by obtaining the correlation of 
the column vector of the tests’ reliability coefficients with both the vector of g 
loadings and the vector of correlations, and using the three correlations between 
the three vectors to calculate the partial correlation between the g vector and 
the X  vector (with the vector of reliability coefficients partialed out). If the partial 
correlation is large enough to be statistically significant, the tests’ varying reli­
ability coefficients are not responsible for the correlation between the g and X  
vectors. (Note: The degrees of freedom for testing the significance of the cor­
relation [or the partial correlation] is based, not on the number of subjects in 
the study, but on the number of tests [i.e., number of elements in the vector of 
g loadings]).

An actual example of the use of correlated vectors is shown in connection 
with the information in Table B .l, from a study (Schafer, 1985) on the relation
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Table B .l
Example o f the Method o f Correlated Vectors Based on the Evoked Potential 
Habituation Index (EPHI) and the g  Factor Loadings of the W echsler Adult In­
telligen ce Scale (WAIS)

WAIS Subteat

je Factor Loadinas Subtest X EPHI Correlation
Uncorrected 
z Rank

Corrected 
z ' Rank *

Uncorrected 
r Rank

Corrected 
r ' Rank'

Information .71 10 .74 10 .41 8 .43 7
Comprehension .49 5 .55 5 .39 7 .44 8
Arithmetic .57 7 .64 7.5 .32 5 .37 4
Similarities .59 9 .64 7.5 .50 11 .53 10
Digit Span .32 2 .38 2 .03 1 .04 1
Vocabulary .77 11 .80 11 .45 10 .46 9
Digit Symbol .26 1 .27 1 .17 2 .18 2
Picture Completion .46 3.5 .50 3 .21 3 .23 3
Block Design .50 6 ,54 4 .38 6 .41 6
Picture Arrangement .58 8 .71 9 .44 9 .54 11
Object Assembly .46 3.5 .57 6 .31 4 .38 5

Column Vectors A B C D E F G H

of the g factor (of the Wechsler Adult Intelligence Scale) to the habituation of 
the evoked potential, a measure of the brain’s electrical activity in response to 
an external stimulus (an auditory “ click”  in this study).

What was referred to above as variable X  is the evoked potential habituation 
index in this example. The subjects were fifty-two normal young adults with 
IQs ranging from ninety-eight to 142. The habituation index was correlated + .59 
with Full Scale IQ; corrected for restriction of range of IQ in this sample, the 
correlation was +.73. The method of correlated vectors, illustrated in Table B .l 
shows that it is principally the g factor that is related to the brain-evoked po­
tential. When g was statistically removed from the WAIS, in fact, the remaining 
non-g variance showed virtually zero correlation with the evoked potential ha­
bituation index.

EXPLANATION OF TH E  COLUMN VECTORS

A. The g loadings (first principal factor) of the eleven WAIS subtests (without 
correction for attenuation).

B. The rank order of the uncorrected g loadings, ranked from the smallest 
(rank =  1) to the largest (rank =  11).

C. The g loadings after correction for attenuation (i.e., each subtest’s g loading 
is divided by the square root of the subtest’s reliability coefficient).

D. The rank order of the corrected (disattenuated) g loadings.
E. The Pearson correlation (r) of each WAIS subtest and the evoked potential
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habituation index (EPHI). (The EPHI is the difference between the average 
amplitude of the evoked potential obtained in the first block of twenty-five trials 
and the second block o f twenty-five trials.)

F. The rank order of the correlations in Column E.
G. The Pearson correlations (Column E) corrected for attenuation of the sub­

test score (i.e., dividing each correlation in Column E  by the square root of the 
subtest’s reliability coefficient).

H. The rank order of the corrected (disattenuated) correlations in Column G.

C O RRELA TED  VECTORS

The Pearson correlation (rAE) between the column vector A (the subtests’ 
uncorrected g loadings) and the column vector E  (the subtests’ correlations with 
the EPHI) is rAE =  +.81. The correlation between the column vectors B and F 
is the corresponding Spearman rank-order correlation (rs), which here is +.91. 
With n = 11 variables in each of the correlated vectors, the rank-order corre­
lation is significant at p  <  .01, which means that a correlation this large has 
less than 1 percent probability of occurring by mere chance if the true correlation 
in the population were 0; therefore, the obtained correlation is regarded as sig­
nificant. This scatter diagram for this correlation is plotted in Figure 6.2 in 
Chapter 6 (p. 156).

The Pearson correlation (rCG) between the column vector C (corrected g load­
ings) and column vector G (correlated correlations of subtests with the EPHI) 
is rCG =  +.80. The corresponding rank-order correlation rDH = +.77, p  <  .01.

A test of whether the correlation between vectors A and E  is a result of the 
vector of the subtests’ differing reliability coefficients attenuating both the g 
loadings (in vector A) and the correlations (in vector E) is to calculate the partial 
correlation between vectors A and E, with the vector of subtest reliability co­
efficients (V rxx) partialed out. The partial correlation, in effect, holds constant 
the subtests’ reliability coefficients, removing whatever effect they might have 
on the correlation between vectors A and E. (Statistics textbooks give the for­
mula for calculating the partial correlation.) In the present example, the partial 
correlation between vectors A and E, removing the effect of V rxx, is +.79, or 
hardly different from the original correlation of +.81, which therefore clearly 
cannot be attributed to the differing reliability coefficients of the various sub­
tests. (The original correlation is technically termed a zero-order correlation. If 
one variable is partialed out, the resulting coefficient is termed a first-order 
partial correlation. With two variables partialed out, it is a second-order partial 
correlation, and so on.)



Multivariate Analyses of a Nexus

Appendix C

The following multivariate analyses of a small nexus of five interrelated varia­
bles are intended only as a didactic example of different ways of looking at a 
nexus. They merely illustrate what the results of these analyses look like when 
applied to a real (but small) nexus. The example is not intended to make any 
particular argument. Detailed computational algorithms for the various types of 
analysis can be found in textbooks on multivariate statistical methods. The cor­
relation matrix and computational procedure for the path analysis were taken 
from Li (1975, pp. 324-328).

The five variables in the nexus, listed in temporal order, are: fa th er’s edu­
cation (FED), fa th er’s occupation (FOC), his child’s IQ  in childhood (CIQ), the 
child's education as total years of schooling (CED), and the child ’s adult IQ 
(CAIQ).

A. The correlations among these five variables, based on a large sample of 
white males, aged twenty-five to sixty-four, are shown in Table C .l.

B. A principal components PC analysis yields two meaningful components, 
labeled I and II (see Table C.2). The remaining three PCs have been dropped 
based on the criterion that their eigenvalues (or latent roots) are less than one.

C. Also shown are the multiple correlations (Rs) of each variable with every 
other variable in the matrix. They indicate the degree to which any given var­
iable in the nexus can be predicted by all of the other variables in the nexus. 
The proportion of variance that any given variable has in common with all of 
the other variables is indicated by R2. The fact that all of the loadings on PC I 
(i.e., the general factor in this matrix) are all fairly large indicates that this is a 
quite close-knit nexus; the main division among the variables is clear from the 
opposite signs for the father and child variables in PC II. The multiple R and 
the R2 for Father’s Education are the smallest in the whole set, showing that it 
is the least well predicted by all of the other variables. The Child’s Education
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Table C. 1

Variable FED FOC CIQ CED CAIQ

Father's Education 1 .509 .300 .382 .305
Father's Occupation 1 .300 .420 .314
Child's IQ 1 .550 .830
Child's Education 1 .630
Child's Adult IQ 1

(From  Li, 1975.) 

Table C.2

Variable PC I PC II R RJ

Father's Education .616 -.600 .547 .299
Father's Occupation .633 -.589 .566 .320
Child's IQ .827 .410 .832 .692
Child's Education .808 .072 .680 .463
Child's Adult IO .856 .404 .856 .732
Eigenvalue 2.85 1.04
Percent Variance 57 21

is much better predicted because of the presence of Child IQ in the nexus. 
Subsets of the variables entered into multiple correlations help to highlight the 
more important relationships, but are not necessarily causal. The temporal order 
of the variables, however, may suggest the direction of causality; the Child’s 
IQ, for example, is unlikely to be a cause of his Father’s Education or Occu­
pation.

D. Table C.3 shows values of the multiple correlation R obtained from dif­
ferent sets of independent variables for predicting different dependent variables. 
The amount by which a given multiple R is increased by the addition of a 
another variable to the regression equation can be determined by subtracting the 
first R2 from the second R2 and taking the square root of the difference to express 
it on the scale of R. For example, the contribution of Child’s IQ to the prediction 
of Child’s Education, independent of the Father’s Education + Occupation, is 
R =  y[(.623)2 -  (.463)2] =  .417.
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Table C.3

Independent Variables Dependent Variable R

Father’s Education + Occupation Child’s IQ .345
Father's Education + 

Occupation Child's Adult IQ .356
Father's Education + 

Occupation Child's Education .463
Father's Education + Occupation + 
Child's IQ Child's Education .623
Father's Education + 

Occupation + 
Child's Education Child's Adult IQ .634
All 4 other variables Child's Adult IQ .732

Q A du lt 
C hild  IQ

Figure C. 1. From Li, 1975. Used with permission of Boxwood Press.

E. A path analysis based on the correlation matrix in Table C .l is shown in 
Figure C .l. It is taken from Li (1975, p. 325), which fully explains the method 
of deriving the path coefficients (arrows) from the correlation matrix. The path 
analysis is a model of the causal relationships between the variables. A path 
coefficient (which reflects the causal effect of one variable on another) is indi-
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cated by an arrow. A simple correlation (which imputes no causality) is indicated 
by a curved line with arrow tips at each end. Note that the locations of the 
variables are shown according to their temporal or chronological order, going 
from left to right. The arrows that appear to come out of nowhere are causal 
paths originating from variables that were not included in the nexus. The vari­
able (or variables) that might account for them are open to speculation. Note 
that the child’s early IQ is largely determined (path coefficient =  .94) by causes 
that lie outside this set of only five variables. (Also note that the main deter­
minants [.78] of the child’s education are not included among the variables in 
this nexus. But among the variables within the nexus, the child’s IQ is the main 
cause of the child’s education.) However, some of the causal factors in this path 
may be investigated by some larger nexus, such as one that includes children 
adopted at birth and then reared by adoptive parents whose IQ, education, and 
occupation are included in the analysis, along with the IQ, education, and oc­
cupation of the biological parents of the adopted children. (This sort of study 
has been done, giving the results that were summarized in Chapter 7.) There 
are important caveats in the interpretation of causality from any path analysis. 
Path analysis is best considered as but one investigative tool among many others, 
which must essentially be worked in combination with one another to discover 
the causal relationships among the variables of interest.
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