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Preface

This book about the g factor has its origin in the aftermath of an almost book-
length article émy 77th publication) that | wrote almost thirty years ago, titled
“How Much Can We Boost 1Q and Scholastic Achievement?” and published
in the Harvard Educational Review in 1969. It had five main themes: (1? the
maIIeabiIitY of 1Q (or the latent trait it measures) by special psychological and
educational interventions in the course of children’s mental development; (2)
the heritability of 1Q; (3) social class and race differences in 1Q; (4) the guestion
of cultural bias in mental tests; (5) the need for universal education to tap types
of Iearnln? ability that are relatively unrelated to 1Q in order to achieve the
benefits of education for all children throu?hout the wide range of abilities in
the population. It made four main empirically based claims: (1) individual dif-
ferences in 1Q are largely a result of genetic differences but environment also
?Iays a part; (2) the experimental attempts to raise the 1Qs of children at risk
or low I1Q and poor scholastic performance by various psychological and ed-
ucational manipulations had yielded little, ifanY, lasting ?ains in 1Q or scholastic
achievement; {13) since most of the exclusively cultural-environment explana-
tions for racial differences in these important variables were inconsistent and
inadequate, genetic as well as environmental factors should be considered; (4)
certain abilities, particularly rote-learning and memory, had little relation to 1Q,
which suggested that these non-1Q abilities could to some extent compensate
for low I% to improve the benefits of schooling for many children at risk for
failure under traditional classroom instruction. _ _ _
According to the Institute for Scientific Information QSI), which publishes
the Science Citation Index (SCI% and the Social Science Citation Index (SSCIR,
this 1969 article soon became what the 1SI terms a “citation classic” —an article
(or book) with an unusually high fre?uency of citations in the scientific and
professional journals. The onslau%ht of critiques and commentaries on the arti-
cle, in both the popular media and the professional literature, made it clear that
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there was sufficient misunderstanding and misinformation, as well as reasonable
criticism and argument, concerning some of the article’s main topics to warrant
a more thorough explication of the issues and the empirical evidence than was
possible in the 124-page journal article. Moreover, certain questions raised in
my article could not be answered adetLuater without doing further research
bhased_ on adequate data—inquiries that had not been undertaken by anyone at
that time.

~Hence some of the issues raised by my 1969 article in the Harvard Educa-
tional Review determined my research and publication agenda during the sub-
sequent years—empirical studies, methodological papers, and reviews, which,
over a period of nearly thirty years, averaged over ten publications a year in
journals and book chapters. The main themes in much of this work, | decided,
should be consolidated into separate books, each dealing with one of the key
topics of my 1969 article. N ,

The first ook in this series was Educability and Group Differences (1973),
which dealt almost entirely with social class and racial differences in 1Q and
other psychometric abilities and their important role in accounting for individual
and group differences in scholastic achievement. Probably the book’s most con-
troversial conclusion was that all of the most popular and purely environmental
theories of the causes of the well-established average black-white differences in
1Q and scholastic achievement were either contradicted by the factual evidence
or were inadequate as a scientific explanation, and that the total body of evidence
at that time was better explained by the hypothesis that the racial differences
involved both genetic and environmental factors and in about the same propor-
tions as they determined individual differences within either racial group. 1SI,
in its journal Current Contents (1987), announced that this book had also be-
come a “citation classic.” o _ S

The second book in the series was Bias in Mental Testing (1980), in which
| examined as comprehensively as was possible at that time the then controver-
sial question of whether the psychometric tests of mental ability that were widely
used in schools, colleges, industry, and the armed services yielded biased scores
for those racial and cultural minority ?roups in the United States that, on av-
erage, score below the mean of the rest of the population. My conclusion from
this research was that the currently most widely used standardized tests of mental
ability yield unbiased measures for all native-horn English speaking segments
of contemporary American society, regardless of their sex, race, or social class
background, and that the observed mean differences hetween various groups are
not an artifact of the tests themselves, but are attributable to factors that are
causally independent of the tests. In brief, the tests do not create the observed
group differences, they simply register them. This conclusion has since been
accepted and affirmed by the majority of experts in the field of psychometrics.
This book, too, was later written up as a “citation classic” in the ISI’s Current
Contents §1987). _

The following year I wrote a smaller, popular book, Straight Talk about Men-
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tal Tests (1981), to exEIain the gist of the two Frevious books to readers without
a background In psychometrics and behavioral genetics. ﬁThose about to delve
into the present volume may find this little book a helpful introduction.)

~ Having addressed those Pomts,_l realized that the critical issue was the ex-
istence and nature of the g factor itself. Although it was mentioned in my 1969
article, g was largely taken for granted, as if there had long ceased to exist any
serious controversy about the sovereignty of g in the study of human mental
abilities. Yet some peoBIe, mostly from outside the field, viewed g not as a
phenomenon of nature, but as merely an artifact created by subjecting a partic-
ular set of mental tests to the arcane mathematical machinations of factor anal-
ysis. And | discovered that more than a few psychologists had misconceived
notions or prejudices about g. It became clear to me that the real basis of my
1969 article was g itself and that it deserved a book-length exr])osition in its own
right, even more than the other topics that, at the time, | thought were most
interesting and in need of investigation.

S0 this— The g Factor— became the third volume in the series of books ?row-
mg out of m¥_1969 article. Charles Spearman’s great work, The Abilities ofMan
(1927), in which he summarized the results of his pioneer studies of g, was then
the hest exposition of the subject, and it is still well worth reading. But SFear-
man’s book, of course, does not take account of the important research involving
g that has accumulated during the seventy years since its publication. Also, not
all of the issues related to g that are the focal point of psychometrics and dif-
Le_regtlal psychology today are the same as the problems faced by Spearman in
is day.

Therefore, since the publication of my last major book, in 1980, I have de-
voted my research to the empirical study of g. As this line of study was actually
begun by Sir Francis Galton more than 100 years ago, | decided to take up
where he left off in his attempt, which aﬁpeared unsuccessful at the time, to
relate measurements of reaction time to other criteria of general mental ability.
The initial success of this work in my chronometric laboratory encouraged me
to institute a long-term research program using modern electronic techniques for
precisely measuring an individual’s reaction time (RT) in performing extremely
simple elementary cognitive tasks (ECTs, as they are now called), and deter-
m|n|n? how these RT measures are related to performance on complex tests of
mental ability, such as those used for measuring Q. This Galtonian paradigm
has proved a successful tool for probing the essential nature of psychometric g
at the behavioral level, and it has pointed up fruitful hypotheses for further
investigations of g at a physiological level, the new frontier of research on
mental ability. All' of mY own empirical and methodological studies related to
g, as well as vmual% all of the research by the great many other investigators
cited in the present book, have been Jlublished In the peer-reviewed scientific
literature. | hope that my synthesis and theoretical interpretation of this massive
bORX of research have done it justice. In any case, it had to be done. .

y research has led me to regard the g factor in @ much broader perspective
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than | had envisaged at the outset. | have come to view g as one of the most
central phenomena in all of behavioral science, with broa explanator_i powers
at least as important for understanding human affairs as E. L. Thorndike’s Law
of Effect (or Skinner’s reinforcement principle). Moreover, it became apparent
that the g construct extends well beyond its psychometric oriEin and definition,
The Mactor is actually a biologically based variable, which, like other biological
functions_in the human species, is necessarily a product of the evolutionary
process. The human condition in all of its aspects cannot be adequately described
or understood in a scientific sense without taking into account the powerful
explanatory role of the g factor. Students in all branches of the behavioral and
social sciences, as well as students of human biology and evolution, need to
grasp the essential psychometric meaning of g, its basis in genetics and brain
physiology, and its broad social significance.

A MOTE TO THE READER

Although much of the material in this book is admittedly, though unavoidably,
at a fairly difficult conceptual level, I have tried to present it in such a way that
it can be understood not only by specialized readers with a background in psy-
chology, psychometrics, statistics, or behavioral genetics, but by any interested
persons of whatever educational background whose reading comprehension is
up to the level of what I presume is typical of college graduates. | had thought
of providing a glossary of the more specialized terms, but discovered that nearly
all of the entries | would have included are %iven quite adequate definitions in
the Random House Unabrid%ed Dictionary (Second Edition, 1993).

Each chapter is preceded by a brief summary of its content, as an “advance
organizer” for the reader. Notes at the end of each chapter are keyed by nu-
merical superscripts in the text; they are of two kinds: (1) definitions or expla-
nations of technical terms or statistical concepts, or a more detailed explanation
or analysis of some point in the text, that appear as end-notes to avoid inter-
rupting the main text (indicated in the text by superscript numbers); and (2)
literature citations accompanied by little or no commentary (indicated in the text
by bracketed superscript numbers). Germane but more specialized topics are
explicated in the appendices. The references (all of them cited at some point in
the text) provide a comprehensive bibliography of the scientific literature on
human mental ability.



Acknowledgments

Mere thanks to all of those who have helped me in a variety of ways that
eventually led to my writing this book, and indeed provided the conditions that
made it possible, seems hardly enough. Many persons are owed my gratitude—
my graduate research assistants and postdoctoral fellows at Berkeley who helped
me In conducting many of the studies cited herein, my distinguished colleagues
and friends who generously offered their expertise in specialized areas by read-
ing portions of the manuscript with a critical eye and providing advice for
improving it, and those experts in fields relevant to certain topics in this book
who were always willing to engage in helpful and encouraging discussions about
my yn?umes, often prowdln? reprints and references. Especially deserving of
credit for supporting much of the empirical research | have done on the g factor
and its educational, social, and biological correlates, at a time when few foun-
dations or granting agencies would consider supporting research aimed at ex-
ploring the nature and implications of ¢ in areas considered politically sensitive,
are The Pioneer Fund and its admirably intrepid president, Harry F. Weyher,
whose mission has been to lend support to pioneering efforts in scientific re-
search areas that in academe are often considered unpopular or even taboo, at
|east |n|t|aIISy. Similarly, I'am grateful to the publishers of this book, particularly
Dr. James Sabin, Director, Academic Research and Development, and Professor
Seymour Itzkoff, the series editor, for supporting this book on a topic that other
firms may have thought unwise or unprofitable to consider publishing.

Fmallg, and above all, | must acknowledge how very indebted | am to my
remarkable wife, Barbara, who has not only been of direct assistance in mr
work, but whose superior capability, ingenuity, and efficiency in manaFlnP all
of the practical and financial responsibilities of daily life have completely freed
me from every chore and care that is not directly germane to my research work.

For granting permission to reprint the fi(]]ures or graphs in this book (indicated
in parentheses), | am grateful to the following publishers: Ablex Publishing



Xiv Acknowledgments

Corporation }4.1, 42,43 4453 63, 84,85 102, 118, 14.4), American
Psychological Association (7.2a, 7.2b), Boxwood Press (figure in Appendix C
Cambridge University Press (7.1), Elsevier Science Ltd. (8.6, 11.4, 11.9, 12.11
Erlbaum Associates Inc. (12.13), The Free Press (5.2, 9.1, 10.3, 112, 11.3),
Methuen, Grune & Stratton (12.12), Kluwer Academic Publishers (8.7), Plenum
Publishing Corporation é9.2), Princeton University Press 812.1, 122, 123),
SAGE Publications Inc. (14.1), and John Wiley & Sons (5.1).




Chapter 1
A Little History

In the 2,0_00-%/_ear prehistory of psychology, which was dominated
b){ Platonic philosophy and Christian theology, the co?nmve aspect
of mind was identified with the soul, and conceived of as a perfect,
immaterial, universal attribute of humans. This vastly delayed the
study of mental ability, or intelligence, as an attribute discernible in
people’s idiosyncratic behavior and therefore as manifesting indi-
vidual differences.

The formal recognition of individual differences in mental ability
as a subject for study in its own right arose as an outgrowth of the
idea of evolution in the mid-nineteenth century. For the first time in
history, animals’ behavioral capacities and humans’ mental ability
were recognized as a product of the evolutionary process, just as the
physical systems of organisms. Darwin’s theory of natural selection
as the mechanism of evolution implied that orFamsms’ behavioral
capacities, along with their anatomy and physio ogﬁ, evolved as ad-
aptations to particular environments. In Darwin’s theory, hereditary
variation is a necessary condition for the working of natural selec-
tion. From this insight, Herbert Spencer, the early philosopher of
evolution, interpreted individual differences in intelligence as intrin-
sic to the human condition. He further introduced the notion that
human intelligence evolved as a unitary attribute.

Individual differences in mental qualities, however, did not be-
come a subject for empirical study in its own nght until the latter
half of the nineteenth century, with the pioneer efforts of Sir Francis
Galton, who is generally regarded as the father of differential psy-
chology (the study of individual and group differences in human
traits, which includes behavioral genetics). Galton introduced the
idea of objective measurement of human capacities, devised tests to



2 The g Factor

measure simple sensory and motor functions, and invented many of
the statistical concepts and methods still used in the study of indi-
vidual differences. He was the first to_appg empirical methods to
studying the inheritance of mental ability. Galton’s conclusions, or
beliefs, are consistent with his empirical findings but are not at all
adequately supported by them. They may be briefly summarized as
follows:

Human mental ability has both general and specific components;
the general component is the Iar?er_sour_ce of individual differences;
it is predominantly a product ol _b|olo_?|@al evolution, and is more
strong_lly hereditary than are _s(g)emf[c abilities, or special talents. Men-
tal ability, which ranges widely in every large population, is nor-
mally distributed, and various human races differ, on average, in
mental ability. General ability is best measured by a variety of fairly
snr]]ple tests of sensory discrimination and reaction time.

hus, Spencer and Galton, in putting forth their ideas, which har-
monized with the Darwinian revolution in biology, set the stage, by
the end of the nineteenth century, for nearly all the basic ideas and
questions that have dominated research and theoretical controversy
in twentieth century differential psychology.

History helps us understand the present. In science, past events set the stage
for the substantive questions and arguments that face contemporary researchers.
Current methods of investigation and standards of evidence are based on the
philosoph%/ of science, a viewpoint so deeply embedded in modern Western
thought that it is unquestioned by working scientists. It has two outstanding
virtues: lts rules of empirical observation, controlled experimentation, and hy-
pothesis testlng ﬁroduce eventual agreement on statements about natural
phenomena, and the knowledge so produced often has consequences that affect
other disciplines and life in general.

It is worthwhile, therefore, to sketch the origins of the study of human mental
ability." The “prehistory” of this topic extends from ancient times to approxi-
mately the beginnin% of the twentieth century. Since then, at least, no major
issue has arisen that lacks historical precedent. As in other branches of science,
the main lines of contemporary thought in the study of mental ability can be
traced back to a few principal themes.

THE LATE ARRIVAL OF THE CONCEPT OF INTELLIGENCE IN
PSYCHOLOGY

Almost a hundred years ago, the German psychologist Hermann Ebbinghaus
(1850-1909) remarked that psycholog% has a long past, but only a short history.
This is still true, particularly for the branch known as differential psycholog_{,
the study of individual differences in behavior. Surprising as it may seem, abi
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ity, intelligence, and individual differences were not mentioned in most of the
early textbooks of psychology (written during the last half of the nineteenth
century). One of the most important and comprehensive textbooks, William
James’s Principles ofPsYchoIogyé1890), mentions “inteIIiFence” only once—
as a synonym for “intellect” and “reason,” and that only in the context of
defining the properties of the mind. Totally absent is any notion of mental ability
or individual ditferences. The same is true of James’s Talks to Teachers (1899),
the first influential textbook of educational psychology in America.2 Another
well-known textbook, James Mark Baldwin’s Handbook of Psychology (1890),
briefly mentions “intellect,” but comgletely ignores individual differences.
Baldwin’s encyclopedic Dictionary of Philosophy and Psychology (1901) has
no separate entry for “intelligence,” which is merely listed in a generic sense
as a synonym under “intellect.”

It may seem puzzling that such intentionally comprehensive textbooks and
dictionaries of psychology, even as late as 1900, are devoid of such a conspic-
uous and often controversial psychological topic as individual differences in
mental ability. Why was this phenomenon, so universal to human experience,
absent from academic psychological discourse for so long, in stark contrast to
the proroninence of the “1Q controversy” in contemporary psychology and social
science?

The reason was clearly not a lack of awareness in the past. Individual differ-
ences in mental abili_tr and other personality traits have been portrayed in lit-
erature (often in detail) since ancient times. Fictional characters were described
as clever, bright, keen-witted; or dull, addled, and stupid. Geniuses and the
feebleminded have figured in novels and plays for centuries. Historians and
biographers recognized exceptional abilities or their absence. Nor was the sub-
ject ever shunned because of an egalitarian taboo against openly recognizing
human differences in abilities. Thinkers of the past were hardly egalitarians.
Rather they accepted a highly stratified society as a matter of course. To most,
it was simply part of the natural order that individuals were born and remained
in rigid classes, as aristocrats, artisans, peasants, serfs, and slaves. Every civi-
lization has had at least a two-tiered society, but more typically a three-tiered
one. Plato, in The Republic (circa 400 B.c.y, classified individuals as gold, silver,
and bronze, according to the rarity of their valued qualities, and suggested that
in the ideal society—in his view, a pure meritocracy—they should be selected
for different occupations according to these qualities.

PREHISTORY OF PSYCHOLOGY

Why, then, was the subject of individual differences in mental ability per s
absent from systematic thought before the latter part of the nineteenth century?
Two main factors seem to be responsible. One was the pervasive influence of
Plato on the concept of the mind in philosophical and theological thought. The
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?thde{_was that the discipline of psychology itself grew out of the philosophic
radition.

Plato §427-347 B.c.). Since Plato’s time, the doctrine of dualism—the sep-
aration of mind and body, each as a distinct entity— has been deeply entrenched
in Christian theology and Western philosophy. This dogma influenced the de-
velopment of psychologiy. In Platonism, mind and soul are almost synonymous.
The soul, with universal and eternal properties, was a central theme. The perfect
and immaterial soul was the essence of belnF human, the defining attribute that
unequivocally separated humankind from all other creatures. The idea of soul,
or divine mind, as a perfect and universal quality of humans, therefore, was
incompatible with the notion of individual differences in this attribute. The soul
transcends all that is mundane, including individual differences in behavior.
Reason, thought, and intellect, as the essence of mind (or souIF) were regarded
as universal (1ual|t|es, distinct from behavioral idiosyncracies. Plato also distin-
?mshed two lower aspects of the human psyche, emotion and will. There is a
amous metaphor in Plato’s Phaedra depicting intellect as the charioteer who
holds the reins, with emotion and will as the horses that draw the chariot. This
triarchic model of the human psyche, comprising intellect, emotion, and will, is
perhaps the most easily recognizable aspect of philosophy’s legacy to psychol-

0gy.
g}//\risto_tle_ (384-323 B.c). Plato’s illustrious student Aristotle came closer to
a naturalistic or scientific conception of psychology than did his mentor. He
wrote about psychological functions, such as sensation, reaction, desire, reco?-
nition memory and recall memory, knowing, and thinking. These all resemble
modern distinctions. More significantl?/, Aristotle rejected Plato’s dualistic par-
tition of mind and body. Instead, he claimed that the mind’s higher functions—
acquiring knowledge, “thinking, and reasoning—depended on sensation and
memory, although because these functions are also possessed by animals, he
assigned them a lower status than thought and reason. He also held that inten-
tional behavior is causally connected to the mental state that immediately pre-
cedes it. His description of thought as “deliberation preceding action”
anticipated the Watsonian behaviorism of the 1920s. Although this aloproach
implies that consistent individual differences in behavior éju ged as clever or
stupid) have an _unde_r(ljylng mental counterpart, Aristotle did not develop this
point or discuss individual differences in mentality.

Aristotle was also responsible for the word intelli?]ence, although indirectly.
He had reduced Plato’s triarchic division of the psyche to only two main func-
tions, termed dianoetic (cognitive functions) and orectic (emotion, will, and
moral sense). The Roman orator and statesman Cicero (106*13 .c), in trans-
lating Aristotle’s Greek, coined the equivalent of “dianoetic” in Latin as intel-
I|gent|a—'Ant[1I|C|zed as intelligence. Thus originated this now commonplace
tehrn?, which later became perhaps the most controversial subject in all of psy-
chology.

Sogi)elll Factors in Past History. Another historical factor that probably ac-
counts for the scarcity of references to individual differences in the philosophic
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literature of ancient and medieval times was the social system itself. Consisting
of aristocracies and serfdoms, it allowed narrow scope for the salience of indi-
vidual differences in mental ability. The coming of industrialization, with the
Prollferatwn of specialized occupations and the availahility of formal schooling
or a large part of the population, made individual differences in ability more
clearly visible. In preindustrial eras, an individual’s social status at birth severely
restricted his chances for education and choice of occupation. Formal schooling,
which tends to highlight differences in mental ability, was the privilege of a
small elite. Thus the great inequality of opportunity In education and occupa-
tional choice obscured the perception of individual, inborn differences in mental
ability.

The earliest explicit statement re?arding individual differences that | have
been able to find in the philosophic literature is attributed to the Roman orator
Quintilian (a.d. 35-95&. His advice to teachers would not look out of place in
a present-day textbook of educational psychology: “It is generally, and not
without reason, re_Fard_ed as an excellent quality in @ master to observe accurately
differences in ability in those whom he has undertaken to instruct, and to as-
certain in what direction the nature of each particularly inclines him; for there
IS in talent an incredible variety, and the forms of mind are not less varied than
those of bodies™ (quoted in Stoddard, 1943, p. 79). But Quintilian evidently had
no impact on psycholo% His name was not even indexed in Wiley’s four-
volume Encyclopedia ot Psychology (1984).

Locke and British EmEiricism. The English philosopher John Locke (1632—
1704) made a lasting mark on our topic. He was probably the first formal “en-
vironmentalist.” In his famous Essay Concerning Human UnderstandlnE
(1690), he expounded that the human mind, at birth, is a tabula rasa, or blan
tablet. Through the special senses—vision, hearing, touch, taste, and smell—
the mind accumulates impressions from the environment. All knowledge, Locke
argued, comes from only two sources, sensation and reflection (or the “asso-
ciation of ideas” % Experience, he said, is the sole basis of mind. Thus he op-
posed nativism, the notion that the mind comes equipped with certain built-n
propensities, instincts, ideas, or qualities. He advocated empiricism, the belief
that the properties of mind are_whoIIY attributable to individual experience.
Locke’s tabula rasa theory implied to followers that differences in intelligence
resulted from differences in people’s life experience. The philosophic argument
between the rival doctrines of nativism and empiricism moved into psychology,
where it had profound ramifications, most notably the so-called nature-nurture
controversy over the relative importance of heredity and environment as causes
of variation in psychological traits.

THE DARWINIAN REVOLUTION

Full recognition of individual differences in psychological traits, however, had
to wait for the revolution in biological thought ushered in by Darwin’s theory
of evolution through natural selection. The British philosopher Herbert Spencer
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(1820-1903) was ready and waitin%to make the connection. He had originally
promoted his own pre-Darwinian theory of evolution along Lamarckian lines,
which held that characteristics acquired through experience could be passed from
parents to offspring throu%h biological heredity. According to this theory, par-
ticular learned behavior, if habitual, could be passed on to later generations as
an inborn instinct. The publication of The Origin of Species (1858), however,
converted Spencer to Darwin’s theory of natural selection as the mechanism of
b|oloqb|cal evolution, and he became the leading philosopher of Darwinism. But
even hefore he had read Darwin, he wrote a textbook, The Principles of Psy-
chology (1855%, ‘Which had an evolutionary orientation. It has the imPortant
distinction of being the first psychology textbook to use the word intelligence
and to pay specific attention to the fact of individual differences in intelligence.

Spencer considered intelligence a unitary hiological characteristic that evolved
through the differential adai)tatlon of organisms to their environment over time.
Behavior itself evolved hiologically in coné'unction with physical systems. This
was a clear break from the dualism handed down since Plato. The mind—
intelligence in particular—was for the first time viewed in the same way as
anatomical and physiological systems, that is, as an organically evolved adaptive
mechanism used in the comﬂetition for survival in a particular environment.
This was a Iar?e step, for which Spencer is seldom given enough credit. His
notion of intelligence as a unitary trait, instead of as a number of separate
faculties, also marks the beginning of another long-lived controversy. Still a
lively issue in psychology, it is taken up in a later chapter.

Darwin’s theory of evolution emphasized hereditary variation as the raw ma-
terial on which natural selection operates. From this new perspective, Spencer
realized the blolo%mal significance of individual differences, because Homo sap-
lens would not have evolved without the existence of individual variation.
Therefore, Spencer saw individual variation in hereditary traits as intrinsic to
the human condition. In his philosophizing about society, he used the catchy
B_hrase “survival of the fittest,” and Broduced a primitive precursor of socio-

iology known as Social Darwinism. Both the term and the concept eventually

were strongly reproached. Anthropologists and sociologists, in particular, de-
cried its antiegalitarian overtones and reviled the whole idea as misconstrued
Darwinian theory. However, Spencer’s view of intelli(?_ence as a hiologically
adaptive function for achieving, in his words, “the adjustment of internal to
external relations” was a precursor of later efforts to mvesthat(_e the continuity
of brain and intelligence in animals and humans from an evo utlonar?; perspec-
tive. This has become a major frontier of research in biological psychology.

GALTON AND THE COMING OF EMPIRICAL PSYCHOLOGY

All the early influences on differential psych_ologg mentioned so far came
from phllospé)hers. None was an empirical scientist. Darwin was, of course, but
Darwinian ideas were introduced into psychology by Herbert Spencer, a pro-
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fessional philosopher. The empirical study of mental ability and individual dif-
ferences could not begin until someone took up the methods of empirical
science, that is, asking definite questions of nature and discovering the answers
through analysis of data based on systematic observation, objective measure-
ment, and experimentation. The first person to do this was the Victorian eccen-
tric, polymath, and genius Sir Francis Galton (1822-1911)3Galton was Charles
Darwin’s younger half-cousin— half-cousin because they had only one grand-
parent in common, Erasmus Darwin, a noted physician, physiologist, naturalist,
and poet. Born into a prominent and wealthy family, Galton was a child prodigy,
who could read and write before the age of four. He intensely disliked school,
however, and his parents transferred him from one private boarding school to
another, each as boring and frustrating to him as the others, and he begged his
parents to let him quit. In his Memories 0fM¥| Life (1908), written when he was
86, he still complained of his unsatisfying school experience. At age fifteen, he
was sent away to college, which offered more challenge. To satisfy his parents’
ambition that he follow in his eminent grandfather’s footsteps and become a
physician, he entered medical school. There he soon discovered that the basic
sciences— physics, chemistry, blologiy and ph){smlog)r—were far more to his
liking than' miedical practice. So he feft medical school for Cambridge Univer-
sity, there to majlor In mathematics in preparation for a career in science.

Soon after Galton graduated, at age twenty-one, his father died, and Galton
received a large inheritance that made him independently wealthy for the rest
of his _verr long life. It allowed him to pursue his extremely varied interests
freely in all things scientific. His enthusiastic and catholic curiosity about natural
phenomena drove him to became perhaps the greatest scientific dilettante of all
time. Because he was also a genius, he made original contributions to many
fields, some of them important enough to be accorded chapters in books on the
history of several fields: criminology, eugenics, genetics, meteorology, psy-
chology, and statistics. He first gained fame in geography, as an explorer, ex-
Eertly describing, surveying, and mapping previously unexplored parts of Africa.

or this activity, his name is engraved on the granite facade of the Royal Ge-
ographical Society’s bundmgh in London, along with the names of the most
famous explorers in British history. (His fascinating book The Art of Travel
[1855] was a long-time hest seller and went through nine editions.) He also
made contributions to meteorology, inventing isobar mapping, being the first to
write a daily n_ewsi)aper weather report, and _formulatln_% a widely accepted the-
ory of the anticyclone. He made other original contributions to photography,
fingerprint classification, genetics, statistics, anthropolo?g, and psychometrics,
His prolific achievements and ﬁubllcatlons brought worldwide recognition and
many honors, including knightnood, Fellow of the Royal Society, and several
gold medals awarded by scientific societies in England and Europe. As a famous
man in his own lifetime, Galton also had what Hollywood calls “star quality.”
~ Biographies of Galton also reveal his charming eccentricities. His profuse
intellectual energy spilled over into lesser achievements or activities that often
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seem trivial. He was almost obsessed with counting and measuring things S:lis
motto: “When you can, count!”), and he devised mechanical counters and other
devices to help in counting and tabulating. He loved data. On his first visit to
a city, for example, he would walk around with a small, hand-held mechanical
counter and tally the number of people passing by, tabulating their character-
istics—tall, medium, short; blond, brunette, re ead—sei)arately for males and
females, the latter also rated for attractiveness. To be able to manage all these
data while walking about, he had his tailor make a special vest with many little
pockets, each one for a particular tabulated characteristic. He could temporarily
store the data from his counters by putting into designated pockets the appro-
priate number of dried peas. Back in his hotel room, he counted the peas in
each pocket and entered the numerical results in his notebook for later statistical
calculations. o _

He devised an objective measure of the degree to which a lecturer bored the
audience, and tried it out at meetings of the Royal Society. It consisted of
counting the involuntary noises—coughs, feet shuffling, and the like—that is-
sued from the audience, and, with a specially rigged protractor, he measured the
angle that listeners’ heads were tilted from a vertical position during the lecture.
A score derived from the data obtained with this procedure showed that even
the most eloquently written lecture, if read verbatim, was more boring than an
extempore lecture, however rambl_inlg and inele(];ant. _ o

He also invented a special whistle (now called a Galton whistle), which is
familiar to many dog owners. Its high-frequency pitch is beyond humans’ au-
dible range and can be heard only by dogs and certain other animals. Galton
made a series of these whistles, ranging wideI% in pitch, and used them to find
the upper limits of pitch that could be heard by humans of different ages. To
compare the results on humans with the auditory capacities of many species in
the London Zoo, he would attach the whistles to the end of a tube that could
be extended like a telescope, so it could reach into a cage and direct the sound
right at the animal’s ear. While quickly squeezing a rubber bulb attached to one
end of the long tube to force a standard puff of air through the whistle attached
tqttrﬁe other end, he would note whether or not the animal reacted to a particular

itch.

d In another amusing project, he used the mathematics of solid geometry to
figure out the optimal way to cut a cake of any ﬁarticular shape and dimensions
into any given number of pieces to preserve the freshness of each piece. He
published his clever solution in a mathematics journal. There are many other
(Lualnt anecdotes about Galton’s amazing scientific curiosity and originality, but
the several already mentioned should suffice to round out the picture of his
extraordinary personality.

AIthoth he died (at age ninety) as long ago as 1911, his legacy remains
remarkably vivid. It comgnses not only his many pioneering ideas and statistical
inventions, still in use, but also the important endowments, permitted bg his
personal wealth, for advancing the kinds of research he thought would be of
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%reate_st benefit to human welfare. He founded the Department of Eugenics gmw
enetics) at the University of London and endowed its Chair, which has been
occupied by such luminaries as Karl Pearson, Sir Ronald Fisher, and Lionel
Penrose; he furnished a psychological laboratory in University CoIIe_Ee, London;
he founded two prestigious journals that are still active, Biometrika and The
Annals of Human Genetics', and he founded (in 1904) the Eugenics Society
(recently renamed The Galton Institute), which maintains an extensive library,
Publlshes journals and hooks, and sponsors many symposia, all related to the
leld now known as social biology.

THE TWO DISCIPLINES OF SCIENTIFIC PSYCHOLOGY

Galton’s position in the history of behavioral science is stellar. He is ac-
knowledged as one of the two founding fathers of emﬁmc_al psychology, along
with Wilhelm Wundt (1832-1920), who established the first laboratory of ex-
perimental psychology in 1879 in Leipzig. As Wundt is recognized as the father
of ex,oerimental psychology, Galton can certainly be called the father of differ-
ential ps%chology, Including psychometrics and hehavioral genetics. Each is now
a major branch of modern behavioral science. The leading historian of experi-
mental psychology, Edwin G. Bormg_(_1950?, drew the following interesting
contrast between the scientific personalities ot Galton and Wundt:

Wundt was erudite where Galton was original; Wundt overcame massive obstacles
by the weight of his attack; Galton dispatched a difficulty by a thrust of insight.
Wundt was forever armored by his system; Galton had no system. Wundt was
methodical, Galton was versatile. Wundt’s science was interpenetrated by his
philosophy; Galton’s science was discursive and unstructured. Wundt™ was
Interminably arguing; Galton was forever observing. Wundt had a school, a formal
self-conscious school; Galton had friends, influence and effects only. Thus, Wundt
was personally intolerant and controversial, whereas Galton was tolerant and ready
to be convicted of error, (pp. 461-62)

Wundt and Galton were the progenitors of the two main branches of scientific
psychology—experimental (Wundt) and differential (Galton). These two disci-
plines have advanced along separate tracks throughout the history of psychology.
Their methodological and™ even _P_hllosop_hlcal differences run deeﬁ, although
both branches embrace the scientitic tradition of objective testing of hypotheses.

Experimental psychology searches for general laws of behavior. Therefore, it
treats individual differences as unwanted variance, termed “error variance,”
which must be minimized or averaged out to permit the discovery of universal
reqularities in the relation between stimulus and response. The method of ex-
perimental psychology consists of controlling variables (or treatment conditions)
and randomizing the assignment of subjects to the different treatments. The
ex1per|mental conditions are |n_te_nt|onall_¥ manipulated to discover their average
effects, unconfounded by individual differences. In general, the stimulus pre-
sented to the subject is varied by the experimenter, while the subject’s responses
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are recorded or measured. But the data of primary interest to the experimental
psychologist consist of the averaged performance of the many subjects randomly
assigned to each condition. _

Differential psychology, on the other hand, seeks to classify, measure, and
then explain the variety and nature of both individual and group differences in
behavioral traits as phenomena worthy of investigation in their own right. It uses
statistical analysis, such as correlation, multiple regression, and factor analysis,
applied to data obtained under natural conditions, rather than the controlled
conditions of the laboratory. Obviously, when human characteristics are of in-
terest, individual differences and many other aspects of behavior cannot feasibly
or ethically be controlled or manipulated by the investigator. Therefore, scien-
tists must study human variation as it occurs under natural conditions. During
the latter half of this century, however, a rapprochement has begun between the
two disciplines. Both experimental and correlational methods are being used in
the study of cognition. o _ _
~Galton’s Methodological Contributions. Galton made enduring contribu-
tions to the methodology of differential psychology. He was the first to devise
a E)rec[se quantitative index of the degree of relationship, or co-relation (as he
called it) between any two metric variables obtained from the same individuals
(or relatives) in a given population. Examﬁles are individuals’ height and weight
or the resemblance between parents and children, or between siblings, in a given
trait.

In 1896, Karl Pearson (1857-1936), a noted mathematician, who hecame a
Galton disciple and has been rightly called the “father of statistics,” revamped
Galton’s formulation of co-relation, to make it mathematically more elegant and
enhance its general applicability. Pearson’s formula yields what now s called
“the Pearson product-moment coefficient of correlation.” In the technical lit-
erature, however, the word correlation, without a modifier, always signifies
Pearson’s coefficient.4 (The many other types of correlation coefficient are al-
ways specified, e.g., intraclass correlation, rank-order correlation, tetrachoric
correlation, biserial correlation, point-biserial correlation, partial correlation,
semipartial correlation, multiple correlation, canonical correlation, correlation
ratio, phi coefficient, contingency coefficient, tau coefficient, concordance co-
efficient, and congruence coefficient. Each has its specialized use, depending on
the type of data.) Pearson’s correlation is the most generally used. Universally
symbolized by a lower-case italic r (derived from Galton’s term regression), it
IS a ubiquitous tool in the biological and behavioral sciences. In differential
psychology, it is absolutely essential. _

Galton Invented many other statistical and psychometric concepts and meth-
ods familiar to all present-day researchers, including the bivariate scatter dia-
gram, regression (related to correlation), multlfle regression and multlﬁle
correlation (by which two or more different variables are used to predict another
variable), the conversion of measurements or ranks to percentiles, standardized
or scale-free measurements or scores, various types of rating scales, the use of
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the now familiar normal or bell-shaped curve (originally formulated by the great
mathematician Karl Friedrich Gauss [1777-185 ]3 as a basis for quantifying
psychological traits on an equal-interval scale, and using either the median or
the geometric mean (instead of the arithmetic mean) as the indicator of central
tendency of measurements that have a markedl?/ skewed frequency distribution.

In his Inquiries into Human Faculty and [ts Development (1883), Galton
described an odd assortment of clever tests and techniques, devised mostly by
himself, for measuring basic human capacities, particularly keenness of sensory
discrimination in the different modalities, imagery, and reaction times to audi-
tory and visual stimuli. Although Galton’s use of gadgetry has been disgaraged
as “brass instrument psychology,” it was a seminal Innovation—the objective
measurement of human capacities. Compared with modern technology, of
course, Galton’s methods were fairly crude, sometimes even inadequate for their
purpose. His intense interest in human variation and his passion for quantitative
data, however, led him to apply his “brass instrument” techniques to almost
ever[)j/ physical and mental characteristic that could be counted, ranked, or mea-
sured.

Galton obtained many types of data on more than 9,000 persons who, from
1884 to 1890, went through his Anthropometric Laboratory in London’s South
Kensington Science Museum. Each had to pay threepence to serve as subjects
for these tests and measurements. Unfortunately, Galton lacked the powerful
tools of statistical inference that were later developed by Karl Pearson (1857-
1936) and Sir Ronald A. Fisher (1890-1962), and therefore he could only draw
much weaker conclusions than the quality of his massive data really warranted.
He was dismayed that the measurements of sensory discrimination and speed of
reaction appeared to show so little relationship to a person’s level of %eneral
mental ability (as indicated by educational and occupational attamments?. t soon
became a W|deI?/ accepted and long-lasting conclusion that the simple functions
assessed by Galton are unrelated to individual differences in the higher mental
processes, or intelligence. Galton’s “brass instrument” approach to the study
of human abilities, therefore, was abandoned for nearly a century.

Recently, Galton’s original data have been analyzed by modern methods of
statistical ‘inference. B It turned out that his original hypotheses were largely
correct after all. R. A, Fisher’s method known as analysis of variance revealed
highly 3|g1n|f|cant differences between groups differing in educational and oc-
cupational level on Galton’s discrimination and reaction-time tests. Galton’s
scientific intuitions were remarkably good, but the psychometric and statistical
methods then available were not always uE to the task of validating them.

Galton Introduces Genetics into Psychology. Galton’s most famous work,
Hereditary Genius (1869), was the forerunner of behavior genetics, nearly a
century before either the term or the field of behavior Penetlcs came into heing.
Galton was especially interested in the inheritance of mental ability. Because
there was then no objective scale for measuring mental ability, he devised an-
other criterion of high-level ability: eminence, based on illustrious achievements
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that would justify published biographies, encyclopedia articles, and the like. BK
this criterion, he selected many of the most famous intellects of the nineteent
century, whom he classed as “illustrious,” and he obtained information about
their ancestors, descendants, and other relatives. His extensive hiographical and
genealogical research revealed that the relatives of his illustrious probands were
much more likely to attain eminence than would a random sample of the pop-
ulation with comparable social background. More telling, he noticed that the
probability of eminence in a relative of an illustrious person decreased in a
reqular stepwise fashion as the degree of kinship was more remote. Galton
noticed that the same pattern was also true for physical stature and athletic
performance. _ S

Galton made other observations that gave some indication of the power of
family background in producing eminence. In an earlier period ofhlsto_r?g, It was
customary for popes to adopt orphan hoys and rear them like sons, with all the
advantages of culture and education that papal privilege could command. Galton
noted that far fewer of these adopted boys ever attained eminence than did the
natural sons of fathers whose eminence was comparable to a pope’s. From such
circumstantial evidence, Galton concluded that mental ability is inherited in
much the same manner, and to about the same degree, as physical traits.

Galton further concluded that what was inherited was essentially a general
ability, because eminent relatives in the same family line were often famous in
%une different fields, such as literature, mathematics, and music. He supposed
that this hereditary general ability could be channeled by circumstance or interest
into different kinds of intellectual endeavor. He also recognized special abilities,
or talent, in fields like art and music, but considered them less important than
general ability in explaining outstanding accomplishment, because a high level
of general ability characterized all of his illustrious persons. (Galton noted that
they were also characterized by the unusual zeal and persistence they brou%ht
to their endeavors.) He argued, for example, that the inborn musical gift of a
Beethoven could not have heen expressed in works of genius were it not ac-
companied by superior general ability. In Hereditary Genius, he summarized his
concept of general ability in his typically guaint style: “Numerous instances
recorded in this book show in how small a degree eminence can be considered
as due to purely special powers. People lay too much stress on apparent spe-
cialities, thinking that because a man is devoted to some particular pursuit he
would not have succeeded in anything else. They might as well say that, because
a youth has fallen in love with a brunette, he could not possibly have fallen in
love with a blonde. As likely as not the affair was mainly or wholly due to a
general amorousness” (E. 64{. _ _ _
~ Galton’s Anecdotal Report on Twins. The use of twins to study the inher-
itance of behavioral traits was another of Galton’s important “firsts.” He noted
that there were two types of twins, judging from their degree of resemblance.
“Identical” twins come from one egg (hence they are now called monozygotic,
or MZ, twins), which divides in two shortly after fertilization. Their genetic
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makeulp i identical; thus their genetic correlation is unity (r = 1). And they are
very alike in appearance. “Fraternal” twins (now called dizygotic, or DZ) come
from two different fertilized eggs and have the same genetic relationship as
ordinary siblings, with a genetic correlation of about one-half (on average). That
is, DZ twins are, on averaﬁe, about one-half as similar, genetically, as MZ twins.
DZ twins are no more alike in appearance than ordinary siblings when they are
compared at the same age.

Galton was interested in twins’ similarities and differences, especially in MZ
twins, as any difference would reflect only the influence of environment or
nongenetic factors. He located some eighty pairs of twins whose close physical
resemblance suggest_ed_ther were MZ, and he collected anecdotal data on their
behavioral characteristics from their relatives and friends and from the twins
themselves. He concluded that since the twins were so strikingly similar in their
traits, compared to ordinary siblings, heredity was the predominant cause of
differences in individuals’ psychological characteristics.

Because Galton obtained no actual measurements, systematic observations, or
quantitative data, his conclusions are of course liable to the well-known short-
comings of all anecdotal reports. Later research, however, based on the more
precise methods of modern psychometrics and biometrical genetics, has largely
substantiated Galton’s surmise about the relative importance of heredity and
environment for individual differences in general mental ability. But Galton’s
research on heredity is cited nowadays onIK for its historical interest as the
ﬁrot_otyi)e of the essential questions and methods that gave rise to modern be-

avioral genetics. It is a fact that most of the questions of present interest to
researchers in behavioral genetics and differential psychology were originally
thought of by Galton. His own answers to many of the questions, admittedly
based on inadequate evidence, have proved to be remarkably close to the con-
clusions of present-day researchers. In the history of science, of course, the
persons remembered as great pioneers are those who asked the fundamental
questions, thought of novel ways to find the answers, and, in retrospect, had
][nany correct and fruitful ideas. By these criteria, Galton unquestionably quali-
ies.

Galton’s ConcePt of Mental Ability. Galton seldom used the word intelli-
gence and never offered a formal definition. From everything he wrote about
ability, however, we can well imagine that, if he had felt a definition necessary,
he would have said something like innate, general, co_%nitive ability. The term
cognitive clearlﬁ distinguishes it from the two other attributes of Plato’s triarchic
conception of the mind, the affective and conative. Galton’s favored term, men-
tal ability, comprises both general ability and a number of special abilities—he
mentioned linguistic, mathematical, musical, artistic, and memorial. General
ability denotes a power of mind that affects (to some degree) the quality of
virtually everything a person does that requires more than simple sensory acuity
or sheer physical strength, endurance, dexterity, or coordination.

Analogizing from the normal, bell-shaped distribution of large-sample data
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on physical features, such as stature, Galton assumed that the frequency distri-
bution of ability in the population would approximate the normal curve. He
divided the normal curve’s baseline into sixteen equal intervals (anu_rer arbi-
trary, but convenient, number{)_to create a scale for (1ua_nt|fy|ng Individual and
group differences in general ability. But Galton’s scale is no Ion%er used. Ever
since Karl Pearson, in 1893, invented the standard deviation, the baseline of
the normal distribution has been interval-scaled in units of the standard devia-
tion, symbolized by ¢ (the lower-case Greek letter sigma). Simple calculation
shows that each interval of Galton’s scale is equal to 0.6960, which is equivalent
to 10.44 1Q points, when the o of IQ is 15 1Q points. Hence Galton’s scale of
mental ability, in terms of 1Q, ranges from about 16 to 184.

Galton was unsuccessful, however, in actually measuring individual differ-
ences in intelligence. We can easily see with hindsight that his particular battery
of simple tests was unsuited for assessing the higher mental E_rocesses that peo-
ple think of as “intelligence.” Where did Galton go wrong? Like Herbert Spen-
cer, he was immensely impressed by Darwin’s theory of natural selection as the
mechanism of evolution. And hereditary individual variation is the raw material
on which natural selection works by, in Darwinian terms, “ selection of the fittest
in the struggle for survival.” Also, Galton was influenced by Locke’s teaching
that the mind’s content is originally gained through the avenue of the five senses,
which provide all the raw material for the association of impressions to form
ideas, knowledge, and intelligence. From Darwin’s and Locke’s theories, Galton
theorized that, In his words, “the more perceptive the senses are of differences,
the larger is the field upon which our judgement and intelligence can act”
{Human Faculty, 1883, p. 19). Among many other factors that conferred advan-
tages in the competition for survival, individual variation in keenness of sensory
discrimination, as well as quickness of reaction to external stimuli, would have
been positively selected in the evolution of human intelligence.

It seemed to Galton a reasonable hypothesis, therefore, that tests of fine sen-
sory discrimination (not just simple acuity) and of reaction time to visual and
auditory stimuli would provide objective measures of individual differences in
the elemental components of mental ability, unaffected by education, _occupation,
or social status. The previously described battery of tests Galton devised for this
purpose, it turned out, yielded measurements that correlated so poorly with com-
monsense criteria of intellectual distinction (such as election to the Royal So-
ciety) as to be unconvincing as a measure of intelligence, much less having any
practical value. Statistical techniques were not then available to prove the the-
oretical significance, if any, of the slight relationship that existed between the
|laboratory measures and independent estimates of ability. Galton had tested
thousands of subjects, and all of his data were carefully preserved. When re-
cently they were analyzed by modern statistical methods, highly significant éthat
is, nonchance) differences were found between the average scores obtained by
various groups of people aggregated hy age, education, and occupation. B This
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finding lent considerable theoretical interest to Galton’s tests, although they
would have no practical validity for individual assessment. _

Binet and the First Practical Test of Intelligence. At the behest of the Paris
school system, Alfred Binet in 1905 invented the first valid and practically useful
test of intelligence. Influenced by Galton and aware of his disappointing results,
Binet (1857-1911) borrowed a few of Galton’s more promising tests (for ex-
ample, memory sPan for digits and the discrimination of weights) but also de-
vised new tests of much greater mental complexity so as to engage the higher
mental processes—reasoning, judgment, planning, verbal comprenension, and
acquisition of knowledge. Test scores scaled in units of mental age derived from
Binet’s battery proved to have practical value in |dent|fy|ngi< mentally retarded
children and In assessing children’s readiness for schoolwork. The story of Bi-
net’s practical |n?enuny, clinical wisdom, and the lasting influence of his test
is deservedly well known to students of mental measurement.Z The reason that
Binet’s test worked so well, however, remained unexplained b¥ Binet, except
in intuitive and commonsense terms. A truly theory-hased explanation had to
wait for the British psychologist Charles Spearman (1863-1945), whose mo-
mentous contributions are reviewed in the next chapter.

Galton on Race Differences in Ability. The discussion of Galton’s work in
differential paychology would be incomplete without mentioning one other togic
that interested him—race differences in mental ability. The ftitle itself of his
chapter on this subject in Hereditary Genius would be extremely unacceptable
today: “The Comparative Worth of Different Races.” But Galton’s style of
writing about race was common among nineteenth-century intellectuals, without
?h_e slightest implication that they were mean-spirited, unkindly, or at all un-
riendly toward people of another race. A style like Galton’s is seen in state-
ments about race made by even such democratic and humanitarian heroes as
Jefferson and Lincoln.

Galton had no tests for obtaining direct measurements of cognitive ability.
Yet he tried to estimate the mean levels of mental capacity possessed by different
racial and national é]roups on his interval scale of the normal curve. His esti-
mates— many would say guesses—were based on his observations of people of
different races encountered on his extensive travels in Europe and Africa, on
anecdotal reports of other travelers, on the number and quality of the inventions
and intellectual accomplishments of different racial grougs, and on the percent-
age of eminent men in each group, culled from biographical sources. He ven-
tured that the level of ability among the ancient Athenian Greeks averaged “two
grades™ higher than that of the average Englishmen of his own day. (Two grades
on Galton’s scale is equivalent to 20.9 1Q points.) Obviously, there is no pos-
sibility of ever determining if Galton’s estimate was anywhere near correct. He
also estimated that African Negroes averaged “at least two grades” (i.e., 1.3%,
or 20.9 10 points) below the English average. This estimate appears remarkably
close to the results for phenotypic ability assessed b?/ culture-reduced 1Q tests.
Studies in sub-Saharan Africa indicate an average difference (on culture-reduced
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nonverbal tests of reasoning) equivalent to 1.43a, or 21.5 1Q points between
blacks and whites.8U.S. data from the Armed Forces Qualification Test (AFQT),
obtained in 1980 on large representative s.amf)les of black and white youths,
show an average difference of 1.36a (equivalent to 20.4 IQ_pomt?_—not far
from Galton’s estimate (1.39a, or 20.9 1Q points).9 But intuition and informed
guesses, though valuable in generating hypotheses, are never acceptable as ev-
Idence in scientific research. Present-day scientists, therefore, properly dismiss
Galton’s opinions on race. Except as hypotheses, their interest is now purely
biographical and historical.

NOTES

1 A considerably more detailed history of the differential psychology of mental abil-
ities, extending from ancient times to the present, can be found in Jensen (1987a).

2. For comprehensive articles on the histories of topics discussed in the present chap-
ter—educational psychology, educational and psrchologlcal measurement, statistical
methodology— I recommend the book edited by Glover and Ronning (1987).

3. The literature on Galton is extensive. The most accessible biography is by Forrest
(1974). Fancher (1985a) gives a shorter and highly readable account. A still briefer
account of Galton’s life and contributions to psychology is given in Jensen (1994a),
which also lists the principal biographical references to Galton. His own memoir (Galton,
1908) is good reading, but does not particularly detail his contributions to psychology,
a subject reviewed most thorqurﬁ;hly by Cyril Burt (1962%. Galton’s activities in each of
the branches of science to which he made original contributions are detailed in a collec-
tion of essays, each by one of fourteen experts in the relevant fields; the book also
includes a complete bibliography of Galton’s published works, edited by Keynes (1993).
Fancher (1983a, 1983b, 1983c, 1984) has provided fascinating and probing essays about
quite specific but less well-known aspects of Galton’s life and contributions to psychol-
ogy. Lewis M. Terman (1877-1956), who is responsible for the Stanford-Binet 1Q test,
tried to estimate Galton’s 1Q in childhood from a few of his remarkably precocious
achievements even long before he went to school. These are detailed in Terman’s (1917)
article, in which he concluded that Galton’s childhood 1Q was “not far from 200" (p.
212). One of Galton’s biographers, Forrest (1974), however, has noted, “Terman was
misled by Francis” letter to [his sister] Adele which begins, ‘I am four years old.” The
date shows that it was only one day short of his fifth birthday. The calculations should
therefore by emended to give an 1.Q. of about 160" (p. 7). (Note: Terman estimated 1Q
as 100 x estimated Mental Age (MA)/Chronological Age (CA); he estimated Galton’s
MA as 8 years based on his purported capabilities at CA 5 years, so 100 x 8/5 = 160.)

4. Pearson’s correlation coefficient, r, is explained in virtually every introductory text-
book of statistics. The basic formula is

r=1(X-X) (Y-Y) fflo.ff,

where X means “the sum of”; X, and Y; are paired individual measurements of variables
Xand Y; X and Y are the means of variables X and Y in the sample; a* and Gy are the
sample standard deviations of variables X and Y; and N is the number of paired meas-
urements. (If the axand oyare removed from the above formula, it becomes the formula
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for what is called the covariance of the variables X and Y.) The standard deviation of
any variable (say, X), using the above symbols, is

a = JY(X-X)VN].

What is known as the variance is simply a2 _

5. This analysis of Galton’s original data was conducted by a group of behavior ge-
neticists (Johnson et al., 1985).

6. Ibid.

7. An excellent historical account of the development of Binet’s test and of all the
major tests of intelligence that followed Binet, up to the present, is found in Thorndike
& Lohman (1990).

8. Estimate based on the weighted average 1Q of eleven samples of African children
and adults (total N = 10,073) taken from Tables 3 and 4 in Lynn (1991a).

9. Based on data from the 1980 National Longitudinal Study of Youth (NLSY), com-
prising 6,502 whites and 3,022 blacks, reported in Hermstein & Murray (1994). The
black-white difference of 1.36¢ in this estimate is larger than the difference of about lo
tyﬁically reported for 1Q, mainly because the white sample in this study, unlike many
other studies, is entirely of European ancestry and does not include Amerindians, Mex-
ican-Americans, Asians, and Pacific Islanders.



Chapter 2
The Discovery of g

Spearman inventedla method, factor analysis, that permitted a rig-
orous statistical test of Spencer’s and Galton’s hypothesis that a
general mental ability enters into every kind of activity requiring
mental effort. A well-established empirical finding— positive corre-
[ations among measures of various mental abilities—Is putative ev-
idence of a common factor in all of the measured abilities. The
method of factor analysis makes it possible to determine the degree
to which each of the variables is correlated (or loaded) with the
factor that is common to all the variables in the analysis. Spearman
gav_e the label g to this common factor, which is manifested in in-
ividual differences on all mental tests, however diverse.

Spearman’s two-factor theory held that every mental test, however
diverse in the contents or skills called for, measures only two factors:
? and s, a factor specific to each test. But later research based on
arger numbers of tests than were available in Spearman’s earli/ stud-
ies showed that g alone could not account for all of the correlations
between tests. So Spearman had to acknowle_d?e that there are other
factors besides g, called groupfactors, that different groups of tests,
each with similar task demands (such as being either verbal, spatial,
numerical, or mechanicalg, have in common.

By comparing tests with high and low ¢ factor loadings, Sijearman
concluded that g is most strongly reflected in tests that call for the
“eduction of relations and correlates,” for example, reasoning to
solve novel problems, as contrasted with recallln% previously ac-
quired knowledge or using already well-learned skills,

Spearman thought of g metaphorically as “mental ener { that
could be applied to any and every kind of mental task, and likened
group factors and specificity to specialized “engines™ for the per-



The Discovery of g 19

formance of certain types of tasks. Individual differences in potential
performance on any mental task, according to Spearman, result from
two sources: differences in the amount of mental “ener%y” that can
be delivered to the specific “engine” that mediates pertormance of
the task, and differences in the efficiency of energy utilization by
the “engine.” The efficiency of the various “engines” differs in-
dependently within the same person.

Although Spearman remained agnostic concerning the biochemi-
cal and physiological basis of this energy, it was his fervent hope
that scientists would eventually discover a physical hasis for g.

As was indicated in the previous chapter, the belief that mental ability is a
general, unitary trait was introduced into psychology by Spencer and Galton.
But their work was largely speculative with little, if any, empirical support. The
idea of general ability had in fact existed in literature since ancient times. Samuel
Johnson (1709-1784) expressed it tersely when he heard a noted historian pro-
claim that it was by virtue of their very different gifts that Caesar hecame a
great commander, Shakespeare a great poet, and Newton a great scientist. Dr.
Johnson replied, “No, it is only that one man has more mind than another; he
may direct it differentI%, or preter this study to that. Sir, the man who has vigor
\n/c/aytwajlzr to the North as well as to the South, to the East as well as to the

st.

The far more common academic belief, however, was that the mind is a
multiplicity of separate and distinct functions, called faculties. This was the
prevailing view in psychology at the end of the nineteenth century. Faculty
psychology, as it was called, postulated the existence of a distinct faculty for
each and every mental activity a psychologist could think of: perception, con-
ception, judgment, reason, recollection, memory, imagination, intuition, wisdom,
discernment, discrimination, aesthetic sensﬂwﬂy—to_ name a few. Thinking they
could |dent|fY an individual’s strong and weak faculties, phrenologists examined
people’s skulls for bumps, depressions, and other irreqularities that would in-
dicate the relative development of parts of the brain that supposedly controlled
these various, distinct mental faculties.

“Did each name in the entire lexicon of human faculties really represent a
different mental process? Or did the faculty psychologists simply take verbs and
adjectives that describe various mental activities, convert them into nouns, and
then reify them as distinct faculties? Was there a theoretical limit to the possible
number of faculties beyond simply the total number of words in the unabridged
dictionary that refer to mental activity? Such questions (not unlike the debates
in medieval scholasticism over how many angels could dance on the head of a
pin) were acknowledged and debated. But no one developed a means to answer
them in a scientific manner (that is, objectively, empirically, and experimen-

tally)
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Such was the general state of affairs in psychologr at the turn of the century.
Galton had already provided the two necessar?/ tools— mental tests and corre-
lation— to answer the tproblems raised by faculty psychology. But Galton never
used them expressly for that purpose. His regecnon of faculty psychology in
explaining individual differences and his belief in a general mental ability were,
like Dr. Johnson’s, based mainly on general impressions rather than explicit
anal?]/sm of empirical data. . o

The actual employment of Galton’s tools to tackle the questions about indi-
vidual differences in mental ability remained for another Britisher, Charles Ed-
ward Spearman (1863-1945). He became Britain’s most distinguished
psychologist and one of the “greats” in the history of psychology. He invented
an even more powerful quantitative method, factor analysis, and used it to dis-
cover a psychological phenomenon, g. For this reason, Sﬁearman is more fre-
quently cited in the present-day literature of empirical psychology than any other
psychologlst of his period. N _ _

It is often hard to Pm down the exact origin of an important discovery, be-
cause usually most of the prerequisite concepts were already known hut were
not fully and systematically articulated. In Spearman’s case, it is hard to tell
from the literature exactly which came first, his invention of factor analysis or
his discovery of g. Part and parcel of one another, they probably occurred si-
multaneously. | am reminded of a revealing passage in science writer Horace
Judson’s interview with the Nobel laureate Francis Crick (codiscoverer of the
molecular structure of DNA):

Discovery, examined closely, 1said to Crick, seemed curiously difficult to pin to
a moment or to an insigiht or even to a single person. “No, I don’t think that’s
curious,” Crick said. *1 think that's the nature of discoveries, many times that
the reason they’re difficult to make is that you’ve got to take a series of steps,
three or four steps, which if you don’t make them you won't get there, and if you
go wrong in any one of them you won’t get there. It isn’t a matter of one jump—
that would be easy. You’ve got to make several successjvejumﬁs. And usually
the pennies drop one after another until eventually it all clicks. Otherwise it would
be too easy!B

Spearman’s discovery of g is probably another instance of the creative act as
described by Crick. The discovery and the method needed to establish its validity
came about by a series of successive steps.

The definition of g will be postponed momentarily, because a proper definition
Is impossible outside of the context in which Spearman formulated it. A purely
verbal definition of% such as “general intelligence,” does not adequately con-
vey the ﬁrecmon of Spearman’s concept. He was extremely concerned with this,
and with good reason, as g, like many other scientific constructs, cannot be
expressed In common parlance. Therefore, it is essential for understanding the
meaning of g as a scientific concept to have a clear idea of the methodology by
which Spearman arrived at it. But first, a brief sketch of Spearman’s life.4
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In college, Spearman had a liking for mathematics, but after considering the
prospects of earning a living as a mathematician, he decided to major in engi-
neering. His %reatest interest, however, was philosophy, which he read widely
and assiduously.

While a graduate engineer, he became especially attracted, strangely enough,
to the philosophies of India, and wanted to go there to study. He enlisted in the
British army’s Royal Corps of Engineers, hoping to be sent to one of its stations
in India. He assumed that life as a military engineer would allow him substantial
time to study Bh_llosophy. _ o _

Instead of being sent to India, however, he was stationed in Burma. His
engineering activities there won him a medal for distinguished service, and he
was soon advanced to the rank of major. Meanwhile, his initial interest in phi-
losophy led him to psychology. He was enthralled b?/ the opportunity this new
field seemed to present for development as a natural science. He had come to
believe that philosophy should adopt the methods of the natural sciences, and
he considered the subject matter of psychology, such as it was at the end of the
nineteenth century, to be the proper vehicle for achieving this aim. _

_Finally deciding at age thirty-four to make pchhoIogy his career, he resigned
his commission in the army and headed for what was then the leading center
for research in experimental psychology, Wilhelm Wundt’s laboratory in the
University of Leipzig. In Spearman’s brief autobiography,5he regretted t eYears
he wasted as an army officer before discovering his true vocation in psychology.
His several years’ sojourn in the army, he later remarked, resulted from the
youthful illusion that life is long. Seven years passed before he completed his
doctoral study under Wundt, because in the miast of it, alas, he was recalled to
mllltar_Y duty during the Boer War. _ o

While still a graduate student, however, he showed his unusual analytic ability
by writing what is perhaps the single most important paper in the history of
differential psychology and psychometrics: “ ‘General Intelligence’ Objectively
Determined and Measured.” Published in 1904 in the American Journal of
Psycholo%y_, it introduced Spearman’s famous two-factor theory. This stnkmgIK
non-Wundtian paper was not Spearman’s Ph.D. dissertation, which dealt wit
optical illusions in spatial perception, a subject strictly in line with Wundt's
interest at that time,

Finally, with a Ph.D. in hand, Spearman returned to England to take the
estimable position of Reader in Psychology at the University of London. Only
four years later, he was promoted to a distinguished chair—Grote Professor of
Mind and Logic—and for twenty-two years thereafter he headed the Psycholo%y
Department at the University of London. During his distinguished career, he
received many honors in England and abroad, including election as a fellow of
the Royal Society and (in the United States) the National Academy of Sciences.
At age eightﬁ-two, suffering from poor health and the frailties of old age, Spear-
man ended his life by jumping out of an upper-story window of the London
University Hospital.
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CORRECTION FOR ATTENUATION

While studying under Wundt, Spearman also read Galton and later claimed
that these pioneers of scientific psychology were the two greatest influences in
his life. He found Galton’s writings especially stimulating. Spearman was most
intrigued by Galton’s idea that individual differences in simple mental processes,
such as discrimination, are the basis of individual differences in the more com-
plex function intelligence. He was aware of Galton’s apparent failure to find
much relationship between performance on simple tasks and the ordinary criteria
of intelligence. He also knew of the failure to find such correlations In subse-
quent studies inspired by Galton. The idea of general ability was further shaken
by the observation that the simple Galtonian tasks of discrimination, reaction
time, and the like showed small correlation even among themselves, to say
nothing of their near-zero correlations with “real-life” indicators ofmtelhgence.
Yet there were a few studies that did show more impressive correlations. Spear-
man puzzled over this inconsistency. The theoretical issue at stake seemed too
important to him to dismiss Galton’s hypothesis without further empirical in-
vestigation of his own. _ o _

Spearman noted that the Galtonian measures had poor reliability; that is, the

same subject obtained different scores when the test was repeated. Besides meas-
uring what they were intended to measure and appeared to measure, therefore,
the Galtonian tests also contained a lot of measurement error. Spearman drew
the analogy of firing a gun repeatedly while aiming at a mark on a tar%et. The
bullets scatter randomly around the mark, more of them hitting nearer the mark
than farther away from it, and the more shots that are fired, the greater is the
number of bullets that hit the mark. The scatter of bullets around the mark is
analogous to measurement error. It is a part of every kind of measurement, to
a greater or lesser degree, depending on the nature of the measuring instrument,
the thing being measured, and how hard the experimenter works to reduce meas-
urement error. _ _
_ Neither Galton nor anyone else working on the measurement of mental abil-
ities had taken into account the reliability of their measurements. Measurement
error_necessarily diminishes (the technical term is attenuates) the correlation
coefficient. The larger the error (that is, the lower the reliabi_htp in either one
or both of the correlated variables, the lower will be the possible obtained cor-
relation between them, because the measurement errors are by definition random
and therefore uncorrelated. Even two variables that theoretically are perfectly
correlated, such as the diameter and the circumference of circles, will not show
a perfect correlation (i.e., r = +1.00) unless both variables are measured with
perfect ac_curacg. Yet perfect accuracy of measurement is a pure abstraction
never attained by any actual measurement. Actual measurements of any kind
always have some “margin of error.”

Spearman’s formalization of this idea with respect to test scores is the hasic
postulate of what is now called classic test theory. It states that any and every



The Discovery of g 23

actual (also termed obtained) score (or measurement), call it X, is composed of
two elements—a true score, t, and a random error of measurement, e. (Neither
t nor e can be directly observed(.} Thus X = t + e. Because e can have either
a positive or a negative sign and because it is random, its value tends toward
2610 a5 We aver_a?_e more and more of the measurements of X. Theoretically, the
average of an infinite number of Xs contains zero error; it will consist Burely
of t. The way, then, to reduce measurement error is to average a number of
repeated measurements of the thing being measured, and to include in the av-
erage as many repeated measurements as necessary to achieve the desired degree
of accuracy, or, as it is termed, reliability, of the composite measure. The t
(which is systematic) is repeatedly averaged in, while the e (which is random)
IS mc_reasmgl?/ averaged out. _ _

This postulate has an important corollary concerning the variance (c*2) of a
number of different values of X. The variance consists of the true score variance
(ct.2) plus the error variance _(OCZR, oroxX2= az2+ ae2 Only a2 represents the
reliable component of individual differences in the measurements of X. This
leads to the definition of the reliability coefficient (rx) as rx = (7,2/_(J>Q.A|thoug1h
the theoretical 0,2 cannot be determined directly, we can determine rx simply
by obtalnln? two separate measures of the same variable, X, for every subject
and then calculate the correlation between the two sets of measurements. This
is rxx the reliability of the measurements of X.6 As rxx is the proportion of true
score variance in test scores, 1 - rxyields the proportion of error variance,

These considerations led Spearman to invent a method to rid a correlation
coefficient of the weakenin% effect of measurement error. It is known as the
correction for attenuation. I the correlation between the obtained measures of
the variables X and Y is rxy, the correlation (rxy) between the error-free true
scores (termed X' and F) is the raw correlation between X and Y divided by the

eometric_ mean of the reliability coefficients of X and Y, that is, rxy. = ryl
foxryy)\)\ The correlation rxy thus is said to be corrected for attenuation, or
isattenuated.

Realizing that the true correlations in earlier studies of Galton’s hypothesis
of the generality of mental ability had been seriously underestimated because of
the low reliability of most of the measurements, Spearman applied his correction
for attenuation to the correlations obtained in the earlier studies. Galton’s meas-
urements of reaction time, for example, had a reliability of only .18! The the-
oretically highest correlation that any variable can have with any other variable
is the geometric mean of their reliability coefficients %.e._, the square root of the
product of the two reliabilities). Obviously, it would be impossible to find sub-
stantial correlations hetween such unreliable measures. For example, Galton’s
measure of reaction time (RT), with a reliability of onlr 18 could not possibly
correlate higher than /AS = .42 with any other variable, and if the true corre-
lation between simple RT and g was, say, .15, the obtained correlation (if the
reliability of RT was .18) would be only .15 x — .06, Measurements can
be made more reliable, however, by aggregating repeated measurements.
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Table 2.1 _ _ _
Spearman’s Correlation Matrixaand g Loadings

Variable C F E Ma P Mu g
Classics .83 .78 .70 .66 .63 958
French 83 .67 .67 65 .57 .882
English .78 .67 .64 54 51 .803
Math .70 .67 .64 .45 51 .750
Pitch 66 .65 54 .45 40 673
Music 63 .57 51 51 .40 646
Mean r 120 .678 .628 .594 .540 .524

“Only the correlations given here appear in Spearman’s original matrix; the g loadings and the mean
rs (both in italics) have been included here only for didactic purposes.

~ Spearman obtained such aggregated data in a small and seemingly unimpres-

sive experiment based on twenty-two high school boys. These data admittedly
are not compelling from the standpoint of any substantive conclusions that can
be drawn from them. It is only the novel procedure that Spearman applied to
these meager data and the imﬁortant insights he gained as a result that proved
to be of such far-reaching methodological and theoretical consequence. It is also
worth looking at his employment of a prototype of factor analysis, not onlr for
its historical Interest, but as a way of explaining the basic concepts underlying
this complex mathematical procedure.

THE FIRST FACTOR ANALYSIS

Spearman obtained students’ ranks based on their teachers’ ratings in five
school subjects (Classics, French, English, Math, and Music). Most important,
as suggested by Galton’s hypothesis, Spearman measured the pupils” ability in
Bltch Iscrimination, the crucial variable in his little study. The raw correlations

etween these six variables were reported by Spearman as shown in the corre-
lation matrix_in Table 2.1.7

A matrix is just an array of numbers arranged in columns and rows. A cor-
relation matrix is such an array that shows the correlation of each variable with
every other variable. In Table 2.1, for example, the correlation between rank in
Classics and rank in French is .83. The correlation coefficient is a continuous
variable, ranging from a perfect negative correlation {r = —1.00) to zero cor-
relation (r = 0) to a perfect positive correlation (r = +1.00). (When no sign is
shown, a positive correlation coefficient is understood. Negative suﬁns are always
showfn.l)d hen all correlations in the matrix are positive, it is called a positive
manifold.*
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Spearman was especially intrigued to find that pitch discrimination, although
seemingly very different from the scholastic variables, was nevertheless corre-
lated with each of the other variables, and was even more highly correlated with
rank in classics, French, and English than with rank in music. Galton’s belief
that fineness of sensory discrimination is related to intelligence was perhaps
correct after all!

. lk;llovv2 Ilet’s go step-by-step through Spearman’s analysis of the correlations in

able 2.1:

First, it should be noted that the six variables (Classics, French, etc.) in Table
2.1 can be listed in any arbitrary order. (The correlations themselves would, of
course, remain unchanged.) But Spearman’s insight led him to arrange the var-
lables exactly as shown in Table 2.1. He did this to see if the matrix would
show what he termed a hierarchical order. He reasoned that if only one common
factor (i.e., a source of variance) were responsible for all of the correlations
among a number of measurements, the matrix of correlations would show a
hierarchical order. That is, the correlation coefficients would decrease in size
the farther away (in any direction) the? are from the upper left corner of the
matrix. The easiest way to determine it the correlations form a hierarchy is to
put the variables in the order of their average correlation with each of the other
variables. (See the row labeled Mean r in Table 2.1). With the variables so
ordered, one can see that the matrix of correlations here is extremely hierarchi-
cal. Tghe slight deviations from a perfect hierarchy are probably due to random
error,

Second, it is a mathematical necessity that if there is only one factor that is
common to all of the variables and no two (or more) variables have any other
factor(s) in common, then any two columns of correlations will have a constant
proportionality. This is a more stringent criterion of a single-factor matrix than
merely a hierarchical order of the correlations. For example, examine the
corresponding entries in columns C and F. ,78/.67 = 116, .70/.67 = 1.04,
66/.65 = 1.02, ,63/.57 = 1.11. Or the corresponding entries in columns E and
P. .78/.66 = 1.18, 67/.65 = 103, 64/.45 = 142, 51/.40 = 127. Although all
of the proportions are slightly greater than 1.00 and they obviously vary, we
cannot be certain that the correlations in this matrix can be adequately explained
in terms of only one factor. _

Third, Spearman proposed a closely related means to test whether a matrix
has only one factor (or, in the terminology of matrix algebra, it has unit rank;
e, rank = 1). This is the most rigorous criterion of a single factor matrix and
has the advantage that it can he subljected to a test of statistical significance.
This tells whether the obtained correlations depart from theoretical expectation
more than chance, or random error, would allow. Spearman called it the method
of vanishing tetrad differences. A tetrad consists of any set of four correlations
(arranged just as they are located in a hierarchically ordered matrix) between
which two equal-length crossing diagonals can be drawn. For example, here are
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just four of the tetrads to be found in Table 2.1. (See if you can find them in

the matrix):
(@) (b) ©) @
B 6/ 67 &4 B & NP 63
0 67 57 A8 5 D 4 4L

The number of possible distinct tetrads in a matrix rapidly increases as the
number of variables increases.2 The total number of distinct tetrads that can be
obtained from Table 2.1, with only six variables, is forty-five. Spearman’s tetrad
?quatlon is illustrated by putting each of the four tetrads above into the following
orm:

) (BX 6)- (OX 6= B4
b) (67 X B - (57X .60 = -.024
O (BX A) - (57X H)= -.044
d) ¢(px - (BX = -.03

Each of the above equations is a tetrad difference. In a matrix that contains
only one factor, all of the tetrad differences in the matrix should aluproach 2610,
hence Spearman’s “vanishing tetrad differences” proof that only one factor
exists in the correlation matrix. The tetrad differences shown above all depart
slightly from zero; they average —017. But these departures from zero are so
small they could be just chance variation. Spearman would obtain all of the
possible tetrad differences in the matrix and plot their distribution. If there was
only one factor in the matrix, the average of all the tetrad differences would be
very close to zero. One of Spearman’s doctoral students, Karl J. Holzinger,
helped him figure out the formula for the probable error of a tetrad difference.
This statistic makes it possible to determine if departures from zero are greater
than would be expected by chance for a correlation matrix based on any given
sample size. If the tetrad differences are no greater than would be expected by
chance, it proves mathematically that the correlations reflect only one factor.
Another way of saying this is that all of the variables share only one common
source of variance. The fact that the correlations between variables differ from
one another implies that the variables have this common factor to varying de-
?rees. In technical jargon, the variables have different loadings on the common
actor. (The term factor saturation, which has gone out of fashion, has exactly
the same meaning as factor loading.) o N
~ Because the matrix in Table 2.1 meets the vanishing tetrad proof (within the
limits of probable error for the small sample of only twenty-two subjects), we
can justifiably say that it can be explained in terms of only one common factor.

Spearman then faced two big questions: What is this common factor? And
how loaded with this factor is each of the six variables shown in Table 2.1?
The first question is a real stopper, and any attempt to give an answer that goes
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much beyond mere verbalization must be postponed. The second question is
much easier to answer, and Spearman invented a method for doing so. It can
be best illustrated if we begin with the simplest possible example, the correlation
between only two variables. The variance (02 of any set of measurements of
any variable, when the measurements are expressed in standardized form, 1 is
always unity (or 1). We can represent the variance of a variable graphically as
the area of a rectangle, and the correlation between two variables as the over-
lapping (or intersection) of the areas of two squares. The proportion of the area
in"each square that overlaps the other square represents the correlation between
the variables and is equal to the correlation coefficient. 2 Consider the following
diagram, which depicts a correlation of .25 (that is, rXY = .25). The shaded area
(C) represents the variance that variables X and Y have in common,

:

O
(2]

Y

It is a kind of simplest possible common factor. The factor Ioadin? of each
variable on the common factor is the correlation between one variable, say X,
and the factor it has in common with Y (i.e., the shaded area C). This correlation
is equal to the square root of the shaded area (Ji~). In this example it is /25
= 50. When there is only one common factor, multiplying one test’s factor
loading by another test’s factor loading yields the observed correlation between
the two tests.

Now, say we want to determine the correlation that each of three correlated
variables, X, Y, and Z, has with the one factor they all have in common, which
we can call C. Technically, we want to determine each variable’s loading on
the common factor. The factor loading of variable X, for example, is rxc, or the
correlation of X with C (the factor that is common to variables X, Y, and Z).
Spearman’s formula for calculating the factor loadings of each variable:

e ™ [(rXYrXINZ N YC —[(VRYEY)Irx]]  rze —I(rxz’rYZ)/rXY]

For example, say our three variables have the following correlations: rXy =
63, rX7 = .45, and rY7 = .35, Inserting these correlations into the formula gives
rxc = .9, rYC= .7, and riC= 5 These are called the factor loadings of variables
X, Y, and Z. To reproduce the original correlations between any two variables,
simply multiply their common factor loadings; for example, rXY = rXGr\C =
99X T7=63rXT=9X5=45andrYZ= .7 X 5 = 35 The fact that
all of the correlations can be perfectly reproduced from the variables’ loadings
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on this one_factor is taken as proof that the all of the variables have only this
one factor in common and that we have correctly determined each variable’s
factor loading (that is, the correlation of each variable with the common factor).

The formula does not work on every set of correlations, however. For ex-
ample, apply it to the following correlations: ryy = .90, rx/ =.80, and rYZ=.50.
The loadings of each variable on the common Tactor, according to the formula,
are: rxc = 1.20, r'YC=.75, and rzc = .67. But rxc = 1.20 is impossible, because
no correlation coefficients can be larger than 1.00. This implies that there is
more than one common factor in this set of three variables. Since X and Y are
very h|ﬂhly correlated, they have another factor in common in addition to the
factor that they share with Z. _

All three variables must have one factor in common, or they would not all
be positively correlated with each other. But X and Y are also loaded on a
second factor that is not common to Z. A factor shared by three or more but
not all variables in a matrix is called a group factor. It was not until some years
after SPearman invented factor analysis that he acknowledged the existence of
grouF actors. Earlier he had argued, using our example anove, that X and Y
overlap so much that they represent the same variable. Therefore, only one of
them, or a combined measure of both, should be entered into a correlation matrix
subjected to factor analysis. This would preserve the hierarchical structure of
the matrix, which then would yield only one common factor. _

It is evident that Spearman’s method would work properly only if the variables
are all sufficiently different from each other to rule out the emergence of group
factors. His method for determining the variables’ factor loadings, in fact, Is ca-
pable of extracting only a single common factor from a correlation matrix; if the
matrix contains more than one common factor, the method cannot correctly deter-
mine the loadings of the additional factors.13 But Spearman’s most remarkable
empirical discovery was that quite different kinds of tests, so long as they all
measured some kind of mental ability, all shared at least one common factor.

Spearman generalized the above formula for extracting the variables’ loadings
on the one common factor so that it could be applied to a correlation matrix
having anr number of variables.4 With a large number of variables, however,
the formula becomes quite complex and the sheer labor of calculatm% the factor
loadings is enormous. As Spearman did all his calculations either by hand or
with a mechanical calculating machine, it is little wonder that he occasionally
made slight, but essentially trivial, errors in some of his calculations.5

When the correlation matrix is made up entlrely of variables that represent a
variety of what would be characterized as “mental abilities,” Spearman referred
to the one factor that all of the variables have in common as the generalfactor,
which he designated by the symbol g (always printed as a lower-case italic, as
shown here).1 _ _ _

Returning to Table 2.1, the rightmost column shows the g loadings of the six
variables in"this matrix. Note that they are in the same rank order of magnitude
as the average correlation of each variable with all the others (Mean r in bottom
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Table 2.2 _ _
Correlations Reconstituted from the g Loadings

EmEm T ===y

C = E Ma P Mu g
Classics 8= .77 .72 .65 .62 958
French .85 .71 .66 .59 .57 .882
English 77 71 o 54 52,803
Math 72 .66 .60 51 49 7150
Pitch .65 .59 54 .51 43 673
Music .62 .57 52 .48 .43 646
Mean r 719 676 628 594 544 526

row). This tells us that the average of a variables’ correlations with the other
variables is a rough indicator of the relative size (but not the absolute size) of
the ¢ loading for that variable. (In this example, the correlation between the
Mean r values and the g values is .999.) Spearman was particularly concerned
to find that the ¢ loading of pitch discrimination was as high as .673, and would
be even higher if corrected for attenuation. This suggested to him that the ?
factor reflected something more basic than scholastic attainments, and that Gal-
ton was essentially on the rl%ht track in his belief that simple tasks |nvoIvm%
discrimination or quickness of mental reaction reflect a general aspect of menta
ability that enters into scholastic performance or other mentally demanding ac-
tivities.

A test of how well the single g factor accounts for all of the correlations in
Table 2.1 is to reconstitute the correlations by multiplying the(? loading of each
variable with that of every other variable. Take Classics and French, for ex-
ample: the reconstituted correlation is .958 X .882 = .85. The obtained corre-
lation is .83. AH of the reconstituted correlations obtained in this manner are
shown in Table 2.2. They closely resemble the obtained correlations in Table
2.1. The g loadings are identical, of course, because they are the values used to
generate the correlations in Table 2.2. We can check this by subtracting the
reconstituted correlations éTabIe 2.23 from the obtained correlations (Table 2.1).
This yields what is termed the residual matrix, that is, whatever is left after all
of the variance attributable to the g factor has been removed. The residual matrix
is shown in Table 2.3. We see that no significant correlations remain. The av-
erage of the residual correlations is a mere —001. The minuscule scraps of
correlations that remain in the residual matrix reflect nothing but random error
variance. No additional factor(s) can possibly be extracted.

If, however, the residual matrix had contained a few substantial correlations,
we would know that the original matrix contains one or more common factors
in addition to g. Termed group factors, they are loaded only in some subset of
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Table 2.3 _ _
Residual Correlation Matrix after g Is Removed

Variable C F E Ma p Mu
Classics —c% .01 -.02 .01 .01
French -.01 -.04 .01 .06 .00
English .01 -.04 .04 .00 -.01
Math -.02 .01 .04 -.05 .03
Pitch .01 .06 .00 -.05 -.03
Music .01 .00 -.01 .03 -.03

Mean r 001 .002 .000 .000 -.004 -.002

variables. For example, if Spearman had included three tests of pitch discrimi-
nation (sar, using different musical instruments, or pitches in different ranges
of the sca e}, then surely pitch discrimination would emerge as a group factor.
Each test of pitch discrimination would be loaded on g, as before, but would
also be loaded on agrouE factor, let’s call it “pitch discrimination.” In his early
factor analytic studies, however, Spearman never allowed this to happen. He
took pains to ensure that no two (or more) variables in the matrix were so alike
as to violate the rule of vanishing tetrad differences and thereby risk the emer-
gence of more than one common factor in the matrix.

SPEARMAN’S TWO-FACTOR THEORY

The g factor of the correlation matrix in Table 2.1 accounts for 62.9 percent
of the total variance in the six variables. This is calculated simply by adding up
the squared values of each variable’s g loading, obtaining their average, and
multiplying by 100.77 But if %] in this cage, accounts for 62.9 percent of the
total variance, what accounts for the remaining 37.1 percent? Because g is the
only common factor in this matrix, the remaining 37.1 percent of the total var-
jance must be attributed to sources that are unique to each of the variables, and
indeed the technical term for this unique source of variance in each variable is
the variable’s unlgueness, symbolized as u. Its variance is u2 The unique var-
lance is composed of two parts: error variance (e2, due to random errors of
measurement) and variance due to a true-score component that i si)ecmc to
each variable in the matrix. The latter is technically termed the variable’s spec-
ificity, symbolized as s. Its variance is s2 The vis not a common factor, but a
specific factor, and there are as many specific factors as there are variables.
Since the standardized variable’s total variance is one, and the variable’s error
variance, 2 is equal to one minus the variable’s reliability, or 1 - rxx the
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variable’s specific variance, s2, is equal to 1- g2 - e2 The square root of this
value, then, yields the variable’s specificity, or s.

Spearman’s famous two-factor theory states that individual differences in the
true-scores (i.e., error-free scores) on any measurement of any mental ability are
attributable to only two factors: a general factor, g, that is common to all mental
ability measurements, and some factor, s, that Is specific to each and every
measurement. B8 Also, g and 5 are uncorrelated (rgs = 0), and the various s’s are
uncorrelated with each other.

Spearman’s two-factor formulation has an important corollary: Because every
mental test, no matter how distinctive, contains some g and each mental test
contains a different s, and because g and .? (and also e? are_uncorrelated with
each other, then a composite score based on a number of distinct tests will have
relatively more g and less s than any of the individual scores that went into the
composite. The more we increase the number of distinct tests in the composite,
the more the g components cumulate in the composite score and the more the
uncorrelated s components cancel each other (their average tending toward zero).
Theoretically, then, the composite score from an infinite number of diverse men-
tal tests would be a perfect measure of g.

THE DEMISE OF THE TWO-FACTOR THEORY

After the publication of Spearman’s important 1904 paper and the invention
of Binet’s test in 1905, other psychologists began constructing and trying out a
variety of mental tests. More adequate psychometric instruments for testing the
two-factor theory aﬁpear_ed than were initially available to Spearman. The leader
in this effort was the British psychologist Sir Cyril Burt (1883-1971). In 1931
Burt succeeded Spearman as head of the Psychology Department at the Uni-
versity of London.

As early as 1909, Burt’s mental test data led him to doubt that the two-factor
theory was adequate to explain fully the correlations among tests. It appeared
there were common factors besides g. Between the extremes of complete gen-
erality and complete specificity there were factors (later termed group factors)
that some, but not all, of the tests shared in common. Slpearman maintained that
his “vanishing tetrad differences” criterion of a single common factor, or g,
was broken only by making the mistake of putting two or more tests into the
matrix that were really more or less equivalent measures of one and the same
ability. But Burt arqued that there were sufficient differences among the subsets
of tests that form group factors (in addition to g) to warrant their being regarded
as more than just equivalent forms of the same test.19 For example, In a corre-
lation matrix of the following tests—adding mixed fractions, mult|p!¥|ng deci-
mal numbers, long division, vocabulary, verbal analogies, and English
grammar—Burt noted that even though all of the tests were substantially
correlated with each other and therefore all were g-loaded to varying degrees,
the correlations among the three arithmetic tests were larger than their correla-
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tions with any of the verbal tests; and the correlations among the three verbal
tests were larger than their correlations with the arithmetic tests. Therefore, it
appeared that each of the two clusters of tests— arithmetic and verbal—repre-
sents its own factor in addition to the g factor common to all six tests.

'Bi' 1911, Burt had collected data on so many different tests and showed that
this kind of correlational clustering of certain grouEs of tests was the rule rather
than the exception that Spearman’s two-factor theory had to be abandoned.
Other psychologists agreed with Burt’s position that it was more reasonable to
accept the existence of group factors, along with g and s. Spearman himself
finally admitted the existence of group factors, but he did so reluctantly, because
their i)resence not only destroyed the pleasing simplicity of his two-factor theory,
but also greatly complicated the methodology of factor analysis. He regarded
the admission of multiple factors as opening a Pandora’s box, and in his great
work The Abilities of Man (1927), he wrote a technically correct but surprisingly
grudging chapter titled “ Special Abilities and Group Factors”:

We have now arrived at the “group factors” which have played such a baffling
part in controversial writings. They make their appearance here, there, everywhere,
nowhere; the very Puck of psychology. On all sides contentiously advocated, hard-
ly one of them has received so much as a description, far less any serious inves-
tigation. And yet they are of immense importance, not only theoretically, but also
practically.... For a test only measures any ability other than g by having cor-
relation with it other than that due to g. Such super-added correlation will, of
course, be caused by any overlap of the specific factors; or in other words, by any
“group factor.” (pp. 222-223)

One could argue, of course, that Spearman’s phrase “overlap of specific fac-
tors” is a contradiction in terms, because specificity is defined as that part of a
test’s variance that is not shared by any other test included in the factor analysis.
But history finallr tells the tale, which is that Spearman’s simple two-factor
theory was short-lived and was soon supplanted by a multiple factor theory of
abilities. However, the theory of g as the common factor reflected by all mental
tests remained fully intact.

SPEARMAN’S THEOREM OF THE “INDIFFERENCE OF THE
INDICATOR”

This “theorem” has both theoretical and £ractical importance and remains
very much alive in modern psychometrics.2) Spearman complained that Binet’s
test was composed of a hodgepodge of various tasks, selected without anK real
theoretical rationale and justified simply by the fact that the test “worked.”
That is, the composite score based on all these varied tasks correlated quite well
with children’s future level of scholastic achievement and with teachers’ sub-
jective judgments of children’s brightness or dullness, even though the diverse
tasks were not specifically scholastic. Binet expressly avoided including items
of the kind children were likely to have learned in school. To this day, he and
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many of his followers explain that the test works because the test items represent
a fair sample of the particular skills and the bits of knowledge most children
normally have had the opportunity to acquire by a given age. The composite
score on the test thus reflects a simple average of the subject’s performances on
all of these diverse items that call on many separate cognitive skills and bits of
knowledge. This averaging of the scores on many disparate items could be called
a measure of “intelligence in general.” This interpretation of a composite score
based on many diverse items, it was argued, is preferable to _mterEretmg the
score as a measure of “general intelligence,” with its implication that the test
measures something hroader and more general than Aust the arbitrary hodge-
podge sample of particular skills and items of knowle ?_e that compose the test.
Spearman strongly disagreed with this idea of “intelligence in general.” He
dubbed it the “anarchic™ theory of mental abilities. In his words:

As for the prevalent procedure of throwing a miscellaneous collection of tests
indiscriminately into a single pool this—whether or not justifiable by the theory
which gave birth to it—certainly cannot be justified simply by claiming that the
results give a “general level,” an “average,” or even a “sample.” No genuine
averaging, or sampling, of anybody’s abilities is made, can be made, or even has
really been attempted. When Binet borrowed the idea of such promiscuous pool-
ing, he carried it into execution with a brilliancy that perhaps no other living man
could have matched. But on the theoretical side, he tried to get away too cheaply.
And this is the main cause of all the present trouble. (1927, pp. 70-71)

Spearman argued that a collection of items as found in Binet’s test “works”
only because g enters into any and every mental task. Therefore, according to
Spearman’s theory, each one of the items in Binet’s hodgepodge measures both
g and s. And thus the composite score contains the accumulated g and the
averaged-out s’s. In Spearman’s words:

This means that, for the purpose of indicating the amount of % possessed by a
person, any test will do just as well as any other, provided only that its correlation
with g is equally high. With this proviso, the most ridiculous “stunts™ will meas-
ure the self-same g as will the highest exploits of logic or flights of imagination.
... And here, it should be noticed, we come at last upon the secret of why all the
current tests of “ %eneral intelli?_ence” show high correlations with one another,
as also with g itself. The reason lies, not in the theories inspiring these tests (which
theories have been most confused), nor in any uniformity of construction (for this
has often been wildly heterogeneous), but wholly and solely in the above shown
“indifference of the indicator.” Indeed, were it worth while, tests could be con-
structed which had the most grotesque appearance, and yet after all would correlate
quite well with all the others. (1927, pp. 197-198)

Spearman was quite right in this. If the many heterogeneous tasks that compose
a test like Binet’s were not all correlated with each other, the variance (or
individual differences) of the total scores would be reduced to only 5 to 10
percent of what it actually is.2 On the Stanford-Binet 1Q test, for example,
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persons picked at random from the ﬁopulation differ from one another by eight-
een 1Q points, on average. If all of the many diverse items composing the whole
test were not correlated with each other, the average difference between persons
would be only about five 1Q points. In other words, by far most of the difference
in 1Q between persons is not traceable to the specific skills or knowledge called
for by the various items, but is due to the fact that all the items are correlated
with each other. _

Each item in a test contributes to the true-score only to the extent that the
item is correlated with other items in the test. The item intercorrelations are the
essential basis of common factors. Remove the correlations and you remove all
of the test’s true-score variance and all of the common factors. It is axiomatic
in measurement theory that the true-score of any mental abl_|ItY test composed
of heterog{enequs items consists only of common' factors (typically g and certain
group factors in the mental abilities domain). Item specificity is lumped together
with random measurement error as the test’s unreliability. Unreliability 1s the
complement of the test’s internal consistenc?/ reliability. Internal consistency, in
turn, is directly related to the average correlation among the test items.22 In the
best modern tests, the true-score variance is about 90 to 95 percent of the total
yfz_iri_?n)ce. The remaining 5 to 10 percent is error (random error plus item spec-
ificity).

SPEARMAN’S NOEGENETIC LAWS

Although Spearman had proved the statistical existence of g, he admitted that
he did not know what g is. What, one can ask, is g beyond the mathematical
operations of factor analysis that reveal its presence ina collection of mental
tests? Spearman described this problem as follows:

But notice must be taken that this qeneral factor g, like all measurements any-
where, is primarily not any concrete thing but only a value or ma%im_tude. Further,
that which this magnitude measures has not been defined by declaring what it is
like, but only by painting out where it can be found. It consists in just that con-
stituent—whatever it may be—which is.common to all the abilities interconnected
by the tetrad equation. This way of mdmatmg what g means is just as definite as
when one indicates a card by _stakmﬁ on the back of 1t without looking at its face.
...Such a de_fmmgi of g by site rather than by nature is just what is meant orig-
inally when its determination was said to be only “objective.” Eventually, we
may"or may not find reason to conclude that g measures something that can ap-
BranateI / Y called “intelligence.” Such aconclusion, however, would still never
e the definition of g, but only a “statement about” it. (1927, pp. 75-76)

Spearman tried to describe the essential characteristics of the tests in which
? IS most hl%hly loaded hy comparing strongly g-loaded tests with weakly g-
oaded tests based on factor analyses of some 100 or so distinct tests given to
school children.23 Here are some of his examples of tests found to have high or
low g loadings (in parentheses):
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High ¢ Loading Low ¢ Loading

Matrix relations (.94) Maze speed (.04)
Generalizations (.89) Crossing out numbers (.12)
Series completion (.87) Counting groups of dots (.14)
Verbal analogies (.83) Simple addition (.23)

Likeness relations (.77) Tapping speed (.24)

Problem arithmetic (.77) Dotting speed (.27)

Paragraph comprehension (.73) Paired-associates memory (.27)
Perceptual analogies (.70) Recognition memory (.31)

It would be more informative, of course, if we knew more than just the names
of these tests and could examine their various contents and task demands, as
Spearman did in comparing the ways in which they were either similar or dif-
ferent. From these comparisons, he discerned that the relative magnitude of a
test’s g loadings was a function of the degree to which the test manifests two
of his noegenetic “laws,” in combination with having the quality of “abstract-
ness.”

In Spearman’s terminology, noegenesis means the production of new knowl-
edge, or mental content, from sensory or cognitive experience. SPearman pro-
nounced three “laws” of noegenesis, which he regarded as self-evident and
fundamental to cognition. _ _
~ Thefirst noegenetic law is the apprehension of experience. It states: “Any
lived experience tends to evoke immediately a knowing of its characters and
experiencer.” The term “immediately” has no temporal connotation in the con-
text of noegenesis; it means only that the knowledge is direct and not mediated
by inference. The “apprehension of experience,” In other words, is the aware-
ness of oneself directly perceiving the attributes of whatever holds the present
focus of attention. _ _

The second noe?enetlc law is the eduction of relations. It states: “The men-
tally presenting 0 anK two or more characters (simple or complex) tends to
evoke immediately a knowing of relation between them.” The *two or more
characters” between which some relationship can he educed Spearman called
fundaments. A test involving the “eduction of relations” is not deemed appro-
Frlate for a given person unless the person is fully capable of perceiving the
undaments between which the relation is to be educed and is already familiar
with them; also, whatever response is appropriate for indicating the relation must
already exist in the person’s repertoire. Example: Branch-Trunk — Tree.

The third noegenetic law is the eduction of correlates. It states: “The pre-
senting of any character together with any relation tends to evoke immediately
a knowing of the correlative characters.” Example: H|gh-0pﬁ03|te —>Low.

Spearman concluded that the tests that best reflect g are those that most in-
volve the “eduction of relations and correlates.” These are the tests that require
inductive and deductive reasoning, grasping relationships, inferring rules, gen-
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eralizing, seeing the similarity in things that differ (e.g., reward-punishment) or
the difference between things that are similar (love-affection), problem solving,
decontextualizing a problem _?that IS, d|st|ngU|_sh|n(}; between its general, or es-
sential, features and its specific, or nonessential, features). These all manifest
the second and third “laws” of noegenesis—the eduction of relations and of
correlates. _The¥ are contrasted with tests that call mainly upon speed of exe-
cution of simple tasks, performance of repetitious acts, simple cued recall of
prior learned responses, execution of a practiced sequence or chain of responses,
and direct imitation of another person’s specific action without conscious trans-
formation. _ _ o

|t would be a serious mistake, however, to suppose that ¢ is a dichotomous
variable that some tests reflect and other tests do not. Inspection of a great many
factor analyses of the widest variety of mental tests imaginable reveals without
exception that tests’ g loadings are a perfectly continuous variable, ranging from
slightly gre‘ater than zero to slightly less than unity. The g loadings are always
positive, provided all of the tests are scored so that higher scores (i.e., larger
numerical values) represent better performance (e.g., the number of items gotten
correct rather than number of errors; speed of response rather than the time
taken for response; the reciprocal of number of trials rather than the number of
trials to learn something to a given criterion of mast_er)Q._Every kind of mental
test and every mentally demanding activity, as required in school and in most
occupations, 1s to some degree loaded with g. If one wants to assess a person’s
level of g, it is more efficient, of course, to select highly g-loaded tests, provided
they are otherwise appropriate for the person in terms of having familiar fun-
daments. Obviously, a highly g-loaded test given in the Tamil language would
be wholly inappropriate for a typical American, although it may provide a valid
assessment of g for a native of Madras, India. A highly g-loaded nonverbal test,
one hased on figural relations for example, could be equally appropriate for both
the American and the Madrasi, assuming, of course, that its fundaments are
familiar to both.

To incorporate his noegenetic laws in a mental test as ideally as seemed
possible, Spearman invented a type of test that was entirely nonverbal, that was
composed of fundaments (various geometric shapes) that are universally familiar
to virtually all loersons beyond three ¥ears of age in every culture, and"in which
every item calls for the eduction of relations and correlates. It also had the
quality of “abstractness” in the sense that the fundaments (straight and curved
lines, triangles, circles, squares, and the like) do not represent any real or tan-
gible objects, like animals, plants, furniture, or vehicles. He called this type of
spatial relations test “matrix relations,” because each item consisted o e;?ht
panels of fundaments and a blank panel, all arranged in the form of a 3 X'3
matrix, from the examination of which one could figure out the rule that would
determine the particular characteristics of the figure that should fit into the blank
space in order to complete the logical pattern of the whole matrix. The one
correct figure could be chosen from a set of six (or eight) alternatives presented
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M a

Figure 2.1 A matrix relations item similar to those in Raven’s Progressive Matrices
test.

below the matrix. (The incorrect alternatives in a multiple-choice test are called
distractors.) .

Spearman’s test was further developed by one of his students, John Raven,
and the eminent geneticist Lionel Penrose. The test is now known as Raven’s
Progressive Matrices— “ progressive” because, as a person Jlroceeds through the
test, the items systematically increase in difficulty, based on the number of
fundaments that simultaneously enter into the relations and correlates that must
be educed to attain the correct solution. The test comes in three forms according
to the level of complexity and difficulty: the Colored Progressive Matrices (for
children); the Standard Progressive Matrices (for adolescents and adults); and
the Advanced Progressive Matrices, for adults who score well above the average
on the Standard form. Figure 2.1 shows a typical item of moderate difficulty.
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When the Progressive Matrices test is factor analyzed along with a variety of
other tests, it is typically amon% the two or three tests having the highest g
|loadings, usually around .80. Pro abl& its most distinctive feature is its very low
loadings on any factor other than g. Raven’s Progressive Matrices is often used
as a “marker” test for Spearman’s g. That is, it is entered into a factor analysis
with other tests of unknown factor composition, and if the Matrices has a high
loading on the general factor of the matrix of unknown tests, its g loading serves
as a standard by which the g loadings of the other tests in the battery can be
evaluated. | have yet to see a factor anahéms of any diverse collection of tests
that includes Raven’s Matrices in which the Raven’s largest loading was found
on any factor other than g.

SPEARMAN’S QUANTITATIVE PRINCIPLES OF COGNITION

~In addition to the qualitative principles of noegenesis, Spearman introduced
five quantitative principles that determine individual differences in any perform-
ance that involves noegenesis. S
Mental Energy. The first and best known of these quantitative principles is
mental energy, the hypothetical basis of g, which, accordi_n% to Spearman, “en-
ters into the measurements of ability of all kinds, and which is thrqu%ho_ut con-
stant_for any individual, although”varying greatly for different individuals”
(1927, p. 411). Spearman’s notion of mental energy as a characteristic in which
people differ seems to be purely metaphorical. He suggested no mechanism that
would link it to energy as defined in physics and measured in ergs. He also used
the terms “power,” “force,” and “neural energy,” as the hypothetical basis
of g, but without specifying the ph?:lsmloglcal or metabolic mechanisms that
presumably produce this “energy.” He forever remained theoretically agnostic
and noncommittal about the physical basis of this hypothesized energy, aIthou%h
he suggested such possibilities as the electrochemical potential in neurons, the
richness of the branching of capillaries that supply blood to brain cells, and the
energy released by catabolism of the brain’s nutrients. _
~ In"Spearman’s day, far too little was known about brain chemistry and phys-
iology to afford a basis for much more than metaphorical explanations, and he
was even willing, though reluctant, to settle for postulatln? a purely psychic
form of energy, analogous to physical energy in its capability of being trans-
ferred from one system to another, in this case from any particular mental op-
eration (or “engine™) to another, like an electrical generator that Eowers a
number of engines that_Ferform different functions, He likened g fo the power
ﬂene_rator and vto the different engines, each of which is powered by g but also
as its own level of efficiency independent of % Spearman fully reco%nlzed the
metaphorical nature of this speculation. But he hoped that eventually a true
ﬁhysmal source of enerﬂy would be discovered to substantiate his metaphor, in
is words, “whereby physiology will achieve the greatest of all its triumphs.”
In The Abilities of Man, he wrote: “‘And even should the worst arrive and the
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required physiological explanation remain to the end undiscoverable, the mental
facts will none the less remain facts still. If they are such as to be best explained
by the concept of an underlying ener%y, then this concept will have to undergo
that which after all is only what has long been demanded by man% of the best
psychologists— it will have to be regarded as purely mental. Both by history
and otherwise, the concept of energy belongs at least as much to the science of
mind as to that of matter” (1927, p. 408).

The measurement of g in individuals has been the most problematic aspect
of Spearman’s contribution and was nearly the sole subject of the first critical
review of Spearman’s most important book, The Abilities of Man.24 The problem
is the indeterminacy of factor scores. They cannot be determined exactly but
can only be estimated from the data. In practice, this is usuallﬁ_accompllshed
by using the most highly g-loaded tests, although even scores on highly g-loaded
tests are always contaminated to some degree by one or more other factors,
including specificity, in addition to their g. However, these extraneous non-q
factors can be reduced considerably by obtainin%_a ‘ wei?hted average” of the
individual’s standardized scores on"a number of highly g-loaded tests, in which
the individual’s standard scores (z) on the various tests are each weighted (i.e.,
multiplied) by their g-loadings and the resulting products ﬁg X 7) are summed
(Zgz(f. This sum is called a g factor score.5 (It is usually transformed to a
standard score, to make it easily interpretable in relation to a particular group
or a representative sample of some population.) o

Spearman’s four other quantitative principles have faded with time or have
been supplanted by other termlnolo%y and conceptual formulations, so they are
mentioned only briefly here, and defined in Spearman’s own words.%

Retentivity. “‘The occurrence of any cognitive event produces a tendency for
it to occur afterwards.” This is the basis of conditioning, learning, and memory
in its several empirically distin%uishable forms.

Fatigue. “The occurrence of any cognitive event produces a tendency op-
posed to its occurring afterwards.” This is akin to Pavlov’s hypothetical con-
struct of “inhibition™ and is even more closely akin to Clark Hull’s postulate
of “reactive inhibition.”

Conative control. “The intensity of cognition can be controlled by conation.”
By “conation” Spearman means drive, motivation, will.

Primordial potencies. “Every manifestation of the preceding four quantitative
principles is superposed upon, as its ultimate bases, certain primordial but var-
lable individual potencies.” This is a recognition of innate individual differences
in predisposition to mental development and the evolutionary origins of mental
organization.

NOTES

1 There is some dispute over priority in the invention of factor analysis, a subject
covered comprehensively by Blinkhom (1995{.Spearm.an unquestionably invented a sim-
ple form of factor analysis. It is limited by being applicable only to a correlation matrix
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of unit rank, that is, a matrix that has onlﬁ one common factor. And he invented a method
Ftetrad differences) for determining whether a matrix is of unit rank and therefore suitable
or the application of his method of factor analysis, which in the case of unit rank consists
of obtaining the variables’ loadings on the common factor, or g. And there is no question
that Spearman was the first to apply factor analysis to mental test scores or psychological
data of any kind. On all these counts, priority certainly belongs to Spearman. (See Lovie
& Lovie, 1993.) The dispute arises, however, because, prior to Spearman (1904), Karl
Pearson (1901) published an abstruse and purely mathematical paper that contains es-
sentially the invention of what is now known as principal components analysis. It was
further developed and made accessible to psychologists in a classic paper by the statis-
tician H. Hotelling (1933). Principal components analysis permits the decomposition of
a correlation matrix into as many perfectly uncorrelated axes, or components, as the
number of variables, and it has been used extensively not only in psychology, but in
many other fields, including economics, medicine, physics, political science, sociology,
biology, paleontology, and archaeology. Because present-day methods of factor analysis
are like principal components analysis in allowing the extraction of a number of uncor-
related factors, and because the whole procedure of modern factor analysis more closely
resembles principal components analysis than Spearman’s simple form of factor analysis,
Pearson has some claim to the invention of factor analysis. Spearman’s method may be
regarded as a limited case implicit in the class of multivariate methods derived from
Pearson’s work. Also, a few Zears after Spearman’s 1904 paper that introduced his
method of factor analysis, Sir Cyril Burt invented a method of multiple factor analysis
called simple summation. It is similar to Pearson’s principal components, but is simpler
to compute. Burt can be credited with being the first to apply a proper method of multiple
factor analysis to psychological data. As his method allowed the extraction of more than
a single factor from a matrix, it was clearly an advance over Spearman’s method. Some
years later, Louis L. Thurstone (1931) reinvented Burt’s method, giving it the name
centroid method; it is mathematically identical to Burt’s method, although Thurstone
(1947) introduced some new features in the way it is used in psychological research (e.g.,
rotation of factors, the simple structure principle, and oblique factors). The centroid
method, which was widelﬁl used in the days of mechanical and electrical calculating
machines, disappeared with the advent of high-speed electronic computers, which made
it feasible to use the computationally more complex and more exact methods of modern
factor analysis (see Harman, 1976).

Commemorating the fiftieth anniversary of Spearman’s death, the British Journal of
Mathematical and Statistical Psychology (1995, 48, 211-253) published excellent in-
depth articles on Spearman’s role in the origin of factor analysis (D. 3. Bartholomew),
Spearman’s contributions to test theory (P. Levy), the formulation of rank correlation
(A. D. Lovie), and the resolution of the Spearman-Wilson debate over factor score in-
determinacy éP. Lovie) (see p. 39 and Note 24).

2. Quoted in Burt (1972, p. 412).

3. Judson (1979, pﬁ. 179-180). .

4, Unfortunatelh/! there is no hook-length hiography of Spearman. Fancher (1985a,
pp. 84-98) gives a highly readable biographical sketch, but beware of the technical error
In the last paragraph on page 88: a test’s reliability is not the correlation between true
scores and obtained scores, but is the square of this correlation. Jensen (1994h) gives a
concise hiography emphasizing SFearman’s contributions to psychology and statistics,
and also gives references to nearly all of the available biographical sources. A good
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account of Spearman’s two most important works is J. B. Carroll’s (1991a) retrospective
review of The Nature of " Intelligence™ and the Principles of Cognition and The Abilities
of Man: Their Nature and Measurement. Sir Godfrey Thomson’s §1947) obituary of
Spearman is an excellent summary of Spearman’s contributions to factor analysis and
the theory of intelligence. It also contains the best of the several different photographs
of Spearman that | have seen.

5. Spearman, 1930. More information about Spearman’s life is contained in his au-
tobiography than in probably any other single source, although it has comparatively little
systematic explication of his work.

6. Reliability can also be expressed as the squared correlation between true scores
and obtained scores, i.e., rd@ The symbol rx it should be noted, does not mean the
correlation of test scores with themselves (which would equal 1), but the correlation
between scores obtained from two separate administrations of the same test or from two
different but equivalent forms of the test, such as two vocabulary tests each composed
of words drawn from the same pool and both havin? the same level of difficuItK. Reli-
ability may also be determined by the so-called “split-half” method, in which the odd-
and even-numbered items in a test are scored separately and a correlation (rCE) is obtained
between the odd and even scores. Because each of the correlated parts is only half as
long as the whole test, the reliability coefficient (rrF) of the scores based on the full-
length test (i.e., odd + even items) Is calculated by the Spearman-Brown formula; rFr
~ 2ror/( 1 4 ron). This is just a special case of the generalized Spearman-Brown prophecy
formula, which states the relationship between a test’s length and its reliability. If we
have determined the reliability (rLL) of a test of a given length (i.e., number of items or
number of trials), the reliability (r, L) of a test n times as long (provided it is composed
of similar items) will be

U-=nrwd L+ (n- NrJd.

7. The measures of five of these variables consisted of the boys’ rank order in ability
in each subject as judged by their teachers. Standardized achievement tests did not then
exist. Spearman invented a method now known as Spearman’s rank-order correlation
(also called rank-difference correlation), symbolized rs. It is now universally used for
correlating ranked variables and is described in most statistics textbooks. Rank correlation
is @ nonparametric statistic, in contrast to the Pearson r (which is parametric), because
the sampling error of any obtained rs based on n ranks involves no assumgtions about
the nature of theJJopuIatlon distribution of the correlated variables. The probability of a
particular rf based on n ranks is simply the proportion alb, where a is the number of all
the possible permutations of n ranks that yield absolute values of rsequal to or greater
than the designated rs, and b is the total number of possible permutations of n ranks.
Pearson’s r and Spearman’s rs calculated on the same ranked variables are numerically
identical. However, the standard error of Pearson’s r applied to actual measurements
(rather than ranks) is slightly smaller than the standard error of Spearman’s rs applied to
the ranks of the measurements. If there is evidence that the population distribution of
one or both of the correlated measurements departs markedly from normal, the calculated
standard error of the Pearson r becomes highly questionable. The standard error of Spear-
man’s rs for ranks is unaffected by the population distribution of the measurements
underlying the ranked variables.

8. This usage of the term positive manifold is a commonly accepted corruption of
the more specialized original meaning of the term intended by its originator, Louis L.
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Thurstone (1947, pﬁ. 341-343). His specialized meaning refers to the condition in which
every variable in the matrix has positive loadings on every factor. Because rotation of
the factor axes extracted from a matrix of all positive correlations can yield a factor
matrix of positive manifold, in Thurstone’s sense, a correlation matrix of all positive
correlations has also come to be loosely called a ﬁositive manifold, although that usage
departs from its original Thurstonian meaning. (Thurstone’s ideas on factor analysis are
discussed in Chapter 4?

9. Mathematical proofs of this and the following propositions are given in the Ap-
pendix of Spearman’s The Abilities of Man (1927).

10. The possible number of distinct tetrads in a complete correlation matrix of n
variables is 3n!/41(n —4)!. (Note that 0! = 1)

11. A standardized score (or a standardized measurement of any kin?, technically
called a z score, simply expresses the score in terms of its deviation (in standard deviation
units) from the mean of the sample or group of scores of which it 1s @ member. That is,
2= (X - X)lo, where X is the raw score, X is the group mean, and a is the standard
deviation of the raw scores in the group. Consequently, in any distribution of z scores
the mean = 0, the standard deviation = 1, and the variance = 1

12. The meanings of correlations and the basic ideas of factor analysis are explained
much more fully in Jensen, 1980a, Chapter 6.

13. There has been considerable misunderstanding on this point, and earlier factor
analyses were often performed (not by Spearman but by others) on matrices with more
than one factor. The factor common to all of the variables was extracted first, usin%
Spearman’s method, and then the same method was applied to the matrix of residua
correlations. Thurstone (1947, pp. 279-281) has proved mathematically that this gives
an incorrect result. Spearman himself insisted on demonstrating that all of the tetrad
differences in the matrix must “vanish,” thereby proving it has only one common factor,
before determining each variable’s loading on the common factor. To achieve this, he
either eliminated or averaged overlapping variables that violated the “vanishing tetrads”
criterion. Thurstone (1947, Chapter XI1) gives a superb discussion of this limitation of
Spearman’s method. As with most prototypes, the limitations of Spearman’s original
method have made it now obsolete.

14. The generalized formula for the factor Ioadin%s is given in Spearman, 1927, Ap-
pendix, p. xvi, formula 20. This formula has scarcely been used for more than half a
centu(rjy, and is now only of historic and didactic interest. Mathematically more sophis-
ticated methods for extracting multiple factors coupled with the use of high-speed com-
puters have made modem factor analysis into something much more powerful than what
Spearman had to work with.

15. At least some of Spearman’s calculation errors have been detailed bY Fancher
(1985h). They are actually quite unimportant with respect to Spearman’s overall method,
theory, or general conclusions. It was possible to check his calculations because in his
1904 article he presented the raw data of his study.

16. The symbol g should never be used to stand for the largest common factor in a
matrix that does not represent mental abilities. It is not used as the symbol for the ?(eneral
factor in strictly physical variables, personality variables, and so forth. To make this
explicit, writers often refer to “Spearman’s g" or “psychometric g." | prefer to reserve
the qualified term * Spearman’s " for the g in Spearman’s two-factor theory, that is,
the matrix in which there is one, and only one, common factor. The broader term “psy-
chometric g" refers to the general factor in a matrix of mental ability tests of any kind,



The Discovery of g 43

determined by any appropriate method of factor analysis, regardless of the number of
other factors (i.e., group factors) in the matrix. The use of g without a modifier usually
refers to the common factor that accounts for the largest proportion of the total variance,
as compared with any other factors in the matrix; but it also may refer to the highest
order factor (g typically emerges at the second or third order) in a hierarchical factor
analysis, regardless of whether or not it accounts for the largest proportion of variance.
However, in the literature a hierarchical g is usually designated as such. (Hierarchical
factor analysis is described in Chapter 3.)

17. A variable’s factor loading is simply the correlation, rXs, between the variable (X)
and the factor (?). Also, the progortion of variance in one variable that can be accounted
for by its correlation with another variable is the square of the correlation. Therefore,
the sum of the squared factor loadings is the actual amount of variance accounted for
by the factor. As each variable has a variance of one, the total variance in the matrix is
equal to the number of variables. Thus the sum of the squared factor loadings divided
by the number of variables is the proportion of the variance in all of the variables that
is accounted for by their common factor, in this case g. This proportion, multiplied by
100, is customarily called the “ ?ercent of total variance explained” by the factor. In the
example of Table 2.1, this is 3.77/6 = .629 X 100 = 62.9 percent.

18. A leading expert in factor analﬁlsis, the late H. F. Kaiser, has urged that | not call
J a factor, because, technically speaking, the term factor should refer to a source of
variance that is common to at least three or more variables. Hence, 5 should simply be
called specificity, not “specific factor.” I will observe this rule in all the chapters fol-
lowing this one, in which it seems more appropriate to use Spearman’s own terminolog?/.

19. The key references here are to Burt (1909, 1911). Burt’s (1949a) impressively
erudite but quite technical treatment of the whole history of Sgearman’s two-factor theory
traces its origins, its demise, and its replacement by what Burt refers to as the theorr
and methods of the “Galton-Pearson school,” which recognized multiple factors as well
as general ability, and of which Burt undoubtedly regarded himself as the chief exponent.
Although Burt was exceptionaIIJ/ brilliant and amazingly erudite, he was not the creative
genius that Spearman was, and his contributions were never as original or as fertile,
scientifically, as Spearman’s. But Burt’s (1949h, 1955) views on the structure of mental
abilities accorded more closely with recent formulations than did Spearman’s, which
should not be too surprising, since Burt’s active career extended twenty-five years closer
to the present day than did Spearman’s.

20. 1have written an article on the implications of Spearman’s theorem of * indiffer-
ence of the indicator” for some of the current issues in mental testing (Jensen, 1992a).

21. This all follows from a fundamental formulation in mathematical statistics, which
states that the variance (cr2[) of the sum (X) of a number of different variables i,j,. ..
etc.) is equal to the sum of the variables’ variances ‘[2. 2+ 02+ ...etc.?] plus twice
the sum of the covariances between all of the items [2Z(rii Oja,)]. The translation of this
statement into mathematical symbols is: ¢2 = X(cti2 + 2Xrlajoi). In psychometrics,
where the variables are items that compose a test or various subtests within a test, the
true-score variance consists only of the second term in the above equation, which is
purely item covariances; the item variances (the first term in the above equation? con-
stitute the error variance. The variance of the total scores on the test is the sum of these
two terms, and the test’s internal consistency reliability (assuming a large number of
items) is defined as the fraction (2X«rbj)/o2 An important point to notice about the
above equation is that as the number of variables (e.g., test items) increases linearly, the
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number of all their covariances increases exponentially. For n variables, the number of
covariances is n(n — 1)/2. Therefore, the ratio of twice the sum of the item covariances
to the sum of the item variances rapidly increases as the number of items in the test
increases. Even though the item covariances are usually very small, their summation
greatly exceeds the sum of the item covariances in a test containing thirty or more items.
In most current standard tests of mental ability this ratio of 2Zriaiajto Zc*2is typically
between 10to 1and 20 t0 1.

22. A rearrangement of the terms in the well-known Spearman-Brown formula shows
the relation between the average item intercorrelation (r() and the internal consistency
reliability coefficient rkof a test composed of n number of items:

n=rjfn+(L-nr]

23. The final fruits of this effort are described in a posthumous book (Spearman &
Jones, 1950), which, in 191 pages, succinctly summarizes Spearman’s final position on
factor analysis and mental abilities, including g, the then few established group factors,
noe%enesm, and certain quantitative aspects of cognition. .

24, The Harvard mathematical statistician Edwin B. Wilson (1928) devoted nearly his
whole lengthy review of Spearman’s book in Science to a highly mathematical critique
of just the brief mathematical appendix, focusing almost entirely on the problem of g-
factor scores. He does not, however, dispute Spearman’s imgortant discovery of g as an
empirical fact. He wrote, “Science advances not so much by the completeness or ele-
gance of its mathematics as by the significance of its facts” (p. 244). o

25. Ina common factor analysis (Prmmpal factor analysis, also called principal axes
analysis), factor scores, including g-factor scores, may be slightly correlated with one
another, even when the factors themselves are perfectly orthogonal (i.e., uncorrelated
with one another). The reason is that in a common factor analysis the obtained factor
Scores are onlty. estimates of the true factor scores, the exact values of which cannot be
determined. If it is important to assure perfectly uncorrelated factor scores, they may be
obtained from a principal components analysis. f(See Jensen & Weng [19941 for a simple
explication of the difference between common factor analysis and principal components
analysis, including references to the more technical literature on this subject.)

26. From Spearman (1923). This work is the first comprehensive statement of his
theorg, not just of abilities, but of the general psychology of mental activity. Thus it
may be considered a major pioneering contribution to the field now known as cognitive

psychology.



Chapter 3

Lttt

The word “inte_lli%ence” as an intraspecies concept has proved to
be either undefinable or arbitrarily defined without a scientifically
acc_ePtabIe degree of consensus. The sug%ested remedy for this un-
satisfactory condition is to dispense with the term “intelligence”
altogether when referring to intraspecies individual differences in the
scientific context and focus on specific mental abilities, which can
be ob*_ectlve!y defined and measured. The number of mental abilities,
s0 defined, i unlimited, but the major sources of variance f(l.e., in-
dividual differences) among myriad abilities are relatively few, be-
cause abilities are not independent but have sources of variance in

The empirical fact that all mental abilities are positively correlated
calls for an analytic taxon_omg of mental abilities based on some
form of correlation analysis. Factor analysis has proven to be the
most suitable tool for this purpose. By means of factor analysis it is
possible to describe the total variance of various abilities In terms
of a smaller number of independent dimensions (i.e., factors), or
components of variance, that differ in their degree of generality.
“Generality” refers to the number of abilities that are correlated
with a particular factor. The common factors in the abilities domain
can be represented hierarchically in terms of their ?enerahty, with a
large number of the least general factors (called first-order or pri-
mary factors) at the base of the hierarchy and the single, most gen-
eral, factor at the apex. _

Ab_I|ItY measurements can he represented geometrically and math-
ematically as vectors in space, with a common origin and with the
angles between them related to their intercorrelations. Factors are
the “reference axes” in this space and the number of orthogonal
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axes, or independent dimensions, needed to represent the ability
measurements defines the number of factors. The dimensions found
in the factor analysis of the correlations among a large variety of
mental ability measurements can be arranged hierarchically accord-
ing to their generality. This hierarchical structure typically has three
tiers, or strata: a large number of narrow (i.e., least general) first-
order factors, a relatively small number (six to eight) of broad (i.c.,
more %eneral) second-order factors, and, at the apex, a single third-
order factor, conventionally symbolized as g. The_P factor is the
most general of all and is common to all mental abilities.

No other term in psychology has proved harder to define than “intelligence.”
Not that psychologists haven't tried. Though they have been attempting to define
“intelligence” for at least a century, even the experts in this field still cannot
agree on a definition. In fact, there are nearly as many different definitions of
“Intelligence” as there are experts.

The solution to this problem is to make a clear distinction between intelligence
as an interspecies phenomenon, on the one hand, and individual differences in
mental abilities as an intraspecies phenomenon, on the other. The term intelli-
gence, then, would apply only to the whole class of processes or operating
principles of the nervous system that make possible the behavioral functions
that mediate an organism’s adaptation to its environment, such as stimulus ap-
prehension, perception, attention, discrimination, stimulus generalization, learn-
Ing, learning-set acquisition, remembering, thinking (e.g., seeing relationships),
and problem solving. These functions are subsumed in the term intelli%ence. In
this sense, some of these aspects of intelligence are a property of virtually every
organism in the animal kingdom. Intelligence, by this interspecies definition,
therefore, is a broadly generic term. Hence, while it is meaningful, in this sense,
to speak of interspecies differences in intelligence, it is confusing to sPeak of
infraspecies differences, at least for all biologically normal members of a spe-
cies, that is, those without exogenousIY or endo?enously caused defects of the
central nervous system. All biologically normal members of a given species
possess the same intelligence, that is, the same neural structures and processes
that make whatever constitutes intelligent behavior possible for members of that
species. From an evolutionary standpoint, it is most improbable that, by this
definition, there are mtrasFemes differences, whether individual differences or
group differences, in intelligence. This definition is absolutely moot regarding
normal intraspecies variation. The definitional troubles begin when we talk about
infraspecies differences amontg human beings, particularly individual differences
and racial and ethnic group differences. Here we must come to griFs with achiev-
ing scientific precision in our terminology. This can be accomplished most ef-
fectively by confining the term “intelligence” to its broadly generic interspecies
definition and discarding its use entirely in discussing individual differences
among Homo sapiens. | shall follow this rule throughout this book.
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Some psychologists regard “intelligence” as the sum total of all mental abil-
ities. This 1s a wholly oloen-ended concept, because obviously no one will ever
be able to enumerate all mental abilities. Others define “intelligence” as the
entire repertoire of a Ferson’s knowledge and skills available at any one time
that are deemed “intellectual” by a consensus of psychologists— the very con-
sensus that is so lacking! Still others identify “intelligence™ as Spearman’s g,
but others then complain that this leaves out all the variance attributable to the
many kinds of abilities other than g.

Contextualists and cultural relativists (ecoHnize the widest variety of knowl-
edPe and skills, but claim that what “intelligence” means in any particular
culture is merely a limited selection from the entire human cognitive domain.
In each culture it comprises those abilities considered important by that culture,
In their view, “intelligence” is purely a cultural artifact. Some p_sychoIoPists
define “intelligence” so broadly as to include personality traits, motives, values,
interests, attitudes (and even physical attributes) that _mar be correlated with
whatever “real life” achievements are valued in a particular culture.

From a scientific standpoint, such failure to obtain a precise definition is
hardly desirable. How can scientists make a consistent and concerted effort to
research a phenomenon if they can’t even agree on what that phenomenon is in
the first place? o o _

In hopes of finding a consensus definition of “intelligence,” the editors of
the Journal of Educational Psychology, in 1921, convened a symﬁosmm of
fourteen American psychologists with distinguished reputations in this field.n)
They included such luminaries as Lewis M. Terman, Edward L. Thorndike, and
Louis L. Thurstone. The symposium produced fourteen different definitions of
“intelligence,” each one scarcely resembling any of the others, Most of the
definitions were mere verbalisms without empirical referents— “the Rower of
good responses from the point of view of truth or fact” (Thorndike), “the power
o think abstractly” (Terman?, “that which can be judged by the incompleteness
of the alternatives in the trial and error life of the individual™ (Thurstone). One
of the symposiasts stated that “so-called general intelligence tests are not general
intelligence tests at all but tests of the special intelligence upon which the school
puts a premium.” There was a striking diversity even about which observable
phenomena are the product of “intelligence” and which behavioral or mental
attributes the term should encompass. The many definitions consisted only of
supposed examples of “intelligence,” not true definitions. The one point of
implicit agreement was that “intelligence” was generallg identified with
“higher mental processes,” not with elemental processes such as sensation and
perception. _ N

On reading this symposium, Spearman (who was not a participant) responded
with evident exasperation: “Chaos itself can go no farther! The disagreement
between different testers—indeed, even the doctrine and the practice of the
selfsame tester— has reached its ap_o%ee. If they still tolerate each other’s pro-
ceedings, this is only rendered possible by the ostrich-like policy of not looking
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facts in the face. In truth, ‘intelligence’ has become a mere vocal sound, a word
with so many meanings that finally it has none” (1927, p. 14). Spearman
thereafter abandoned the use of the “mere vocal sound” intelligence, or else
ﬁut it in quotation marks, as if to remind his readers that this “vocal sound”
ad no scientifically acceptable meaning in the context of human individual
differences.

Sixty-five years later, in 1986, two leaders in the intelligence field, Robert
Sternberg and Douglas Detterman, published another symposium, entitled
“What Is Intelligence?” 2L This time, twenty-five well-recognized psychologists
noted for their research on mental abilities and psychometrics were asked to
state their definitions of “intelligence,” how they thought it can best be meas-
ured, and their ideas for future research on “intelligence.” The results were
interesting but also d|smay|n%. After sixty-five years, there was still no solid
agreement among experts on how “intelligence™ should be defined.

The editors then examined the degree of consensus hetween the 1921 state-
ments and those of 1986 and tried to determine whether there was greater or
lesser consensus among the experts within each ,oeriod. They concluded that
“substantial disagreement on asin_?le definition still abounds” (p. 1_64?. But they
also note that there has been a shift of emphasis away from the strictly psycho-
metric aspects of intelligence and its importance in education, emphasizing
rather the concept of intelligence as information processing and as a scientific
construct of interest in its own right. My impression is that the points of agree-
ment among the contributors in 1986 concern the less critical attributes of the
problem than do the points of disagreement. The overall picture remains almost
as chaotic as it was in 1921, and Spearman would have reacted in much the
same way to the 1986 symposium as he did to the earlier one. And he would
be’aune right again. _ _

y study of these two symposia and of many other equal!}/ serious attempts
to define “intelligence” in ﬁurely verbal terms has convinced me that psychol-
0gists are incapable of reaching a consensus on its definition. It has proved to
be a hopeless quest. Therefore, the term “intelligence” should be discarded
altogether in scientific psychology, just as it discarded ® animal magnetism” as
the science of chemistry discarded ™ phlogiston.” “Intelligence” will continue,
of course, in popular parlance and in literary usage, where it may serve a purpose
only because it can mean anything the user intends, and where a precise and
operational definition is not |mFortant. _ o

Largely because of its popular and literary usage, the word “intelligence”
has come to mean too many different things to many people (including psy-
chologists). It has also become so fraught with value judgments, emotions, and
pr_ehu ices as to render it useless in scientific discussion.B 1 have no quarrel
with the typical dictionary definition of “intelligence,” except that it does not
adequately describe what | am actually writing about in this book. Indeed the
attempt to provide a purely lexical definition is a hindrance to understanding
the phenomena examined here.
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I 'am certainly not proposing to offer still another definition of “intelligence,”
or another term to take its place, or suggesting that any existing definition can
be made more acceptable if we modify it with adjectives, such as “academic
intelligence” and “practical intelligence,” or by making it plural, such as the
currently popular “multiple intelligences.” These “solutions” can only worsen
the problem. As an intraspecies concept it is best 5|mpl?/ t0 ?et rid of the term
“intelligence” altogether in psychology. In this we should follow Spearman and
henceforth drop the ill-fated word from our scientific vocabulary, or use it only
In quotes, to remind ourselves that it is not only scientifically unsatisfactory hut
wholly unnecessary.

Formal definitions, however, are essential in science. But the}/ themselves do
not address the nature of a phenomenon or claim the status of empirical fact.
Nor do they imply any ﬁartlcular theory or require logical or experimental proof.
Formal definitions are theoretically neutral conventions that scientists agree upon
in order to get on with their job. It makes no sense to disagree over such
conventional definitions. It is important only that a definition be sufficiently clear
and explicit to serve its pragmatic purpose.

To put the study of mental ability on a firm scientific footing, we must begin
by using theoretically neutral, objective, operational definitions. From this po-
sition “intelligence™ (or any synonym or conceptual substitute for it) never
needs to enter the discussion. Just blot out whatever this word with all its am-
biguities and emotional haggage may mean to you (or your dictionary). (Nor
shall I try to provide another word or concept as a verbal substitute.)

Science begins by first recognizinﬁ certain objective realities and asking ques-
tions about them. In the domain of human abilities, what are these realities? To
answer this, we must first become familiar with the technique known as factor
analysis. The purpose of factor analysis is to ex?Iam the intercorrelations among
variables in terms of a more limited number of hypothetical or latent variables
termed factors. Factor analysis thus makes it possible to sort out the main
sources of variance (i.e., factors) that are common to a variety of mental tests.
But first, so that it will not seem arcane, it is important for readers to understand
the basic concepts that underlie this analytic method.

ESSENTIAL DEFINITIONS AND CONCEPTS

The reader should not skip over the following definitions, even if the words
themselves look familiar. They are used here in a special and precise way, and
it would be cumbersome to have to define these terms repe_atedlﬁ/ throughout
the hook to ensure that readers understand dJust how | am using them. By first
agreeing on this specialized vocabulary and methodology we can proceed to a
scientific analysis of mental ability.

Objective. In the present context, “objective” simply means agreement
among observers of an external event, or between measurements or recordings
of events registered by some device, and agreement among persons who read
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these records. The degree of agreement needed for an% given purpose is another
consideration. Degree of agreement can be quantified by the correlation between
different observers or between repeated measurements by the same observer.
When a correlation coefficient is used this way, it is termed a reliability coef-
ficient, symbolized r% The difference between the reliability coefficient and
unity (i.e., 1 —rx{ represents the proportion of the total variance of the meas-
urements that is attributed to measurement error.

It is a common misconception that psychological measurements of human
abilities are generally more prone to error or inaccuracy than are ﬁhysmal meas-
urements. In most psychological research, and especially in psychometrics, this
kind of measurement error is practically negligible. 1f need be, and with proper
care, the error variance can usually be made vanishingly small. In my laboratory,
for example, we have been able to measure such variables as memory span,
fiicker-fusion frequency (a sensorg threshold), and reaction time ?RT) with re-
liability coefficients greater than .99 (that is, less than 1 percent of the variance
in RT is due to errors of measurement). The reliability coefficients for multi-
item tests of more complex mental ]pr_oc_esse_s, such as measured by typical 1Q
tests, are gener_ally about .90 to .95. This is h|?_her than the reliability of people’s
height and weight measured in a doctor’s office! The reliability coefficients of
blood pressure measurements, blood cholesterol level, and diagnosis based on
chest X-rays are typically around .50. _

“Item Performance (IP). This term, henceforth abbreviated IP, refers to any
distinct voluntary behavioral act. It can be any such overt action Prowded it 1s
also observable or recordable in some way. Saying (or writing) “four” (or any
other response) to the question “what is two plus two?”, if the response can
be agreed upon by observers, is an IP. Doing a trl]ple axel, writing one’s name,
hitting midale C on the piano, performing the Tchaikovsky violin concerto,
solving (or failing) an attempted math problem, umFmg over a two-foot hurdle,
cutting an alpple In half, hlttlng a baseball into left field, and parking parallel—
these are all IPs. An IP may be a discretely classifiable act (e.g., either hitting
or missing a target) or some action that can be graded on a continuum (e.g.,
speed of response to a signal, time taken to complete a task, distance run in a
given time). The universe of possible IPs is obviously unlimited. The definition
of IP also includes, of course, a voluntary response to an item in any kind of
test or to any laboratory procedure that measures, for example, reaction time,
sensorY threshold, speed of rote learning, or memory span. _

Excluded from the category of IPs are uncanscious, involuntary, or accidental
acts, such as tripping on a stair, eye blinks, facial tics, unconditioned and con-
ditioned reflexes, reactions of the autonomic nervous system, somnambulistic
actions, dru% reactions per se, fainting, and the like. Organismic events that are
not strictly behavioral acts are also excluded, such as changes in brain waves,
g!andular secretions, pulse rate, blood pressure, skin conductance, and Buplllary
dilation, although these phenomena may be correlated with certain IPs. Most
importantly, it should be noted that an IP is not an inference, or an abstraction,
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or an interpretation. It is a single objective raw datum—some overt act, directly
observable by other persons or immediately recordable by an apparatus.

Ability. Going from an IP to an ability Is going from a direct observation to
an abstraction or inference, although of the lowest order. The universe of abil-
ities is open-ended but bounded by certain qualifications.

An ability is an IP that meets the following three criteria:

_ﬁl) it has some specified de?ree_ of temporal stability (consistency or repeat-
ability); (2) it can be reliably classified, measured, ranked, rated, graded, or
scored in terms of meeting some objective standard of proficiency, and (3) it
has some specified degree of ?enerahty.

Stability. For an IP to qualify as an ability, it must be evident that the IP
can occur more dependably than chance probability, or pure luck, would allow
under constant external circumstances. Holding a winning lottery ticket, for ex-
ample, is not an ability. Because there is often some random Vvariability in a
person’s IP from one point in time to another, some average IP has to be
determined. Temporal stability implies that the IP can be elicited reﬁeatedly at
better than chance frequency under the same external conditions within a spec-
ified time interval, the Ienﬂth of which could range anywhere from seconds to
months or (rarely) years. The consistency or repeatability of a single individual’s
IP can be quantified by the mean and standard deviation of the individual’s IPs
measured in some specified number of trials within a specified time interval.
The consistency of individual differences in the [P among a group of persons
can be quantified by the correlation of the IP measures across a given number
of trials. (In psychometrics this is termed the test-retest reliability.)

Proficiency. An essential element in the definition of ability is that the IP
must be an act that can be objectively classified, ranked, graded, or scored in
terms of an objective standard ofproficiency. This standard |m£Iies no judgment
about the personal, moral, social, or economic value of the IP. For example, a
particular person at a given Bomt in time either can (score = 1) or cannot Fscore
= 0) lift a 200-pound barbell and hold it one foot above the floor for ten
seconds. A reaction time (RT) of 400 milliseconds is a quicker response than a
RT of 450 milliseconds. The answer “four” to the question “2 + 2 = ?" is
correct; the answer “five” is incorrect. Repeating a series of nine random digits
after hearing them spoken once is to recall more digits than recallmg only seven
random digits under the same conditions. If an IP cannot be rated reliably or
scored in terms of some such objective standard, it cannot be called an ability.
Ratings or rankings with a specified degree of agreement among several judges
(as quantified by the intraclass correlation or the coefficient of concordance) can
also qualify as an objective standard and may serve to rate IPs that do not lend
themselves to direct measurement, such as performance in figure skating, playing
a musical instrument, singing, art work, influencing people, and the like.

Generality. Some degree of generality is also a necessary condition for an
IP to be considered an ability. The critical question is, how much generality?
The answer is that the essential features of the IP must be preserved while its
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nonessential features vary. For example, a person can repeat a strin? of seven
digits (say, 7164835) after hearing them spoken once, at the rate of one digit
per second. This is an IP, to be sure. And we may decide that its essential
feature is the number of digits. But this person’s IP cannot be called an ability
at this point, because the person’s recalling as many as seven digits could have
been peculiar to just this particular string of digits; for example, it might have
been his own well-memorized telephone number. If given ten more trials at
recalling different strings of seven digits under the same conditions, the person
Bossibly might not be able to repeat any of them correctly. He could not then
e said to have the ability to repeat seven digits under these conditions. For any
?_|ven IP to be regarded as an ability, an objective criterion of generality must
irst be defined. For example, we may decide that a digit span memory for, say,
seven digits has to be demonstrated in any three out of four consecutive trials,
all given under the same conditions, varying only the seven digits (randomly
selected from 1to 9) on each trial. Such a procedure can be applied to most
other kinds of IPs. § his is called equivalentforms reliability in psychometrics.)

The generality of an IP, say, repeating (or failing to repeat) seven digits, can
be inferred bg its being significantly correlated (in a group of persons) with
some other IP. This is because the correlation would not differ significantly
from zero if a particular [P were just a random occurrence for every person in
the group. Randomness, or Fure chance, dilutes correlation to near zero. Slgi-
nificant correlation between IPs indicates that the correlated IPs qualify as abi
ities, at least for some of the ﬁeople in the group for which the correlation was
determined. To establish whether an IP is an ability with respect to any particular
person, however, it is necessary to demonstrate its consistency and generality
over a specified number of trials for that person, as ex_i)_lained above.

Mental Ability. The distinction between physical abilities and mental abilities
is more difficult, and there may be a “zone of ambiguity” between these classes.
There are two criteria for distinguishing a mental ability:

L An ability (as defined above) is a mental ability if, with respect to infor-
mation transmission per se, the receptor and effector mechanisms are nonspe-
cific. In other words, an individual’s performance is not essentially dependent
on any particular sensor¥ or motor system. Persons with a severe sensory hand-
icap can still receive information in ways that circumvent their nonfunctional
channel; and similarly, persons with a severe motor handicap can communicate
information by some alternate route.

2. An ability is a mental ability if, within a giroup of people who have no
major sensori/] or motor handicap %s independently determined), individual dif-
ferences in the ability are insignificantly correlated with measures of sensory
acuity, physical strength, endurance, agility, or dexterity (as independently as-
sessed). If there is a significant correlation, one other correlational criterion must
be met, based on factor analysis. The ability in question is not a mental ability
if its largest factor loadin f(ln a factor analysis of a wide variety of abilities) is
found on a group factor defined as “physical.” (That is, a group factor whose
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Iar_?_est loadings are found on measures of sensory acuitK! physical strength,
agility, endurance, and similar types of performance.) This last criterion as-
sumes, of course, that a wide enough variety of ability measures are included
in the factor analysis that both physical and mental abilities are represented,
even iftalt the outset we are not certain of each one’s classification as physical
or mental.

Based on my study of the known é)_hy_sical_ correlates of mental abilities, 1 am
confident that the above criteria for distinguishing between mental and physical
abilities leave few of them in the “zone of ambiquity.” This is not to say,
however, that we should expect to find no correlations at all between certain
unamblguously classified mental and physical abilities. But any such correlations
will seldom represent an “intrinsic” or “functional” (i.e., directly causal) re-
lationship between the two kinds of ability. (Full explication of these terms is
postponed to Chapter 6.) Finding an “intrinsic” correlation between a physical
and a mental trait, however, may provide important clues about the causal un-
derpinnings of individual differences in the correlated traits.

As the rest of this book deals primarily with mental ability, | will henceforth
use just the word “ability” to mean mental ability, as defined above, unless
otherwise guallfled. _ _ _ _

Testand Item. A test is any collection of items (tasks, problems, questions,
etc.) that elicit abilities when persons are asked to respond to the items in a
particular way. The items may be anything the test maker chooses, so long as
each one elicits an ability.

It is important not to confuse the three distinct meanings associated with the
term “item.” First, there is the physical item itself—a spoken or printed ques-
tion, or problem, or task to be performed (but not including the person’s per-
formance). Second, there is the item response—the record or score of a person’s
adequacy of performance on the item. Third, there are the item statistics—the
mean and variance of the scores on an item taken by a group of persons. (Other
item statistics used in test construction are not so germane here.) In most con-
texts, the word “item” implies the item score or an item statistic, not the phys-
ical item itself. The expression “item variance,” for example, means the
variance of the scores on the item for a group of persons who attempted the
item. Saying that two items are correlated means that the item scores are cor-
related in a group of persons who attempted both items,

Ifan item response is scored in a hinary fashion, such as right/wrong or pass/
fail (quantitized as 1/0), the item mean is the percentage (P% of persons who
“passed” the item. The item’s P value is an index of how easy it is for the
group of persons who attempted it. Conversely, 100 —P is an index of item
difficulty. The item variance of a single binary-scored item isp X q where p is
the proportion of persons who pass the item and q is the proportion who fail
the item (assumingp + q = 1%

_Item Intercorrelation. It so happens— not because the test constructor makes
it happen, but because it is an observed fact of nature—that all mental abilities
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are positively correlated with each other. Stated more exactly, if two or more
items each reliably elicits an abilitr, the item scores obtained in a large and
representative sample of the general population will be positively correlated to
some degree. These item intercorrelations may vary considerably in magnitude.
For example, most people who can repeat a string of 7 digits on at least 3 out
of 4 trials can also repeat a string of 6 digits on at least 3 out of 4 trials; but
most people who, under the same conditions, cannot repeat 6 digits also cannot
repeat 7 digits. This fact creates a correlation between these two items—a 6-
digit item and a 7-di_?it item. The correlation between ang two items, each scored
eitner pass (1) or fail (0) can be calculated from a 2 X 2 contingency table (see
below) showing the number of persons who passed or failed each item.

Item A
Fail (©) Pass @

P 1
ass (D 14 35

ltem B

Fail (O 41 10

X2 =27.11, p < .001 <= .521

The value of the statistic known as chi squared (x2), can be calculated from the
frequencies in the four cells of this contingency table. If it is Iar?e enough, it
indicates a statistically significant correlation. That is, the probability (%) that a
value of x2this large would occur by pure chance is less than one in a thousand
(thUSJ) < .001). (It the four cells had nearly equal frequencies, the correlation
would not be significant.) The correlation between Item A and ltem B in the
example above (technically termed a phi coefficient, 0, when calculated on a 2
X 2 contingency table) is +.521. (This is atypicallr large for item correlations.d)

A test (composed of three or more items) can also be measured for its degree
of homogeneity. One index of homogeneity is the average correlation among all
of the items. Imagine that we pick 100 items at random from a very large pool
of items that elicit a wide variety of abilities. The 100 items are administered
to a thousand people, and from these data we calculate all the interitem corre-
lations. (There will be a total of 100 (100 - 1)/2 = 4,950 correlation coeffi-
cients.) Say the avera%e of the interitem correlations i onIK 10. We can create
a number of shorter, but more homogeneous, tests from this collection of 100
items b?/ making up small groups of items in which every item is correlated,
say, at least .20 with every other item in the same group. (Leftover items that
are correlated less than .20 with any other items are assigned to the group of
items with which they have the highest average correlation.) So then we will
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have a number of small but relatively homogeneous subtests. The average of
the item correlations within each of the homogeneous subtests will be larger
than the average correlation between items drawn from different subtests.

ltems within a given homogeneous subtest are generally of a similar type.
That is, they resemble each other considerably more in their type of information
content than they resemble the types of items in other subtests. Each of the
homogeneous groups of items usually turns out to be Iargelty composed of, say,
either numerical items, verbal items, memory span items, figural items, or me-
chanical items. Thus the process of grouping items by their degree of intercor-
relation tends to bring together items with similar features and content. Yet even
items that are grouped in this manner (or any other manner) are still positively
correlated, though gerhaps only slightly, with the items in any other subtests.

A Test’s Raw Score. The raw score on a test is the sum of all the item
scores, which are the numerical values used to grade an individual’s response
to each of the items. Typically, a response on each item of a test is scored as
either 1 or 0 (for pass or fail, according to some specified objective standard),
and hthle sum of the item scores constitutes the person’s raw score on the test as
a whole.

The total variance of the raw scores on a test is really an abstraction, at least
a step or two removed from the observable item performances that constitute
an ability. While the variance of a single item isp X g (see above), the variance
of total scores on a test (which by definition is composed of three or more
|tems)5|s the sum of the item variances plus twice the sum of the item covari-
ances,
~ ltem covariance per se is not an observable act or a sample of behavior. It
is, however, a natural phenomenon. The largest part (t}/plcally 90 to 95 percent)
of the total variance in mental test scores consists of the sum of all the item
covariances. If the covariance between items is not itself directly observable or
measurable behavior, then what is it? There is only one answer: It is afactor,
as technlcallﬁ defined below. o o

Factor. The word “factor” has a number of dictionary definitions, but the
term as used here has a very restricted, specialized meaning. A factor is a
hypothetical variable that “underlies” an observed or measured variable. Thus
a factor is also referred to as a latent variable. It is best thought of initially in
terms of the mathematical operations by which we identify and measure it.

Although a factor is identifiable and quantifiable, it is not directly observable.
It is not a tangible “thing” or an observable event. So we have to be especially
careful in talking about factors, lest someone think we believe that we are talking
about “things” rather than hypothetical and mathematical constructs. But one
can say the very same thing about the many constructs used in the physical
sciences (gravitation, magnetism, heat, valence, and potential energy, to name
a few). They are all constructs. This does not imply, however, that scientists
cannot inquire about the relationship of a clearly defined construct to other
phenomena or try to fathom its causal nature. Nor is a construct “unreal” or
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“chimerical” or less important than some directly observable action or tangible
object. Certainly the force of gravity (a hypothetical construct) has more wide-
spread importance than the particular chair | am sitting in at the moment, and
is every bit as real. A lot of pointless ar%uments can be avoided by consistently
maintaining a clear distinction between the purely mathematical definition, iden-
tification, or measurement of factors, on the one hand, and theories about their
causal nature, on the other. (In this chapter, I am not saying anything at all
about the causal nature of factors.g

Factors arise only from the reliable or nonchance correlation between abilities.
Now, if it were the case that tests were constructed of only those items that
hap(JJened to be correlated with one another (and items that did not were dis-
carded), factors would indeed he mere psychometric artifacts. That is, factors
would be no more than a product of the arbitrary way that ability items are
devised or selected for inclusion m_Psychometnc,tests. If 5o, it should be pos-
sible in theory to devise mental ability ‘tests in which the items did not correlate
more than could be expected by pure chance. Such a test could not be analyzed
into factors. Its total variance would consist only of the sum of the separate item
variances plus a little random error variance due to the small chance correlations
among items. o

In reallt%,_ this has never happened, so long as our open-ended definition of
a mental ability is used to select the test items. It is important to note that there
is nothing circular or in any way tautolo%lca_l in this observation, because our
definition of a mental ability is completely independent of the condition of a
correlation between abilities. By this definition, abilities could just as well be
uncorrelated or negatively correlated as being positively correlated. _

The striking empirical fact, however, is that, as far as has yet been determined,
mental abilities are all positively intercorrelated beyond chance to some degree.
| have yet to find a bona fide exception. For a century psychologists have made
countless attempts to discover even a small number of mental test items that are
truly uncorrelated. All have failed. This does not mean that zero or negative
correlations never occur. In various studies of item intercorrelations, based on
subject samples of varying size, the relatively small number of interitem cor-
relations found to be zero or ne?ative i inversely related to the range of ability
in the sample and to the size of the sample. Further, the mean of the negative
correlations is always very much smaller than the mean of the positive corre-
lations. This indicates that nonpositive correlations between items are merely
flukes due to sampling error. The finding of ubl_(T]unous positive correlations
between mental abilities is not a psychometric artifact, but an empirical fact, a
natural phenomenon.

Because of this phenomenon of ubiquitous positive correlations among all
items in the practically unlimited universe of mental abilities, we can proceed
to determine the various factors &or |atent variables) that “account for” these
intercorrelations. | put “account for” in quotation marks to indicate that it is
just @ manner of speaking in this field; it does not imply an explanation of why
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abilities are correlated, which is another issue. Some factor analysts say that the
factors “explain” the correlations between abilities, that is, certain abilities may
have certain factors in common. But this is merely a semantic quibble as long
as one recognizes that a factor per se is itself a phenomenon that needs to be
explained. The methods of factor analysis permit us to identify and quantify a
factor, but they cannot tell us what is responsible for the emergence of the factor.
As Spearman said, we can identify factors only by site (i.e., the tests in which
they are loaded) and not by nature (i.e., the physiological conditions that cause
their emergence). This is because factors are only mathematical transformations
of a matrix of correlation coefficients.6 The methodology for performing these
transformations is called factor analysis.

THE GIST OF FACTOR ANALYSIS

Factor analysis involves a whole class of complex mathematical techniques.
Texthooks on factor analysis usually assume some knowled?e of statistical con-
cepts and matrix algebra. Sidestepping the mathematics, | will here provide some
idea of what factor analysis is and does without explaining its mathematical
basis or exactly how it is performed in practice. For that, readers should refer
to one of the several modern textbooks on factor analysis.7 While a technical
knowledge of factor analysis is not required to understand the rest of this book,
a few points are quite important. This book is largely about g, and because g
is afactor in the technical sense, it would remain virtuallg undefinable an
co_ncgptually meaningless without some conceptual understanding of factor anal-
ysis.

The purpose of a factor analysis of a set of n variables is to transform the
correlation matrix of all of the variables’ intercorrelations (called the R matrix)
into afactor matrix Ofﬁ factors. In factor analysis, p < n. That is, the number
of factors is less than the number of variables. There are two main ways that a
set of variables can be factor-analyzed: from the bottom up, or from the top
down. By “top” is meant the highest de?ree of factorial commonality or gen-
erality; “bottom” is the lowest degree of generality or the most specificity. A
factor’s “generality” refers to the number of variables that it encompasses, as
shown by their having significant loadings on the factor.

Let me first illustrate the logic of a factor analysis from the bottom up. (This
isn’t the actual mathematical procedure used in doing a factor analysis, but it
gives a fairly clear idea of what it does.) Typically, factor analysis begins with
scores on relatively homogeneous tests. It ordinarily assumes standardized var-
iables, which is accomplished as ﬁart of the formula for computing the Pearson
correlation coefficients with which the factor analytic procedure begins. Here it
will be more instructive to start a stei) lower in the hierarchy of abstraction than
the tests. We will start with the single items that compose the tests.

Figure 3.1 will make the explanation easier to follow. Note that the levels of



58 The g Factor

Figure 3.1. Hypothetical example of a hierarchical factor analysis (with components of
variance represented as squares) of 243 test items (Level 1, at bottom of hierarchy).
Level 2 = tests; Level 3 = first-order factors; Level 4 = second-order factors; Level 5
= third-order factor, or the general factor, g. The lines connecting the squares represent
correlations greater than some specified magnitude.

the hierarchy are labeled 1 (lowest) through 5 (highest), as shown in the left
margin of Figure 3.1. o

Level 1: At the very “bottom” of the whole process are the ability items. So
we be_(];_m with a large number (say, 243) of diverse items, each one measuring
an ability. Any one of these ability items is exceedingly narrow in generality.
That is, it has only very low correlations with all other ability items except those
that are verK much like itself. For example, the ability to repeat a string of six
digits after hearing them spoken correlates much more with the ability to repeat
them after reading them than with, say, the ability to do simple arithmetic. We
administer the items to a large sample of, say, 1,000 adults randomly selected
from the general population. From our inspection of the total matrix of 29,403
(i.e., [n2—nV2, where n is the number of items) correlations am_on? all of these
Item scores, we group together sets of items that are the most highly correlated
with each other. _ .

Level 2: Each such ﬂroup of items constitutes a homogeneous test. There are,
say, twenty-seven such tests, each containing about three items. (This small
number of items is only a concession to the space limitation of Figure 3.1; in
practice each homogeneous test would typically be composed of ten to twenty
ltems). The commonality among the items in each test makes it broader (more
general) than any of its narrower constituent items. (Inspection of the contents
In each homogeneous group of items may i)e;rmlt us to give descriptive names
to the various constituted tests, such as spelling, mechanical arithmetic, vocab-
ulary, perceptual speed, visual form perception, figure analogies, digit memory
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span, word memory span, block counting, and the like.) We obtain the persons’
total raw scores on each of the tests and use these scores to calculate the cor-
relations among the twenty-seven tests. This yields a test correlation matrix that
contains 351 correlation coefficients.

Level 3: From inspection of this matrix of test correlations, we group the
tests that are the most highly correlated with each other together. Say we get
nine such relatively homogeneous groups, each containing three tests. (Most
researchers agree that each factor should be defined by a minimum of three
experimentally independent variables or tests.) These groups of tests are first-
orderfactors (also called primary factors, or i)rimaries). The sum of a person’s
score on each of the tests in a group is here called afactor score. (This statement,
intended here for the simplest possible explanation, is not accurate, as factor
scores are actually weighted sums with certain statistical properties based on
regression anal?/sw. The various rather technical methods for obtaining factor
scores are explained in the textoooks on factor analysis.) Factor scores are
broader, or more general, than the score on any of the constituent tests, for each
factor score here encompasses three tests. Just as the different tests are more
highly correlated with each other, on average, than are the items that compose
the tests, so the different factors may be (but are not necessarily) more highly
cr?rr%elated with each other, on average, than are the different tests that compose
the factors.

Level 4: The same process is applied to the first-order factors. Those primary
factors most highly correlated with each other are I:grouped together to form the
second-order factors. There are three of these in Figure 3.1. The second-order
factors are more general than the first-order factors.

Level 5: The correlations among the second-order factors form a single third-
order factor, g, which is the most general (highest level) factor of all.

The hierarchy of generality, from the least general to the most general is: 311)
items, (2) tests, (3? first-order factors, (4) second-order factors, and (5) g, the
single most general factor. When the number of tests is not large and the abilities
they sample are not highly diverse, g usually emerges as a second-order factor.
It is exceedmglz rare, however, to find more than a single third-order factor
(namely, g). In hundreds of factor analyses of ability tests, g always emerges as
either a second-order or a third-order factor9 _

But now we must backtrack, to make this simplified explanation more tech-
nically correct. Factors are not items, or tests, or scores. It will be more correct
if we think of them as “pieces” of the total true-score variance of all of the
items at the base of the hierarchy. You will recall that the total variance of a
number of measurements (in this case item scores on a large number of items)
can be sliced up into a number of parts. Factor analysis is one way of slicing
up the total variance, each slice representing a factor.

S0 referrln% back to Figure 3.1, we can think of all of the black rectangles
in the hierarchy as different sized pieces of the total variance that exists in the
pool of items at the hase of the hierarchy (Level 1). At each level of the hier-
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archy, the variance is cut into a different number of slices. The variance in each
of the tests (Level 2) consists of the sum of the variances of its constituent items
plus twice all of the item covariances.

The first-order factors (Level 3) are created from the correlations among tests;
that part of each test’s total variance that is uncorrelated with any other test is
left out of the first-order factors. This uncorrelated part of a test’s total variance,
which does not go into one (or more) of the first-order factors, is the test’s
uniqueness. It is composed of the sum of the test’s item variances (called the
item’s error variance) and the part of the test’s true-score variance that is not
common to any other test (called the test’s specificity). The first-order factors,
therefore, are slices of variance that three or more tests all have in common.

The second-order factors (Level 4) are created by the correlations between
first-order factors, What is left behind in each first-order factor is that part of
its variance that it does not have in common with any other first-order factor,
Since whatever variance the first-order factors had in common has been removed
to form the second-order factors, the resulting first-order factors are uncorrelated
with one another. And since each first-order factor has now lost whatever var-
jance it had in common with an%/ other factor, it is also uncorrelated with everr
second-order factor as well. Such uncorrelated factors are said to be orthogonal.

Finally, the third-order factor, g (Level _53, Is created from the correlations
among the second-order factors, whose residual variance consists of whatever
variance they do not have in common with each other. They are uncorrelated
with each other and with g. So the whole factor hierarchy (i.e., Levels 3, 4, 5
in Figure 3.1) has been orthogonalized. At this point it is possible, by a math-
ematical al%onthm (the Schmid-Leiman orthogonalization transformation1) to
determine the correlation between each test and each of the orthogonal factors
in the hierarchy. The correlations of a test with each of the orthogonal factors
are called factor loadings. A table that shows each test’s loading on each factor
is called afactor matrix.

Another aspect of this simplified exEIanation of factor analysis should now be
made clear. | 'said that by insgecting the matrix of correlations among all of the
tests we can groui) together those tests that are the most ,hlgh\IXI_correIated with
each other. Actually we don’t have to do this b)( inspection. With a very Iarﬁe
number of correlations it would be an exceedingly ditficult task. In practice, the
mathematical procedures of factor analysis objectively determine which tests
should be grouped together to form a factor and also provide objective criteria to
determine the number of common factors among the variables in the analysis.

The number of factors extracted represents the number of dimensions in the
factor space needed to accommodate the factor structure of the data._A_Ithou%h
we spatially visualize only three dimensions in our everyday world, it is matn-
ematically possible to deal with an n-dimensional space, where n is the number
of dimensions needed to accommodate n straight lines (factors), each one at
right angles to each of the others. For example, take four match sticks. Lay one
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of them down on the table; it occupies one dimension. Lay down another stick
at ri%ht angles to it; this pattern occupies two dimensions. The third stick must
be placed perpendicular to the table top jutting up in the air in order to be at
right an%]les to the other two. Now three dimensions are occupied. Where can
we put the fourth match stick and yet preserve right anﬂles between all of the
sticks? To do so, we need to go beyond our everyday three-dimensional space
to a four-dimensional space. And so on. The sticks are here analogous to or-
thogonal (i.e., uncorrelated) factors.

If the correlated variables all have unit variance (as is the case in a factor
analysis), we can represent each correlation spatially as an angle, where the
correlation coefficient is equal to the cosine of the angle theta ( ghat IS, I =
cos 0). For example, the cosine of a right angle (cos 90°) = rQ = 0; cos 0° =
+1=r+; and cos 180° = —1 = r_,. This transformational equivalence of
correlations and angles allows another use of the idea of dimensionality. All
angles can be displayed in two dimensions, but it is possible that three or more
angles, when considered simultaneously, may not be accommodated in two di-
mensions. That is, three or more angles may not be shown accurately on a plane
surface. (See Figure 3.2.) Consider the three angles (and their corresponding
correlations shown above each angle) formed by the unit length vectors A, B,
and C. We see (directly below) that the three angles can all be put together in
the same plane; all of the vectors and their anéjles add up exactly to the largest
angle (AC = 75°), so they can be represented simultaneously In one plane (a
two-dimensional space). In contrast, consider the lower set of angles formed by
the vectors X, Y, and Z. There is no way that we can put these three angles
together in one plane (i.e., 60° + 30° + 70°); they can be represented only in
a three-dimensional space, as illustrated in the lower figure."

A simple real-life example may intuitively illustrate how dimensionality un-
derlies factor analysis. Suppose that three people, named Tom, Dick, and Harry,
are tested every dag for'a month on their abilities to do these things: lift a
barbell (B), do a shotput (S), and throw a javelin (J). B is measured as the
maximum weight that can be lifted; S and J are measured by the distances that
the shot and the javelin, respectively, are thrown. For all three tests we find on
more than 90 percent of the trials that Tom did better than Dick, who did better
than Harry (ie., on B, S, J: Tom > Dick > Harry). All the performances on
B, S, and J can, therefore, be ranked (or graphed) on just one dimension. In
other words, one factor adequately accounts for the data. (That is, little or none
of the original information is lost by performing the transformation from three
dimensions to one.) We mi?ht label this factor as “general strength,” as it
determines the individual differences in performance on every test. Tom scores
higher on this “general strength” factor than Dick and Harry, and Dick scores
higher than Harry. _

ut suppose we had found that on more than 90 percent of the trials the
following occurred:
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I'yZ=.866 =cos 30

Y

Figure 3.2. Angles showing the relationship between the angular separation (0) between
two line segments (e.g., A and B) with the same origin (O? and the coefficient of cor-
relation (r) between them: r = cos 0. The top three angles (or correlations) can be
represented together in two-dimensional space. The three lower angles (correlations) can
be represented together only in three-dimensional space.

On Band S: Tom > Dick > Ha.rrK
On J: Harry > Tom > Dic

B and S are much alike, ranking people in one dimension (that is, graphing
them on a single line), but J doesn’t rank peoPIe the same way. J evidently
involves some specific skill that is not required for B and S. To represent these
data accurately, then, we must have two dimensions: one on which we can rank
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the subLects on B and S, the other on which we can rank them on J. If we had
found the following:

On B: Tom > Dick > Harry
On S: Dick > Tom > Harry
On J: Harry > Tom > Dick,

we would need three dimensions on which to rank-order the subjects. Each task,
then, would evidently measure some distinct ability not shared by the other two
tests. We would therefore have to posit three separate factors to account for the
three tests. Of course this is only a didactic example. In reality, a greater number
and variety of tests, and a great many more subjects, would be required for a
proper factor analysis. The analysis would define the dimensionality of the factor
space needed to represent the correlations amon? the n tests. Each dimension is
a factor axis. A test’s loadings on each of the Tactors maps its location in the
n-dimensional factor space. The factors are thus somewhat analogous to the lines
of latitude and longitude on a globe of the world that permit us to specify the
exact location of any city. _ o

Each test can be represented in factor space as a vector, that is, a straight line
segment having magnitude and direction, where the length of the line represents
its magnitude and its direction is represented by the line’s orientation in space.
The six arrows shown in Figure 3.3 are the vectors of six positively correlated
tests labeled A, B, C, X, Y, Z. As the test scores all have unit variance (hence
are depicted in Figure 3.3 as vectors all having the same length), the correlation
between any pair of tests is equal to the cosine of the angle between them. The
cosine relation between angles and correlations thus allows us to represent the
matrix of correlations among all of the tests geometrically as an array of vectors.
Since all of the vectors in our example can be represented on a plane, we can
represent the common factor variance of these six tests in terms of their projec-
tions on two uncorrelated axes (i.e., a 90° angle between them, hence called
orthogonal)."2 o

These axes are orthogonal factors, labeled I and 11 in Figure 3.3. One method
by which they are precisely determined mathematically is termed principalfac-
tor analysis, in which case the derived factors are called principal factors
Each factor axis passes through the origin of all the test vectors at their zero
point (0). The position of the first principal factor, labeled Factor I, is determined
mathematically such that it lies closer to all of the test vectors (A, B, C, etcg
than does any other strai?ht line. Hence it maximizes the sum of the square
loadings of all the variables on the factor. Because the first principal factor is
the largest factor (that is, it accounts for more of the total variance than does
any other single factor), this is a “top-down” method of factor analysis. The
second principal factor, Factor 11, is located so as to pass through the origin (0)
and be at right am};les to Factor . _

For orthogonal factors, the projection of a test vector on a factor is the test’s
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Figure 3.3. Six test vectors (arrows) and the two orthogonal axes, Factors | and II,
needed to account for their common variance.

Ioading< on that factor. In Figure 3.3, the dashed lines show the proLections of
Tests X and Z on Factor | and Factor 1. One can see that Test X has a ver
large (about +.99, or 99% of the way from the onFm to the top of the ams{
projection (or loading) on Factor | and a quite small (about .15) projection on
Factor Il. Test Z has a loading of about +.80 on Factor | and of about +.60
on Factor Il. Note that each of the six tests has its largest projection on Factor
| and all of these projections are positive. Therefore, Factor I is interpreted as
the general factor in this set of tests. It qualifies as the general factor, not
because it is the first prmmPaI factor, but because it is more highly correlated
with each and every one of the tests than is any other factor and the correlations
(loadings) are all positive.

Because the projections of Tests A, B, C on Factor Il are negative, while
Tests X, Y, Z have positive proLections, Factor 11 is called a bipolar factor. If
we added to this set of six tests three or more other tests whose intercorrelations
with the first six could not be represented in the same plane, we would need
yet another factor axis projecting out into the third dimension. Factor I1l would
then pass through the origin (0% at right angles to Factors | and Il. The test
vectors for this set of three new tests would slant away from the surface of the
page into this three-dimensional space and they would have projections on Fac-
tor 1 and possibly also on Factors | and II. If still another three (or more) tests
were added to the set and their intercorrelations could not be accommodated in
a three-dimensional space, another factor axis at right angles to the first three
(Factor IV) would be needed. In order to be at right angles to the first three
factors, it would have to exist in the fourth dimension. Vectors that project into
a space of more than three dimensions are said to exist in hyperspace.
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Rotation of Orthogonal Factors and the Principle of “Simple Structure.”
There is nothinﬁ intrinsically sacrosanct about the original position of the factor
axes given by the computational procedure in factor analysis. One is completely
free to rotate the original factors around their origin in any way that might
produce a theoretically clearer or more meaningful picture of the factor structure
of the tests. For example, since the tests themselves are all positively correlated
with one another, it might seem sensible that they should all have positive factor
loadings on each of the two factors that describe their location in the factor
space. It might also seem sensible if the two factors had more equal weight, in
terms of the proportions of the total variance that each one accounts for, than
is seen in the original position of the factor axes. This can often be achieved
by rotating the axes to another position, while still keeping them orthogonal
(that is, at right angles).

Louis Leon Thurstone (1887-1955), the chief developer of multiple factor
analysis, proposed an important principle for factor rotation, which he termed
simple structure. The aim of simple structure is to rotate the factors to a position
that maximizes the number of very large factor loadings and the number of very
small loadings, with as few intermediate-sized loadings as possible, while main-
taining the orthogonality of all the factors. The main consequence of employing
this criterion, hopefully, is that each test has a large loading on only one factor
and near-zero loadings on every other factor. This makes It fairly easy to give
a psychological interpretation and a clear-cut label to each factor simply by
examining the kinds of information or mental processes called for by the tests
that have large loadings on the factor. For example, if all of the verbal tests, in
contrast to spatial and numerical tests, have large Ioadings on one factor and
small or zero loadings on all other- factors, we would identify this factor as

“verbal ability.” _
No matter how one rotates the factor axes, the test vectors always remain

invariant (that is, in the exact same positions) in relation to one another. The
test vectors shown in Figure 3.3, for example, are reproduced exactly in Figure
34, but the factors have been rotated to a position that approximates simﬂle
structure as closely as possible for this set of tests. Notice the results of this
rotation: (1) All of the test vectors are located in the positive quadrant of the
factor space (both Factor I' and Factor II' are Fosmve) and therefore all of the
tests now have positive projections (i.e., factor loadings) on each factor. (2) Half
of the tests (A, B, C) are brought much closer to Factor I' (I' is the rotated
Factor 1), while the other tests (X, Y, Z) are brotht closer to Factor II'. Tests
A, B, C therefore have large loadings on I' and relatively small loadings on II',
and just the opﬂosne Is true for tests X, Y, Z. Test A, whose vector nearly
coincides with the axis labeled Factor I', is therefore an almost perfect marker
for Factor I'. Similarly, Test Z is an almost perfect marker for Factor II'. If tests
A, B, and C consisted, respectively, of vocabulary, synonyms-antonyms, and
verbal analogies, we might label Factor I’ as verbal ability. And if tests X, Y,
and Z consisted, respectively, of number series completion, arithmetic reasoning,
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Figure 3.4. The same test vectors as in Figure 3.3, but here the factor axes (Factors
I and II'? have been rotated so that all of the test vectors have positive projections
on hoth factors and approximate the simple structure criterion (defined in the text).
The 9fg\ctor (g:\)xes remain orthogonal (i.e., at a 90° angle, hence uncorrelated, since r =
cos 90° = Q).

agdl_mechanical arithmetic, we might label Factor IF as numerical or quantitative
ability.
Bu){ what has happened to the general factor, which was so prominent in
Figure 3.37 It best represented the fact that the tests are all positively correlated
and therefore all had some factor in common—a general factor, or g. The gen-
eral factor that was so prominent ir the analysis depicted in Flﬁure 3.3 seems
to have disappeared from Figure 3.4 as a result of rotating the factor axes.
Actually, it has simply been |Sﬁersed (or redistributed) among the rotated fac-
tors. Notice that even thou{gh the rotation to simple structure has maximized
each test’s loadings on one factor and minimized its loading on the other factor,
some of the tests #B, Cand X, Y) still have some significant, though unequal,
loadings on each factor. So if you ask where the g went, the answer is that it
has been divided up and lies “hidden” among all of the tests” smaller loadings
on all of the orthogonally rotated factors. Its variance has not disappeared, it
has simply been obscured by being dispersed throughout the whole factor ma-
trix. The price paid for the clarity afforded by simple structure in identifying
and labeling the factors psychologically is the loss of the clear evidence of the
tests” loadings on the general factor. In the past, some factor analysts mistakenly
argued that this supposed “disappearance” of the general factor after rotation
proved its nonexistence. _ o

In many analyses, some tests (like Test X in Figure 3.4) load almost equally
on two ?or more) factors. This violates the criterion of simple structure. Appli-
cation of the simple structure principle in the early history of factor analysis led
to futile debates over whether there is or is not a general factor in the analyzed
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tests. British psychologists, following Burt, did not rotate and claimed there was
a general factor. American psychologists, following Thurstone, rotated and
claimed there was no general factor. It was probably the most fatuous and futile
argument in the history of psychometrics. It was finally settled by Thurstone
himself, to the d_ellght of Spearman, the unwavering champion of g. The essen-
tial fact is that, in the mental abilities domain, where unavoidably all tests are
positively correlated, it is virtually impossible to rotate orthogonal factors to
achieve an optimal approximation to simple structure. An empirical fact of na-
ture, demonstrated repeatedly— positive correlations among all mental tests—
contradicts Thurstone’s principle of simple structure. But this contradiction ex-
ists only if one insists that all of the factor axes must be orthogonal. Yet there
is no compelling reason to maintain orthogonality if it prevents the aim of
achieving simple structure. _ _

Oblique Factors. Thurstone, therefore, invented the use of oblique factors,
that is, factor axes that have an?ular separations of less than 90°. The factor
axes are positioned at oblique angles to one another in such a way as to minimize
their distances from various clusters of test vectors. Using the same set of test
vectors as in Figures 3.3 and 3.4, Figure 3.5 shows the ™best fit" of the two
oblique factor axes to the test vectors. Each factor axis goes right through each
cluster of tests. Now we see that tests A, B, and C all have large projections on
Factor I" (our original Factor I, now in ob_Iigue rotation) and relatively small
pr_og]ectwns on Factor II". (The projection indicates the correlation of the test
with the factor.) Allowing the factors to be oblique makes it possible for rotation
to more closely approximate the criterion of simple structure and therefore pro-
vides a “cleaner” picture of the factor structure of the tests, because the tests,
on average, will lie closer to the oblique factors than to the orthogonally rotated
factors (in Figure 3.4).

What now has happened to the general factor in the oblique situation? It still
exists but is now accounted for by the correlation between the oblique factors.
The angle between I" and I1" is 55°, so the correlation between these factors is
e = €08 55° = +.57. The correlation between the first-order oblique factors
constitutes a second-order (higher-order) factor, which in this case is the general
factor, or g. With only two first-order factors in this simple didactic example,
however, the loadings of the first-order factors on the second-order factor are
indeterminate, although we know that their product is equal to +.57. We would
actually need to know the correlations between at least three first-order factors
to be able to calculate their loadings on a second-order factor. It is considered
improper to present second-order factors without also reporting the correlatlon(s?
between them, otherwise not all of the common factor variance in the origina
correlation matrix is represented by the oblltt]ue factor structure.

The extraction of a higher, second-order factor from the correlations among
the oblique first-order factors constitutes a hierarchical factor analysis. (With a
large and diverse battery of tests, a third-order factor may also emerge from the
correlations among three or more second-order factors. But it is an empirical
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Figure 3.5. The same test vectors as in Figures 3.3 and 3.4, but here the factor axes
(Factors 1" and 11") are no longer orthogonal, but oblique, at an angular separation of
55° hence r - +.57. The oblique factors more closely approximate simple structure
than the rotated orthogonal factors in Figure 3.4.

fact that fourth-order factors virtuallhl never emerge in the mental abilities do-
maln% It is important to note that the extraction of higher-order factors from
the oblique first-order factors does not affect the proportion of the total test
variance accounted for by all of the factors or each test’s communality, 2 which
are identical for both the rotated and the unrotated factors, whether they are
orthogonal or oblique, hierarchical or nonhierarchical.

NOTES

1. Published as “Intelligence and its measurement: A symposium.” Journal of Ed-
ucational Psychology, 1921, 12, 123-147, 195-216, 271-275.

2. Sternberg & Detterman, 1986.

3. | 'have written more extensively elsewhere on the intractable problem of the def-
inition of “intelligence” and the abandonment of this term in scientific discourse (Jensen,
1987b; 1993a; 1994c).

4, Because the size of the phi coefficient (¢ as a measure of correlation between
two items is affected by the item variances when they are unequal for the two items, a
correction (known as  for unequal variances is often applied to obtain the expected
correlation if both items had equal variances. [Note: The item variance (a2 is directly
related to the proportion ([2 of persons passing the item: a 2= p(l —E).] A'tetrachoric
correlation (r.) is also used for item intercorrelations, particularly if the sample size is
very large and the correlations are to be factor analyzed, in which case the r, has im-
portant technical advantages over the phi coefficient. These points are fully explicated
In many statistical and psychometric textbooks.

5. The covariance between two items, a and b, is Covab = <am,(T|,. (In the contin-
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gsegocy tatilzegs)hown in the text, the covariance between items A and B is 521 X 497 X

6. Factor analysis can also be applied to a covariance matrix, although factor analysis
of a correlation matrix is the much more usual procedure. A correlation coefficient is
simply a standardized covariance, that is, a correlation coefficient (unlike a covariance)
is completely independent of the particular variables’ scale of measurement and of their
means and variances. It is thus a pure index of relationship. The covariance of variables
X and Y, where X and Y are the raw measurements, is Covy = X(X—X) (Y—Y)N.
The correlation of X and Y is ny = X(X-X) (Y-Y)/Ncay. (Note: X and Y are the
means of variables X and Y; Gxand cjy are their respective standard deviations.)

7. The three great classics of factor analysis are bK Burt (1941), Thomson (1951),
and Thurstone (1947). The best-known modern textbooks are by Cattell (1978), Comrey
& Lee (1992), Gorsuch (1983), Harman (1976), and Mulaik (1972).

8. There are two main purposes of factor analysis— exploratory factor analysis (EPA)
and confirmatory factor analysis (CFA), which ditfer in methodology. But this distinction
is not important for understanding the gist of factor analysis. CFA 1s in fact a quite recent
development in the history of factor analysis, and probably most factor analyses seen in
the present literature are still EFA. EFA is used to analyze a set of variables when there
are no definite hypotheses about the factor structure of the set of variables, although we
may have some speculations or intuitions about this based on prior experience or theo-
retical considerations. One begins without any definite idea about the number of factors
or the degree to which each of the variables is loaded on each factor. Whatever factor
structure Is latent in the set of variables will emerge from the analysis. In CFA, on the
other hand, one begins with a definite hypothesis (or a number of competing hypotheses)
about the factor structure (i.e., the number of factors and the magnitudes of their loadings
in each variable) and the method of CFA statistically tests the “gioodness of fit” of the
data to the hypothesized factor structure, or model, as it is also called. Thus CFA permits
rigorous statistical evaluation of competing models or theories concerning the “covari-
ance structure” of the domain of variables under study. CFA usually comes into the
picture at a later stage of research, after EFA has been used to map out the territory, so
to speak, and when competing theories about details of the map are in contention. CFA
and its cousin, path analysis, are specialized methodologies in a broad class of statistical
methods for the analysis of covariance structures. An excellent introduction to these
topics gncludln% EFA) is provided by Loehlin (1992). .

9. Carroll (1993a), in an encyclopedic study of the results of the factor analysis of
cognitive abilities, has performe(}/factor analyses on some 460 different sets of mental
ability tests, encompassing almost every kind of cognitive ability that has been psycho-
metrically assessed, and has found that g is always either a second-order or third-order
factor in a hierarchical factor analysis. Below g, only some seven or eight broad second-
order factors have been reliably established. The total number of first-order factors in
the whole abilities domain is undoubtedly very large. But in principle the number of
theoretically possible first-order factors is indeterminate, and each successive new first-
order factor becomes harder to discover reliably. To date some fifty to sixty are claimed
to have been identified.

10 Schmid & Leiman (1957). Wherry (1959) presented a computationally different
but mathematically equivalent method for arriving at the same factor matrix as is yielded
by the Schmid-Leiman procedure. For more discussion of the comparison of these meth-
ods with other types of factor analysis, see Jensen & Weng (1994).
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11, It is possible to obtain “impossible™ correlations among a set of three (or more)
variables, if each of the correlations was not obtained in one and the same subject sample.
The “impossible” correlations are a result of the samPIing error of the correlations. For
example, the correlations (necessarily obtained in different samplesR between variables
X, Y, and Z of iy = .90, e = .80, and ryz = .20, are “impossible” estimates of the
true correlations in the population. If X is highly related to Y and to Z, then it is
impossible for Y to have such a low degree of relationship to Z. A test of whether any
three correlation coefficients are “impossible” estimates of the true correlations in the
population is that the following equation (known as the consistency relation among
correlation coefficients) is violated ?from Walker & Lev, 1953, p. 344{:

| - 'm% - + 2>v,ryz> 0

12. For didactic simplicity, this example assumes that none of the tests” variances
contains any unique variance (i.e., specific variance + error variance), and therefore each
test’s communality (i.e., the proportion of a test’s total variance that is common to other
tests in the analysis) is unitg, or L This is represented in Figure 3.3 by all the test vectors
having unit length. When the tests” variances contain uniqueness (in addition to common
factor variance) and the tests” communalities are therefore less than 1 (usually by various
amounts), then the correlation between two tests (say, X and Y) in the factor space has
the following relation to the angular separation of the tests” vectors: rxy = hjiy cos 0,
where h is the square root of the test’s communality (h2). The symbol h2for communality
comes from the word hypotenuse. Referring back to Figure 3.3, note the projection of
vector Z on Factor II; it forms a right triangle, of which the vector Z is the hypotenuse.
Similarly, the projection of Z on I forms a right triangle, of which Z is the hypotenuse.
By the Pythagorean theorem, the square of the hypotenuse is equal to the sum of the
squares of the two sides. The two sides of each triangle in this case are the loadings of
test Z on Factors 1 and I1. These loadings are .8 and 6, So h2= 82 + ,62= .64 + .36
= 1.00. Therefore, a test’s communality (h2? is the sum of its squared loadings on each
orthogonal common factor. In a factor analysis, a test’s communality is an important
item of information, as it tells us the proportion of the test’s total variance that is ac-
counted for by the factors. The proportion of variance unaccounted for by the common
factors is the test’s unique variance ﬁi.e., u2 = 1—nha. A given test’s communality
cannot be known until the factor analysis is completed, but It can usually be closely
estimated by the squared multiple correlation (SMC) between the test and all the other
tests in the matrix. The computational procedure in factor analysis usually begins with
these computable SMC estimates of the communalities in the main diagnonal of the
correlation matrix. An iterative procedure then converges the estimated h2 values toward
the tests’ true communalities. Largely because of this tedious iteration, the computations
of a single factor analysis, which In the days of electrical calculators could take a skilled
technician a full forty-hour week, can now be performed by high-speed electronic com-
puters in just a second or so after the data have been entered into the computer.

13. Principal factor analysis (PFA) should be clearly distinguished from principal
components analysis (PCA). In the present example (Figure 3.3) all of the test vectors
are of unit length and therefore each has a communality equal to I. In this case, all of
the variance in the tests is accounted for by the factors, so there is no specificity or error
variance in any of the tests. Therefore, this didactic example is both a PFA and a PCA.
The distinction between PCA and PFA arises when the tests’ variances include unique-
ness as well as common factor variance, making the tests” communalities less than unity.
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The distinction between PFA and PCA is that PFA analyzes only the common factor
variance of the tests, whereas PCA analyzes the tests’ total variance into orthogonal axes,
or components. (These may also be rotated in the same ways as principal factors,)
Therefore, tests” (squared) factor loadings in a PFA do not contain the tests specificity
or error variance. In.a PCA, each of the tests’ squared component loadings contains some
small part of the variance attributed to the tests” specificity and measurement error in
addition to their common factor variance. In principal components (PCs), the specificity
and error are rather evenly spread throughout all of the components, and because PCA
analyzes all of the variance in the tests, the number of components that can be extracted
is the same as the number of tests. In PFA, however, the number of factors will be less,
usually much less, than the number of tests, because only the common factor variance
enters into the analysis. Assuming that the PFA has been done properly and all of the
common factors have been extracted, the sum of the tests’ communalities indicates the
proportion of the total variance accounted for by common factors. The mathematical
procedures of PFA can be thought of as first separating the total variance into common
factor variance and unique variance and then performing a PCA on just the tests' common
factor variance.

For theoretical purposes, such as generatin(]] hypotheses about the factor structure of
a set of tests éas in “exploratory factor analysis™), there is no question that PFA is
preferable to PCA. But if one’s onlydpurpqse is to transform a set of n correlated variables
Into a set of n perfectly uncorrelated variables (i.e., principal component scores) which
retain the total variance of the original variables, then PCA is the proper method. PCA
is used in this manner in quantum mechanics and in other fields, where working with
uncorrelated variables is mathematically simpler than working with correlated variables.

Because each successive PC extracted accounts for a smaller Proportion of the total
variance, it is often possible to account for a large Proportion ot the total variance by
extracting many fewer PCs than the total number of tests without much loss of infor-
mation. Therefore, if one’s purpose does not demand the degree of precision that would
be afforded by the total variance in many tests, a relatively small set of PCs that will
account for some usefully large proportion of the variance can be used to obtain com-
ponent scores. For example, if scores on a battery of a dozen tests Lentered into a multiple
regression equation) are a good predictor of some criterion, a PCA may reveal that only
three components account for nearly all of the variance in the dozen tests and that the
simple sum of the (uncorrelated) PC scores (derived from the three PC? Fredicts the
criterion with nearly the same degree of accuracy as if one had used the full dozen test
scores in a multiple regression equation to predict the criterion. PCA is often used to
gain this kind of efficiency.

A PCA is often used preliminary to a PFA to determine the number of PFs that should
be extracted from a correlation matrix. This can be determined from the PCA in several
ways, which are discussed in textbooks of factor analysis. Probably the most commonly
used criterion is the Kaiser-Guttman rule: the number of factors should be equal to the
number of PCs with eigenvalues larger than L (When important theoretical issues are at
stake, it is usuaIIK advisable to ?et a consensus between the eigenvalues > 1 rule and
other criteria, such as R. B. CattelFs scree test and the Humphreys-Montanelli procedure,
which are described in most modern textbooks of factor analysis. The “number of fac-
tors” issue, however, is now most definitively settled by confirmatory factor anaIKsis,
implemented by the LISREL computer programs Hor references to this see Loehlin,
1992].) Eigenvalues (also termed latent rootsg), which are an inherent property of a cor-



12 I'he g Factor

relation matrix, are determined exactly bﬁ/ a PCA. PCs’ ei%envalues decrease rapidly in
size, from the first PC to the nth PC (where n is the number of tests = the number of
PC?. The logic of the Kaiser-Guttman rule is essentially this: Since each test’s stan-
dardized variance = 1, the total variance of the n tests in a correlation matrix is equal
to n, and the sum of the eigenvalues of all of the PCs extracted from a correlation matrix
= n. If the correlation matrix is random (i.e., the correlations are derived from random
numbers), there are of course no true common factors. If such a random correlation matrix
were subjected to a PCA, all of the resulting eigenvalues would be very close to 1; the
first few PCs would have eigenvalues just slightly greater than 1, due to small, purely
chance correlations; the remaining eigenvalues would be slightly less than 1. Therefore,
in factor analgzing a real, or nonrandom, correlation matrix, the eigenvalues of some of
the PCs will be considerably greater than 1, and the cutoff for the number of authentic
factors should be equal to the number of PCs with eigenvalues greater than 1



Chapter 4
Models and &haracteristics
g

The general factor, g, can be extracted from the correlation matrix
of a battery of mental ability tests by a number of different methods
of factor analysis and accordin% to different models of the factor
structure of abilities. Provided the number of tests in the analyzed
battery is sufficiently large to yield reliable factors and the tests are
sufficiently diverse in item types and information content to reflect
more than a single narrow ability, agi factor alwaﬁs emerges. The
only exception occurs when orthogonal rotation of the principal axes
is employed. That method expressly Erecludes_ the appearance of a
? factor. With ort_hogonal rotation, the g variance remains in the
actor matrix, but is dispersed among all of the group (or primary)
factors. This method of factor analysis (for which the most common
factor rotation method is known as varimax) is not aﬁpropriate to
anY domain of variables, such as mental abilities, in which substan-
tial positive correlations among all the variables reveal a large gen-
eral factor. _

Among the various methods of factor analysis that do not math-
ematicaIIY preclude the apﬁearance of g when it is actually latent in
the correlation matrix, a nierarchical model is generally the most
satisfactory, both theoretically and statistically. In a hierarchical
analysis, a number of correlated group factors (first-order factors)
are extracted first. The g factor then emer?es as a second-order factor
gor as a third-order factor in some very large and diverse batteries)
rom the correlations among the first-order factors (or among the
second-order factors when ¢ is at the third order).

The g factor is found to be remarkably invariant across all the
various methods of factor analysis except those that mathematically
preclude the appearance of a general factor.
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The g factor is found to be relatively invariant across different
batteries of diverse tests of mental ability. This fact justifies the
postulation of a true g (analogous to true score in classical meas-
urement theory), of which the g obtained in any empirical study is
an estimate. o o

The g factor is also found to be ubiquitous and relatively invariant
across various racial and cultural groups.

The form of the population distribution of% is not known, hecause
g cannot yet be measured on a ratio scale, but there are good the-
oretical reasons to assume that the distribution of g approximates
the_normal, or bell-shaped, curve. N

The g factor is ubiquitous in all mental ability tests, and tests’ g

loadings are a continuous variable, ranging from values that are
sllghtI_Y_ greater than zero on some tests to Values that are near the
reliability coefficient of some tests. _
_ Although certain types of tests consistently show higher g load-
ings than other tests, it is conceptually incorrect to regard charac-
teristics (e.g., relation eduction and abstract reasoning) of such tests
as the “essence” or “defining characteristic” of g. _

These features of tests may indicate the site of g, but not its
nature. Unlike the group factors, the g factor cannot be described in
terms of the item characteristics and information content of tests.
Nor is g a measure of test difficulty; a test’s g loading and its dif-
ficulty are conceptually separate. _

It 1s wrong to regard g as a cognitive process, or as an operatmgi
principle of the mind, or as a design feature of the brain’s neura
circuitry. At the level of psychometrics, ideally, dg m% be thought
of as a distillate of the common source of individual differences in
all mental tests, completely stripped of their distinctive features of
information content, skill, strategy, and the like. In this sense, g can
be roughly likened to a computer’s central Frocessing unit. The
knowledge and skills tapped by mental test performance merely pro-
vide a vehicle for the measurement ofg. Therefore, we cannot'begin
to fathom the causal underpinning of g merely by examining the
most hl%hly -loaded psychometric tests. At the level of causality,
g is perhaps best regarded as a source of variance in performance
associated with individual differences in the speed or efficiency of
the neural processes that affect the kinds of behavior called mental
abilities (as defined in Chapter 3).

The previous chapters have demonstrated the essential basis of the g revealed
by factor anal¥3|s—the correlations between mental tests of every kind are all
positive. But factor analysis also reveals other factors, although they are less



Models and Characteristics of a 75

general than g. The most general are the second-order group factors. The first-
order, or primary, factors are of still lesser generality.

The terminology “models” of g refers to the different ways that the rela-
tionship between g and the other factors can be represented. Each representation
is derived from the factor analysis of the matrix of correlations among a variety
of tests. Critics of ¢ argue that, because there are different methods for factor
analyzing a correlation matrix, these differing methods, even when applied to
one and the same matrix, necessarilr yield quite different factors, including
different g factors, or even no ¢ at all. _

If this criticism were true, and esgecially if there were no theoretically com-
pelling basis for Rref_errmg one of the various methods of factor analysis over
the others, then the importance of g as a scientific construct would Surely be
questionable, at least insofar as g is determined by any type of factor analysis.
Indeed, if the data supported this criticism, I would not have written this book.
The counterargument against the criticism, however, is technically quite com-
plex and has two parts—the mathematical principles underlying factor analysis
(or the related technique of principal components analysis [see Chapter 3, Note
13]) and the empirical evidence from a wide variety of studies of human per-
formance.

With the help of experts on the mathematical foundations of factor analysis,
| examined this issue in detail and reported the results in a lengthy technical
editorial in the journal Intelligence." The conclusions can be explained fairly
simply, however, with the aid of some _dlaglrams. _ _

he Spearman Model. This is the simplest possible factor structure (Figure
4.1). The nine variables (VI through V9) in the factor analysis are tests and u
is the variable’s correlation with whatever the variable measures uniquely, that
is, whatever the variable measures that is not measured by any of the other
variables in the factor analysis. (This quantltm « termed the variable’s unique-
ness consists of specificity + random error.) We see that g is in all nine Vs and
is the only factor that they have in common. It is possible to find sets of a
relatively small number of mental tests that, when factor-analyzed, conform to
this simple model of a single common factor. This is not generally the case,
however. Spearman’s method of factor analysis (which is now obsolete) can
extract a groper g from such a set of tests, and so can other, more modem
methods. The disadvantage of Spearman’s method is that if his tetrad criterion
shows that more than one common factor exists in the tests, his method of factor
analysis will not work.2 If used, it gives an incorrect g. The degree of incor-
rectness depends on the nature of the matrix to which it is applied.

The Thurstone Model. This is a multifactor model (see Figure 4.2).

As shown here it has three group factors, without any general factor common
to all of the variables. The method used to estimate the factors in Thurstone’s
model is typically principal factor analysis with orthogonal rotation of the factor
axes to simple structure. The most widely used method of rotation is Kaiser's
varimax criterion, which tries to achieve simple structure by orthogonal rotation
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Figure 4.1. Spearman Model. The simplest possible factor model: A single general
factor, originally proposed by Spearman as a two-factor model, the two factors being the
general factor (g) common to all of the variables (V) and the “factors” specific to each
variable, termed specificity (s). Each variable’s uniqueness («) comprises 5 and measure-
ment error. (From Jensen & Weng, 1994. Used with permission of Ablex.)

of the factor axes to a position that maximizes the variance of the squared factor
loadings on each factor. This has the effect of giving each test a large loading
on only one of the first-order factors and small Ioadin?s on all of the other first-
order factors. The following idealized hypothetical factor matrix illustrates a
perfect simple structure of orthogonal (uncorrelated) factors, in which all of the
variance on a given test is explained by a single factor.

Tests Factors
1n
a 10 0
b 10 0
¢ 10 0
d 0 10
¢ 0 10
f 0 10
0 0 0 1
h 0 0 1
i 0 0 1

This orthogonal simple structure model, it turns out, has proved inappropriate
in the abilities domain, and in fact Thurstone (1931) himself early on used
oblique rotation of the factor axes to achieve the best possible approximation to
simple structure. (Oblique factors are correlated with each other.f He only sub-
sequently advanced orthogonal rotation to avoid some of the complications as-
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Figure 4.2. Thurstone Model. A multiple-factor model with three independent group
factors (FI, F2. F3), without a g factor common to all of the variables—a model origi-
nabliy groposed by Thurstone. (From Jensen & Weng, 1994. Used with permission of
Ablex.

sociated with obligue rotation. But it was apparent that, in the abilities domain,
a good fit of the data to a simple structure model could not be achieved with
orthogonal rotation, because a general factor permeates all of the primary abil-
ities. Orthogonal rotation would achieve simple structure only if Thurstone’s
original theory were true. (That is the theory that mental ability consists of a
number of distinct, uncorrelated abilities represented by the primary factors, and
that there is no general factor in the abilities domain.) But that theory has long
since been proven false. Thurstone assiduously attempted to devise tests that
would provide factor-pure measures of what he called the primary mental abil-
ities revealed by his method of multiple factor analysis/ But it proved impos-
sible to devise a test that was a pure measure of any primary factor. In samples
of the general population, Thurstone’s tests of the “primary mental abilities”
always showed quite large correlations with each other. This was because they
all measured g in addition to whatever “primary ability” they were intended to
measure as purely as possible. The primary abilities were not pure at all. Al-
though it was possible to devise tests that would measure any one of the primarr
mental abilities and no other primary ability, the test always measured g as well.
And usually the test’s g variance was larger than the variance of the particular
primary ability factor it was specially devised to measure. In other words, g
accounted for'more than the primary ability. Thurstone therefore returned to his
earlier position and proposed oblique rotation of the primary factor axes to
achieve the best possible approximation to simple structure. The correlations
between the primary factors could then be factor analyzed to yield g as a higher-
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Figure 4.3. Bifactor Model. Each variable (VL is loaded on one of the three group
factors (F) and is also loaded on g, but the variables’ g loadings are not constrained by
their loadings on the group factors (as in the case of the hierarchical model); variables’
correlations with F and with g are independent of one another. (From Jensen & Weng,
1994, Used with permission of Ablex.)

order factor. This method is known as a hierarchical factor analysis. But before
we discuss it, there is one other model that should be considered.

The Bifactor Model. This model was proposed by Karl Holzinger, a student of
Sﬁearman’s, who later became a professor in the University of Chicago, where
Thurstone was also a professor. Holzinger’s method of bifactor analysis, in effect,
combines the Spearman model with the Thurstone model. It yields both Spear-
man’s g factor and Thurstone’s group factors, but without deriving g from the cor-
relations among the obliquely rotated primary factors. The procedure consists
essentially of first extracting g from the correlation matrix in such a way as to
leave all-positive correlations In the residual matrix ?.e., the correlation matrix af-
ter the g factor has been removed). With g removed from the correlation matrix, a
Thurstone-type of factor analysis (or a principal factor analysis) can then obtain
quite clean-cut orthogonal ﬁnmary factors that closely conform to simple struc-
ture. The bifactor model, shown In Fi?ure 4.3, therefore reveals both g and the
group (or primary) factors, which are all orthogonal to each other.4

The Orthogonalized Hierarchical Model. As this has become the generally
preferred model, it should be ex_i)llcated in somewhat more detail than the others.5
An actual correlation matrix will be subjected to a hierarchical analysis to illus-
trate how it works. The hierarchical model is shown in Figure 4.4 in terms of nine
variables (VI through VQ?, three first-order factors (FI, F2, F3), and the second-
order factor, g. The correlation matrix that has been subjected to the hierarchical
analysis is shown in Table 4.1. The end result of the computational procedure
(Schmid-Leiman, 1975) is thefactor matrix shown in Table 4.2, N

The correlation matrix (Table 4.1) simply shows the correlation coefficients
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Figure 4.4. Hierarchical Model. The first-order factors (F) are correlated, giving rise to
a second-order factor, g. Variables (V) are correlated with L? only via their correlation with
the three first-order factors. (From Jensen & Weng, 1994. Used with permission of Ablex.)

of every variable with every other variable. The factor matrix (Table 4.2) shows
the loadings of each of the nine variables on g and on each of the three first-
order factors. Here we see a perfect simple structure of the first-order factors.
Variables VI, V2, and V3, for example, measure only g + FI, with zero load-
ings on F2 and F3; variables V4, V5, and V6 measure only g + F2; and so on.
The communality (h2) is the proportion of the variable’s total variance that is
attributable to the common factors; it is the sum of the variable’s squared factor
loadings on g and the first-order factor(s) [e.?., (.72)2 + (,3487)2 = .64], The
uniqueness (u2) is the variance not accounted for by common factors. It consists
of specific variance and error variance. The sum of h2and u7 for each variable
is the variable’s total standardized variance and therefore must equal 1 The
bottom of Table 4.2 shows the variance of each factor (i.e., the sum of the
squared factor loadings) and (in the final row) the percentage of the total vari-
ance on all of the variables that is attributable to each factor.

Typically, g accounts for a larger proportion (i.e., a higher percentage) of the
total variance than any other factor and often accounts for more of the variance
than all of the other factors combined. The sum of the communalities (3.36, or
37.33% of the total variance) is relatively small and indicates that these variables
possess a high degree of uniqueness, which accounts for 62.67% of the total
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Table 4.1 . _ _ .
Correlation Matrix" for Hierarchical Factor Analysis

VARIABLES
\ V2 V3 \Z V5 V6 V7 V8 Vo

\ 5600 4800 4032 3456 2880 3024 2520 2016
V2 5600 4200 3528 3024 2520 2646 2205 1764
V3 4800 4200 3024 2592 2160 2268 1890 1512
V4 4032 3528 3024 4200 3500 2352 1960 1568
V5 3456 3024 2592 4200 3000 2016 1680 1344
V6 2880 2520 2160 3500 3000 1680 1400 1120
\'4 3024 2646 2268 2352 2016 1680 3000 2400
\% 2520 2205 1890 1960 1680 1400 3000 2000
Vo 2016 1764 1512 1568 1344 1120 2400 2000

"Decimals omitted.

variance in these variables. (Since we do not know the reliability coefficients of
these nine variables, we cannot determine how much of the uniqueness for each
variable consists of specificity and how much consists of error.% .

From the information given in Table 4.2, it is possible to calculate the direct
(nonresidualized) correlation coefficients shown alongside each of the arrows in
FiFure 4.4. For example, g is correlated .9 with FI, and FI is correlated .8 with
VI. The correlation between VI and % therefore, is the groduct_ of the two
correlations that connectzg with VI, that is, 8 X .9 = .72, which is the g
loading of VI. VI and V2 are connected only by FI, so their correlation is .
X .7 = .56. But VI and V4 are connected by Fl, % and F2, so the correlation
between VI and V4 is [ 8 x .9* xd[,8 X .7] = .4032. (The correlations hetween
the first-order factors are calculated the same way; for example, FI and F2 are
correlated .9 x 8 = _.72.%_ _ o

We could ?roceed in this way to reconstitute all of the correlations in Table
4.1 from the factor structure shown in Table 4.2 and Figure 4.4.61t can be done
with perfect exactitude here, because this correlation matrix was specially made
up for this demonstration. In reality, the reconstituted matrix always shows slight
random deviations from the exact values of the original correlation matrix. If
the factor analysis was done properly, the residual matrix (i.e., the matrix of
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Table 4.2
Factor Matrix for Orthogonalized Hierarchical Model

Factor Loadings

2nd Order First Order Communality  Uniqueness
Variable £ FI P2 F3 hJ
Vi .72 3487 O 0 &4 .36
V2 .63 3051 O 0 .49 51
V3 A 2615 O 0 .36 &4
\Z .56 0 A2 0 49 51
V5 48 0 .36 0 .36 &4
V6 40 0 .30 0 25 7B
V7 A2 0 0 4284 .36 &4
V8 .35 0 0 -3570 .25 .7
Vo .28 0] 0 2856 .16 84
Var . 2.2882 .283 3%  .3925 3.36 5.64
% Var. 25.42 3.15 4.40 4.36 37.33 62.67

original correlations minus the matrix of reconstituted correlations) would con-
sist of only the test specificity and random error.

HOW INVARIANT IS g ACROSS DIFFERENT METHODS OF
FACTOR ANALYSIS?

~This is one of the crucially important questions in our present inquiry. Ob-
viously the simplest way to answer it is to simulate a variety of correlation
matrices that are similar to those found for actual mental test data but for which
we alread?/ know the true factor structure exactly, and then see how accurately
different factor analytic models and methods can estimate7 the “true” factors
known to exist in these artificial matrices.

This is just what I did, in collaboration with Dr. Li-Jen V_Ven%, at that time a
postdoctoral research scholar at the Umversﬂr of California, erkele?/,. and a
specialist in factor analysis and mathematical statistics. Besides applying six
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different methods of factor analysis to four simulated matrices for which the
factors were exactly known, we also applied nine different methods of factor
analysis to a real correlation matrix based on twenty-four tests administered to
145 students in grades 7 and 8. Of course, we used no type of factor analysis
that is expressly designed to preclude the appearance of a general factor (such
as orthogonal rotation of the primary factorsf. We were concerned here exclu-
sively with the amount of variation in the g factor when it is extracted by the
various methods most commonly described in modern textbooks of factor anal-
sis.

y Since we knew exactly the true g loadings of the variables in the artificial
correlation matrix (because we had initially generated the correlation matrix
from the “true” factor loadings), it was simply a matter of comparing these
true loadings with each of the various sets of ¢ loadings extracted from the
artificial matrix by the six different methods of factor analysis. A set of factor
loadings (such as the ones shown previously in the columns of Table 4.2) is
called a column vector. We compared the column vector of true % loadings with
the column vector of the g loadings obtained by each method of factor analysis.
The degree of similarity of the two vectors was measured by the coefficient of
congirue_nce8 (rc) between the two vectors. The amount of discrepancy between
the loadings was measured hy the average absolute difference between the true
and obtained g loadings (calculated as the root mean square difference).9

The result of this analysis was that every one of the methods of factor analysis
estimated the true g so closely that there was hardlﬁ any basis for choosing
between them. The congruence coefficients between the true g factor and the g
factor obtained by the various methods ranged from +.997 to +.999, with an
average of +.998. This is especially remarkable because some of the artificial
matrices were specifically designed to “trick™ particular methods into yielding
estimates that would deviate markedly from the true values, for example by
simulating tests of highly mixed factor composition (e.g., each test having sub-
stantial loadings on all of the primary factors). The root mean square difference
between the true ¢ and the estimated g averaged .047 (rangin% from .031 to
059) for the various methods, which is negligible compared to the average size
of the factor loadings (about .50). In brief, when estimating the true g, the
various factor analytic methods were all remarkably and similarly robust and
arrived at estimates that deviated very little from the true values.

For the real data obtained on twenty-four tests administered to students, of
course, we do not know the true g, but we can compare the estimates of it
obtained from ten different methods of factor analyses. Given the results of the
previous analyses of artificial correlation matrices, finding a high deFree of
agreement among the ten column vectors of g loadings based on a real corre-
lation matrix would permit the reasonable inference that the hypothetical true g
for the matrix was closely approximated by all of the various factor analytic
methods. Again, we found remarkably high agreement. The forty-five congru-
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ence coefficients between the ten g vectors ranged from +.991 to 1.000, aver-
aging +.995,

Another studyi, conducted at Brooks Air Force Base with 9,173 recruits,
investigated the invariance of g obtained from the ten tests of the Armed Serv-
ices Vocational Aptitude Battery (ASVAB). The ASVAB was factor analyzed
by 14 different methods, and g factor scores for every subject were calculated
from the results of each of the 14 methods. The average correlation between
the 14 sets of g factor scores was 984, indicating that the different methods of
factor analysis resulted in very little variation among the obtained ¢ factors.

The gist of these various analyses is that whatever variation exists among the
myriad estimates of ¢ that have been reported since the beginning of factor
analysis, exceedingly little of it can be attributed to differences in the methods
of factor analysis employed. However, there are several other possible sources
of deviance of an obtained g.

STATISTICAL SAMPLING ERROR

The size of g, that is, the proportion of the total variance that g accounts for
in any given battery of tests, depends to some extent on the statistical charac-
teristics of the group tested (as compared with a large random sample of the
general Bopulation). Most factor analytic studies of tests reported in the literature
are not based on representative samples of the general population. Rather, sub-
ject samples are usually drawn from some segment of the population (often
college students or military trainees) that does not display either the mean level
of mental ability or the range of mental ability that exists in the total population.
Because g is by far the most important ability factor in determining the aggre-
gation of people into such statistically distinguishable groups, the study groups
will be more homogeneous in g than in any other ability factors. Hence when
the g factor is extracted, it is actually smaller than it would be if extracted from
data for the general population. Relative to other factors, % IS typicallr under-
estimated in most studies. This is especially so in samples drawn from the
students at the most selective colleges and universities, where admission is hased
on such highly g-loaded criteria as superior grades in high school and high
scores on scholastic aptitude tests.

Many factor analytic studies have been based on recruits in the military, which
is a truncated sample of the population, with the lower 10 percent (i.e., 1Qs
below 8(? excluded by congressional mandate. Also, the various branches of
the armed services differ in their selection criteria based in part on mental test
scores (rejecting the lowest-scoring 10 to 30 percent), with consequently differ-
ent range restrictions of g.

The samples most representative of the population are the large samples used
to standardize most modern 1Q tests and the studies of elementary schoolchildren
randomly sampled from urban, suburban, and rural schools. Because the dropout
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rate increases with grade level and is inversely related to 1Q, high school stu-
dents are a somewhat more *-restricted sample of the general population.

_ A theoretically interesting phenomenon is that g accounts for less of the var-
lance in a battery of tests for the upﬁer half of the population distribution of 1Q
than for the lower half, even though the upper and lower halves do not differ
in the range of test scores or in their variance.1L1The basis of g is that the
correlations among a variety of tests are all positive. Since the correlations are
smaller, on average, in the upper half than In the lower half of the 1Q distri-
bution, it implies that abilities are more highly differentiated in the upper half
of the ability distribution. That is, relatively more of the total variance consists
of group factors and the tests’ specificity, and relatively less consists of g for
the upper half of the 1Q distribution than for the lower half. (For a detailed
discussion of this phenomenon, see Ap{)endlx A) _

Specificity (s) is the least consistent characteristic of tests across different
factor analyses, because the amount of specific variance in a test is a function
of the number and the variety of the other tests in the factor analysis. Holding
constant the number of tests, the specificity of each test increases as the variety
of the tests in the battery increases. As variety decreases, or the more that the
tests in a battery are made to resemble one another, the variance that would
otherwise constitute specificity becomes common factor variance and forms
group factors. If the variety of tests in a battery is held constant, specificity
decreases as the number of tests in the battery is increased. As similar tests are
added, they contribute more to the common factor variance (g + group factors),
leaving less residual variance (which includes ﬁ)ecificity).

As more and more different tests are included in a battery, each newly added
test has a greater chance of sharlnP the common factor variance, thereby losing
some of its specificity. For ex_ami) e, if a battery of tests includes the ubiquitous
g and three group factors but includes only one test of short-term memory (e.g.,
digit span), that test’s variance components will consist only of g plus s plus
error. If at least two more tests of short-term memory (say, word span and
repetition of sentences) are then added to this battery, the three short-term mem-
ory tests will form a group factor. Most of what was the digit span test’s specific
variance, when it stood alone in the battery, is now aggregated into a group
factor (composed of digit span, word span, and repetition of sentences), leaving
little residual specificity in each of these related tests.

Theoretically, the only condition that limits the transformation of specific
variance into common factor variance when new tests are added or existing tests
are made more alike is the reliability of the individual test scores. When the
correlation between any two or more tests is as h|?h as their reliability coeffi-
cients will allow (the square root of the product of the tests’ reliability coeffi-
cients is the mathematical upper bound), they no longer (1ua[ify as separate tests
and cannot legitimately be used in the same factor analysis to create another

roup factor. A group factor created in this manner is considered spurious. But
there are also some nonspurious group factors that are so small and inconsis-
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tently replicable across different test batteries or different population samples
that they are trivial, theoretically and practically.

PSYCHOMETRIC SAMPLING ERROR

How invariant is the g extracted from different collections of tests when the
method of factor analysis and the subject sample remain constant? There is no
method of factor analysis that can yield exactlr the same g when different tests
are included in the battery. As John B. Carroll (19933, p. 596% aptly put it, the
g factor is “colored” or “flavored” by its ingredients, which are the tests or
primary factors whose variance is dominated by g. The g is always influenced,
more or less, by both the nature and the variety of the tests from which it is
extracted. If the g extracted from different batteries of tests was not substantially
consistent, however, g would have little theoretical or practical importance as a
scientific construct. But the fact is that g remains quite invariant across many
different collections of tests.

It should be recognized, of course, that in factor analysis, as in everr form
of measurement in science, either direct or indirect (e.%., throu?h Iogica infer-
ence), there are certain procedural rules that must be followed it valid measures
are to be obtained. The accuracy of quantitative analysis in chemistry, for ex-
ample, deﬁends on_usm% reagents of standardized purity. Similarly, in factor
analysis, the extraction of g depends on certain requirements for proper psycho-
metric samglmg.

The number of tests is the first consideration. The extraction of g as a second-
order factor in a hierarchical analysis requires a minimum of nine tests from
which at least three primary factors can be obtained.

That three or more primarﬁ factors are called for implies the second require-
ment: a variety of tests (with respect to their information content, skills, and
task demands on a_varlet¥ of mental operations) is needed to form at least three
or more distinct primary factors. In other words, the particular collection of tests
used to estimate g should come as close as possible, with some limited number
of tests, to being a representative sample of all types of mental tests, and the
various kinds of tests should be represented as equally as possible. If a collection
of tests appears to be quite limited in varietg, or is markedly unbalanced in the
varieties 1t contains, the extracted g is probably contaminated by non-g variance
and is therefore a poor representation of true .

If we factor-analyzed a battery consisting, say, of ten kinds of numerical tests,
two tests of verbal reasoning, and one test of spatial reasoning, for example, we
would obtain a quite distorted g. The general factor (or nominal g) of this battery
would actually consist of g plus some sizable admixture of a numerical ability
factor. Therefore, this nominal g would differ considerablﬁ from another nom-
inal g obtained from a battery consisting of, say, ten verbal tests, two spatial
reasoning tests, and one numerical test. The nominal %of this second battery
would really consist of g plus a large admixture of verbal ability.
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The froblem of contamination is especially significant when one extracts ¢
as the first factor {PFl) in a principal factor analysis. The largest PF1 Ioa_dinﬁs
that emerge are all on tests of the sz_ime_t?/pe, so a marked imbalance in the
types of tests entering into the analysis will tend to distort the PF1 as a repre-
sentation of g. If there are enough tests to permit a proper hierarchical analysis,
however, an imbalance in the variety of tests is overcome to a large extent by
the aggregation of the overrepresented tests into a sm%le group factor. This
factor then carries a weight that is more equivalent to the other group factors
which are based on fewer tests), and it is from the correlations among the group
actors that the higher-order g Is derived. This is one of the main advantages of
a hierarchical analysis. _ '

~ Empirical Estimates of the Consistency of g across Different Test Batter-
les. How consistent is the fg loading of a given mental test when it is factor
analyzed among several different sets of tests when both the method of analysis
and the subject sample are held constant? This important question has received
surprisingly little empirical investigation. In his encyclopedic survey of factor
analytic studies, Carroll (1993a, pp. 591-597) examined 153 hierarchical g load-
ings in 142 data sets and surmised that “if it were possible to obtain factor
scores for each of these factors in some appropriate population, these factor
scores might be highly correlated, es?emally after correction for attenuation. But
it is unlikely that they would be ﬁer ectly correlated, because the g factor for a
given data set is dependent on what lower-order factors or variables are loaded
on it” (F. 5963.

Carroll made no attempt to estimate the size of the average correlation be-
tween the g I_oadin?s of a given variable when obtained in different test hatteries,
and | can think of no way of doing so from the available data. Many of the
data sets that he reviewed were not intended to meet the psychometric sampling
criteria (i.e., variety and balance) needed to obtain a good g. My estimate of
the standard deviation of the g factor loadings of a given variable obtained in
these data sets is about .08. This value is only about one-sixth the average size
of the loadings themselves, which indicates a considerable degree of consistency
of a variable’s dg loadings across different data sets. In other words, approxi-
mately two-thirds of a variable’s g loadings in these various data sets falls within
.08 of the overall average g loading for that variable.

A much more ideal determination of the consistenc%/ of 3 across different data
sets was obtained by the Egychometrician Robert L. Thorndike (1987), in a study
expressly dey?ned for this I:purpose. Thorndike began with 63 highly diverse
tests used by the U.S. Air Force. From 48 of these tests, he formed six non-
overlapping batteries, each composed of eight randomly selected tests. The 17
remaining “probe” tests were inserted, one at a time, into each of these six
batteries. Thus each of the six batteries was factor-analyzed 17 times, each time
with a different one of the 17 probe tests. (Principal factor analysis was used;
g was represented b%/ the first principal factor.) The six g loadings obtained for
each of the 17 probe tests were then compared against one another. The ¢
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loadings for any given test proved to be highly similar across all six batteries,
although the average g loadings of the different tests varied considerably. The
average correlation between g loadings across the six batteries was .85. If each
battery had contained more tests from the same general test pool, it is a statistical
certainty that the average cross-battery correlations between g loadings would
have heen even h|gher.

Thorndike’s finding, which is consistent with Carroll’s surmise, constitutes
strong evidence that a very similar g emerges from most collections of diverse
cognitive tests. This analysis also indicates that the invariance of g across test
batteries does not depend on their having “identical elements” &m the sense of
elements of test con_tent% in common. Even hi hl?/ digsimilar tests (e.g., vocab-
uliry and block designs) have comparably high loadings on one and the same
g factor.

The Concept of a “True” g. Just as we can think statistically in terms of
sampling error of a statistic when we randomly select a limited group of subjects
from a population, or of measurement error when we obtain a limited number
of measurements of a particular variable, so too we can think in terms of psy-
chometric sampling error in factor analysis. In making up anY collection of
cognitive tests, we do not have a perfectly representative sample of the entire
universe of all possible cognitive tests. So any one limited sample of tests will
not yield exactly the same g as another limited sample. The sample values of g
are affected by subject samﬁlmg_error, measurement error, and psychometric
samglmg error. But the fact that tg Is very substantially correlated across different
test hatteries implies that the differing obtained values of g can all be interpreted
as estimates of a true (but unknown) g (in the same sense that, in classical test
theory, an obtained score is viewed as an estimate of a true score).2
~Cross-Cultural and Cross-Racial Consistency of g. Here we are not refer-
nnH to differences between groups in the average level of g factor scores, but
rather to the similarity of the g factor obtained when different groups are given
the same battery of tests. Most of the relevant studies have been reviewed and
referenced elsewhere.In| The general finding, even when quite disparate cultures
are included (e.g., North America, Euroge, and various Asian and African sub-
populations), is that there is a remarkable degree of consistency in the factor
structure across different racial and cultural groups. All-positive correlations
amonq ability tests, a large g factor, and most of the well-established primary
mental abilities all show up in virtually every cross-cultural factor analysis. The
g factor is certainly the most ubiquitous and invariant feature of all these anal-
ySEs, . o _— L

The precise degree of cross-cultural similarity of g in highly dissimilar cul-
tures, measured by correlations or congruence coefficients, depends considerably
on the particular combination of tests factor analyzed. We know, for example,
that the Japanese translation of the Wechsler scales given to large samples of
the population in Japan shows a g whose congruence coefficient with the g
obtained in the American standardization sample 1s so high (+.99) as to indicate
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virtual ide_ntit%_.]létl The congruence coefficient between two large Japanese sam-
Bles (in Hiroshima and Nagasaki) was also +.99. Many studies, based on various
atteries of tests, have shown a similarly high degree of congruence, or even
virtual identity, between the g factors obtained in large samples of the black
and white poL)uIanons in the United States. The white and black standardization
samples for the Wechsler Intelligence Scales for Children (WISC), for example,
show a g congruence of +.995.18 (The Verbal, Performance, and Memory
factors, independently of g, were almost as congruent as g.) The ﬁercentages of
the total WISC variance accounted for by g in the black and white standardi-
zation samples were 31.7 and 29.7, respectively; a trivial difference.

THE FORM OF THE POPULATION DISTRIBUTION OF g

The form of the population distribution of g as a measure of individual dif-
ferences is not known, and at present there is no way of determining it. The
form of a distribution can be known directly only if the raw measurements of
the variable constitute a true ratio scale, and the measurement of individual
differences in g is based on a weithed composite of mental test scores, which
are not a ratio scale. There are plausible reasons, however, for assuming that
individual differences in g have an approximately normal, or Gaussian ("~ bell-
shaped”), distribution, at least within the range of +20 from the mean. That
range is e(1un/_a|_ent to !(%s from 70 to 130 on the trpm.a! 1Q scale (i.e., a = 100,
G = 15). Individual differences in general mental ability are usually measured
by some test or combination of tests that are hi?hly g loaded, and such tests are
Burpose_ly constructed to have an approximately normal or bell-shaped distri-

ution in the standardization population. Although the normal distribution of
test scores is usually accomplished by means of certain psychometric artifices,
it has a quite defensible rationale. _ _

The ¢ factor as a theoretical construct will probably never be measured in
individuals as simply and directly as we can measure a person’s height with a
ruler. However, a rigorously testable and empirically substantiated theory of%
would itself dictate the form of its population distribution, and our empirica
measures of g can then be scaled so as to yield such a distribution. The necessary
kinds of experimental research and theory devel%:ment have been taking _shaﬁe
rap|dI?/ in recent years (see Chapters 6 and 8). One major development is the
use of mental chronometry in psychometric theory and research, that is, using
real time as the fundamental scale for the measurement of mental ability.

THE RELATION OF g TO 10 AND SIMILAR TESTS OF ABILITY

The term intelligence quotient (1Q) refers to a score on a test that has certain
characteristics. The test’s raw score distribution has typically been standardized
in a large random or representative sample of a certain specified population.
The standardization is done within narrow age intervals, so that the standardized
scores, called 1Q, will have the same mean and standard deviation (SD) at every
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age level. 1Q is conventionally scaled to a mean of 100 and a SD of 15. The
form of the 1Q distribution closely approximates the normal curve within the
range of + 2.5 SD of the mean, _ _ _

he chief characteristic of 1Q tests, from Binet on, is that they all are highly
g loaded. This is true even when the test constructors never used factor analysis,
or even had g in mind, or even disbelieved in the existence of g. The purely
pragmatic, criterion-oriented process of composing and selecting those test items
that, in combination, show the largest range of individual differences in the
population also shows the highest predictive validity for a broad variety of
practical criteria. The attainment of these psychometric desiderata unavoidably
results in a test that is highly g loaded. _ _

The first “1Q test” (the term “1Q,” however, had not yet come into being)
was invented by Binet in 1905. It was highly g loaded, even though, at the time,
Binet had never heard of factor analysis or of g. Twenty years before Binet, the
German psychologist Hermann Ebbinghaus (1850-1909) invented a “sentence
completion” test ((lthe testee fills in an omitted word to make sense of the sen-
tence). Scores on the test agreed with teachers'dudgments of pupils” “bright-
ness.” Sentence completion has since heen found to be among the most highly
g-loaded tests.
~ After innumerable factor analyses had clear!z established what types of test
items are most g loaded, test constructors delinerately composed and selected
items s0 as to maximize the g-ness of their 1Q tests. The most *-loaded items
are those that involve some form of inductive or deductive reasoning (I|.e., Spear-
man’s “eduction of relations and correlates”{, problems that involve spatial
visualization, quantitative reasoning, and verbal knowledge and reasoning (such
as word meanings, distinctions between related words, antonyms-synonyms, ver-
bal analogles, and reading comprehension). The best g items make minimal
demands for specialized or esoteric knowledge. _ _

One may wonder why tests of vocabularg/_ and of general information are
typically found to be highly g loaded when subjects have had similar opportunity
to acquire vocabulary and many bits of general information. The reason is that
most words in a person’s vocabulary are learned through exposure to them in
a variety of contexts that allow inferences of their meaning by the “eduction of
relations and correlates.” The higher the level of a person’s g, the fewer en-
counters with a word are needed to correctly infer its meaning. Therefore, over
a period of years, the amount of vocabulary acquired by adolescence shows
large individual differences, even between full siblings brought up together.
These _3|tgn|f|cant_d|fferences in vocabulary are highly correlated with compa-
rable differences in g-loaded tests that have no verbal content. A vocabulary test
that is factor-analyzed in a battery made up exclusively of nonverbal tests still
shows a large g loading. The same is true of tests called “general information.”

Another characteristic of most IQ tests is that the types of items that serve as
media or vehicles for relation eduction are rather evenly balanced among verbal,
spatial, and numerical (or other) contents. This serves, in effect, to “average
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out” the group factors associated with these differing types of content and al-
lows most of the variance in the total score to represent a g that is relatively
uncontaminated by group factors. The 1Q obtained from such tests, therefore, is
a quite good, though slightly diluted, stand-in for g.

A very few nonverbal, nonspatial visualization, and nonnumerical tests %such
as Raven’s Progressive Matrices and Cattell’s Culture-Fair Test of g), which are
based entirely on f|3ural materials, have been expressly devised to maximize
relation eduction and to minimize group factors. When factor analyzed among
a wide variety of other tests, theX do, in fact, have among the highest g Ioadm%s,
and they usually have nonsignificant loadings on any less general factors. The
Raven Matrices is sometimes moderately loaded on a broad spatial group factor,
but always far less than on the g factor. Also, the Raven has some specificity
ES to 10 percent) arising most probably from the matrix format of all its items,
attell’s test largely “averages out” ‘such specifics by including a variety of
figural item types. o o

The g Loading of 1Q Tests. Here it is important to distinguish between two
things: (1) the proportion of the total variance attributable to dg when we factor
analyze the set of various subtests that compose the 1Q test, and (2) the g loading
of the 1Q itself (derived from the total of the standardized scores on all of the
subtests) when the 1Q is factor-analyzed among a large collection of diverse
cognitive tests. _ _ _

L Probably the most typical example is the Wechsler Intelligence Scale for
Children (WISC) and for Adults (WAIS). The Wechsler battery consists of
twelve subtests (Vocabulary, Similarities, Information, Comprehension, Arith-
metic, Digit Span, Digit S)émbol, Picture Completion, Block Design, Picture
Arrangement, Object Assembly and Mazes). When this battery is factor anaIYzed
in various age groups of the standardization population, the percentage of the
total variance in all the subtests accounted for by % averages about 30 percent
in a hierarchical analysis and about 37 percent when ¢ is represented by the
first principal factor. The a\_/erage_percen_ta%e of variance accounted for by each
of the three group factors in a hierarchical analysis is: Verbal 6 percent, Per-
formance (largely spatial ability) 6 percent, and” Memory 4 Eercent. Some 40
percent of the total variance is specific to each subtest, and about 10 percent is
measurement error (unreliability). The g factor scores obtained from the whole
Wechsler battery are correlated more than .95 with the tests’ total score (called
Full Scale 1Q). With such a high correlation between the factor scores and the
1Q scares, it Is pointless to calculate factor scores.T

2. Factor analyses of the composite scores (or 1Qs) of a number of standard
1Q tests are exceedingly rare, because the total 1Q is an amalgam of various
factors that does not lend itself to factor analysis with much expectation of
finding more than one significant factor, namely, g. Also, it is rare that more
than two or three 1Q tests are administered to a sample large _enou?h to allow
a proper factor analysis. Such a large study, which promises a virtually foregone
conclusion yielding no new information of theoretical interest or practical use,
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would hardly justify the effort. However, one can make a good estimate of the
g loadings of 1Q tests from the correlations between various 1Q tests reported
in the literature, even when no more than two or three tests were administered
fo the same_samgle. | have summarized many such correlations elsewhere.1S
The correlations between various IQ tests average about +.77. The square root
of this correlation (/T7 = .88) is an estimate of the average % loading of 1Q
tests, since the correlation between two tests is the product of their factor load-
ings. This value (.882 is an overestimate of the avera?e g loading if it is assumed
that various pairs of tests also have certain group factors in common (for ex-
ample, two purely verbal 1Q tests). If we look at just those tests that apB_ear 0
have no grouF factors in common %% the Raven and the Peabody Picture
VocabularY), he average correlation between them is +.69, which estimates an
averag_eg oading of /69 = 83. It would seem safe to conclude that the average
g loading of 1Q as measured by various standard IQ tests is in the +.80s.

So-called aptitude tests used in selection for employment, training programs,
and college admissions, such as the General Aptitude Test Battery (GATB), the
Armed Services Aptitude BatterY (ASVABR, and the Scholastic Assessment Test
(SAT), are nearly as highly g loaded as [Q tests. For example, the GATB G
score (a composite of verbal, numerical, and spatial tests) has an average cor-
relation of +.76 with various 1Q tests, suggesting an average g loading of .87.
Aptitude tests, however, tyfically include 1tems of scholastic knowledge or job
information intended to reflect educational attainments or work skills relevant
to the criteria the test is designed to predict (such as scholastic performance, or
job performance, or success in a traning program for a particular job). These
sources of variance tend to dilute the test’s g loading if the item content merely
requires direct recall of information without involving relation eduction. The
more similar the educational background of the persons tested, however, the
larger is the proportion of g variance in their scores on such tests. Those higher
on g will have acquired more knowledge and skills from the same amount of
schooling or work experience than persons who are lower on g.

SOME COMMON MISCONCEPTIONS ABOUT ¢

g Cannot Be Described in Terms of Test Characteristics. Unlike group
factors, g cannot be described in terms of the superficial characteristics or in-
formation content of the tests in which it is loaded. All mental tests have some
degree ofF loading and even extremely dissimilar tests (e.g., sentence comple-
tion and block demgn? can have nearly equal g loadings. Group factors, on the
other hand, are labeled and described In terms of the obvious characteristics of
the kinds of tests that load on them (such as verbal, numerical, spatial visuali-
zation, memory, mechanical, to name a few of the established group factors%.

Further, g is not describable in terms of any pure or unique behavior. Verbal
ability cannot be demonstrated without the person’s engaging in some form of
behavior involving verbal material—read, heard, spoken, or written. And so it
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is for every other group factor. But not for g. There is no single distinct type
or class of behavior or materials required for the manifestation of g.

Of course, neither g nor the group factors are properties of tests per se. Rather,
(hey are components of variance in test scores obtained in some defined group
of persons. Tests don’t “contain” g, but some tests are better indicators of it
than others. One might say that the g factor emerges only after analysis has
“filtered out” those characteristics of each test that make for group factors and
specificity.

It is also a mistake to describe g (or, as one often hears, the “essence” of g,
or its “defining characteristic”%in such terms as relation eduction, abstract rea-
soning, capacity for complex thinking, problem solving, or similar descriptive
terms. These terms describe characteristics of certain test items, but they cannot
describe dg As Spearman aptly noted, these descriptions of test characteristics
merely identify g bY site, not by nature. Or as David Wechsler Fut it, g is not
really"an ability at all, but a property of the mind. It is true that tests that measure
some form of relation eduction are the most highly g loaded, but they represent
only the upper segment of the whole continuum of g loadings. Many tests that
categorically show none of the characteristics of tests based on relation education
are also ¢ loaded, although to a lesser degree. However, a composite score hased
on a number of such tests, none of which displays any of the above-named
features mistakenly said to characterize the “essence” of g, can have as large
a ( loading as the type of test that displays the supposed ™ defining character-
istics” or “essence™ of g. (The evidence for this, based on elementary cognitive
tasks, is discussed in Chapter 8.)

The fact that a certain class of tests measures g more efficiently than other
tests does not qualify the characteristics of the former tests to be considered the
“essence” or ‘defmmg characteristics” of g. Because a measuring tape is a
more efficient and reliable device than a yardstick for measuring the circumfer-
ence of tree trunks does not make a measuring tape the defining characteristic
of circumference. The salient characteristics of the most highly g-loaded tests
are not essential or definitional, but are empirical phenomena in need of theo-
retical explanation in their own right. As will be seen in Chapter 8, the critical
question Is why the physiological substrate of g is expressed or aggregated more
fully in the variance of some types of tests than it is in others.

A General Factor Is Not Inevitable. Factor analysis is not by its nature
bound to produce a general factor regardless of the nature of the correlation
matrix that is analyzed. A general factor emerges from a hierarchical factor
analysis if, and only if, a general factor is truly latent in the particular correlation
matrix. A general factor derived from a hierarchical analysis should be based
on a matrix of Eositive correlations that has at least three latent roots (eigen-
values) greater than 1

For proof that a general factor is not inevitable, one need only turn to studies
of personality. The myriad of inventories that measure various personality traits
have been subjected to every type of factor analysis, yet no general factor has
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ever emerged in the personalit)r domain. There are, however, a great many first-
order group factors and several clearly identified second-order group factors, or
“superfactors” (e.g., introversion-extraversion, neuroticism, and psychoticism),
but no general factor. In the abilities domain, on the other hand, a general factor,
?, always emerges, provided the number and variety of mental tests are sufficient
0 allow a proPer factor analysis. The domain of body measurements (including
every externally measurable feature of anatomY) when factor analyzed also
shows a large general factor (besides several small group factors). Similarly, the
correlations among various measures of athletic ability show a substantial gen-
eral factor. - : :

Ability Variation between Persons and within Persons. It is sometimes
claimed that any given person shows such large differences in various abilities
that it makes no sense to talk about general ability, or to attempt to represent
it bK a single score, or to rank persons on it. One student does very well in
math, yet has difficulty with En?hsh composition; another is gust.the opposite;
a third displays a marked talent for music but is mediocre in nghsh and math.
Is this a valid argument against g It turns out that it is not valid, for if it were
true, it would not be possible to demonstrate repeated_I?_/ the existence of all-
Posmv_e correlations among scores on diverse tests abilities, or to obtain ag
actor in a hierarchical factor analrsw. At most, there would only be uncorrelate
group factors, and one could orthogonally rotate the principal factor axes to
virtually perfect simple structure. _ N

A necessary implication of the claim that the levels of different abilities pos-
sessed by an individual are so variable as to contradict the idea of general ability
Is that the differences between various abilities within persons would, on aver-
age, be larger than the differences between persons in the overall average of
these various abilities. This proposition can be (and has been) definitively tested
by means of the statistical method known as the analysis of variance. The
method is most easily explained with the following type of “Tests x Persons”
matrix.

Persons 1 Tests 1 Mean P

1 2% *81 *C1 - - - - ~ *j
2 ZAd *82 *C2 - - * *2
3 *13 *3
4

N *A *BN *CN - *J N

Mean T x5  *B . .. . *J
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It shows ten hypothetical tests of any diverse mental abilities (A, B, .. .J) ad-
ministered to a large number, N, of persons. The test scores have all been stan-
dardized éi.e., converted to z scores) so that every test has a mean z = 0 and
standard deviation = 1 Therefore, the mean score on every test ge Mean T
in the bottom row) is the same ﬁi.e., Mean = 0%. Hence there can be only three
sources of variance in this whole matrix: (1) the differences between persons’
(P) mean scores on the ten tests (Mean P [z, z2 27 etc.] in last column), and
(2) the differences between test scores within each person (e.g., the zAL, zBl, zci,
etc., are the z scores on Tests A, B, C, etc., for Person 1). Now, if the average
variance within persons proves to be as large as or larger than the variance
between persons, one could say there is no overall general level of ab|I|tY, or
g, in which people differ. That is, differences in the level of various abilities
within a person are as large or larger, on average, than differences between
persons in the overall average level of these various abilities. In fact, g’)ust the
opposite is empirically true: Differences in the average level of abilities between
persons are very significantly greater than differences in various abilities within
persons.

It should be remembered that g and all other factors derived from factor
analysis depend essentially on variance between persons. Traits in which there
is very little or no variance do not show up in a factor analysis. A small range
of variation in the measurements subjected to factor analysis may result in fewer
and smaller factors. A factor analysis performed on the fairly similar body meas-
urements of all the Miss Universe contestants (or of heavyweight boxers), for
example, would yield fewer and much smaller factors than the same analysis
performed on persons randomly selected from the general population.

Difficulty Level of a Test and g Are Separate Concepts. A test’s level of
difficulty and its g loading are conceptually distinct; they may be empirically
related, but not necessarily. A test’s difficulty level depends on the ability level
of the persons taking the test and is typically indexed by the proportion of the
test items that are failed in a sample of some specified population. The closer
that proportion is to 0.50, the greater the variance in test scores. Because the
size of the correlations between tests is affected (positively) by the range of
ability (hence the variance) in the population tested, the size of the g extracted
from the intercorrelations among the tests is correspondlnglﬁl affected. When the
difficulty level of a wide variety of tests is held constant, however, the various
tests show a wide range of g loadings. Tests that involve some form of reasoning
or relation eduction, for example, have considerably higher g loadings than tests
of rote memory, even though both types of tests are perfectly matched in their
level of di_ffic_ultgr and have the same variance. So we see that a test’s g Ioadin%
is not intrinsically related to the test’s level of difficulty. An appropriate leve
of difficulty for a given population is merely a psychometric requirement for
the reliable measurement of individual differences.

The Confusion of g with Mental Processes. It is important to understand
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that g is not a mental or cognitive process or one of the operating principles of
the mind, such as perception, learning, or memory. Every kind of cognitive
performance depends upon the operation of some integrated set of processes in
the brain. These can be called cognitive processes, information processes, or
neural processes. Presumably their operation involves many complex design
features of the brain and its neural processes. But these features are not what g
(or any other psychometric factor) is about. Rather, g only reflects some part of
the individual differences in mental abilities (as defined in Chapter 2) that un-
doubtedly depend on the operation of neural processes in the brain. By inference,
g also reflects individual differences in the speed, or efficiency, or capacity of
these operations. But ¢ is not these operations themselves.

A simple distinction between process and factor is that a process could be
discovered by observing one person, whereas a factor could be discovered only
by observing a number of persons. For example, one person is observed throw-
ing darts at a target, trying on each trial to hit the bull’s-eye. In the course of
fifty trials, the person gradually improves in his level of proficiency, from at
first being able to hit the bull’s-eye only once in every ten trials to finally hitting
the bull’s-eye on nine out of every ten trials. This observable change in the
person’s level of proficiency over the course of practice represents a process,
in this case learning. Many of its characteristics could be discovered by means
of experiments on a single person. (In fact, Ebbinghaus discovered some of the
basic facts of learning and memory by experiments using only himself as a
subject.) But now we observe another person performing the same dart-throwing
task. We see that it takes this person 200 trials to attain the same level of
proficiency as was attained by the first person in only fifty trials. So here we
see individual differences in the process of learning, in this case, a difference
in the rate of learning. Obviously, this discovery that learning rates for this task
can differ could only have been discovered by observing more than one indi-
vidual. We could then devise several other diverse tasks in which learning (i.e.,
improvement with practice) can be seen to occur. We may then find that on
every task these two persons differ consistently in their rate of learning. If so,
this would mean that all the tasks are positively correlated. At this point, a
factor, call it “general learning ability,” has been discovered. Simply stated,
we have demonstrated the existence of a single dimension of individual differ-
ences that cuts across a variety of learning tasks.

NOTES

L Jensen & Weng, 1994. The late Professor Henry F. Kaiser (1927-1992), one of
the world’s leading experts on factor analysis, made a valuable contribution to our effort
through the extensive discussions that Weng and | were privileged to have with him
about the fundamental issues dealt with in our article.

2. There are five alternative methods that do not have these problems, but the first
two of these, at least, have certain problems of their own.

I. Principal components analysis. The first principal component (PCI) in a principal
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components analysis is often interpreted as (I] Indeed, the PCI usually looks like g, as
all of the variables usually have substantial loadings on the PCI. But the PCI has two
shortcomings as an estimate of g.

First, it slightly overestimates the g Ioadingis of each of the variables and therefore
also the total proportion of variance attributable to g. This is because the PCI includes
some small part of each variable’s uniqueness, which is unrelated to g (or any other
common factor) and the PCI is therefore an inflated and contaminated estimate of g.

Second, the PCI may give the expected appearance of a g factor because of its all-
positive loadings on every variable, even when there is no general factor in the matrix.
Although the PCI may give a reasonably good, but slightly inflated and slightly contam-
inated, estimate of g when there is, in fact, a ¢ in the matrix, the PCI can also fool us
into thinkin% there is a g in the matrix by showing substantial positive loadings on all
of the variables, even when, in fact, there is no g in the matrix. The reason for this is
that principal components analysis was never devised to estimate the general factor of a
correlation matrix, and the PCI should really not be defined as the general factor. The
PCI is accurately defined only as the weighting factor that maximizes the variance of a
linear (i.e., additive) combination of all of the variables. That is, if we multiply each
person’s standardized score (z) on each test by the test’s loading on the PCI, and then
obtain the sum (£) of these weighted scores (EzPCI) for each person, the values of
XzPCI (over all persons) will have a larger variance than any other weighted combination
of the test scores. The mathematical procedure of principal components analysis deter-
mines for each variable whatever weight is needed to accomplish this single purpose.
But this does not guarantee that the weights given by the PCI are accurate estimates of
the variables’ g loadings. However, if there really is a g in the matrix, the PCI will not
be very far off the mark as estimates of the variables’ true g loadings. But if there really
is n0 g in the matrix, or if the g accounts for only a small part of the total variance, the
PCI can be misleading. This 1S unlikely in the case of mental ability tests, however,
simply because it is extremely hard to make up a set of diverse mental tests that does
not have a large g factor.

Principal components analrsis has one legitimate and useful feature as a preliminary
to other analyses. It is useful in determining the number of independent factors in the
correlation matrix. As pointed out in Chapter 3, each principal component has an asso-
ciated eigenvalue, and, as a rule, the number of significant common factors in a matrix
is equal to the number of principal components that have eigenvalues larger than 1
(However, there are alternative, and often better, ways to determine the number of com-
mon factors, such as the goodness of fit indices in confirmatory factor analysis.)

A little-known feature of the PCI is that its eigenvalue (A) can be used to obtain the
best estimate of the average correlation (rax) in a square correlation matrix of p variables
by the following formula (Kaiser, 1968): rhc = (X — 1)/(p — 1).

ii. ~ Principal factor (PF) analysis. This is much like principal components ﬁPC) anal-
ysis, except that in PF analysis only the common factor variance is analyzed into linearly
Independent components (then called factors). (PC analyzes the total variance, i.., the
common factor variance plus the unique variance.) Therefore, the first principal factor
(PF1) in a PF analysis is preferable to the PCI as an estimate of g, because it is not
spuriously inflated by the variables’ uniqueness, as is the PCI. But the PF1 has the same
drawback as the PCI, in that it can give the appearance of a general factor even when
a general factor does not exist in the matrix. In practice, its only real risk is that it can
make a weak general factor look stronger than it really is. For example, it is possible
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for two (or more) uncorrelated variables, which actually have no factor in common, to
deceptively show substantial loadings on the PF1, in which case the PFL is not really a
general factor. Like the PCI, the PFL is accurately defined only as the weighting factor
that maximizes the total variance of the set of variables, in this case, after all the variables
have been stripped of their uniqueness.

iii. Tandem criteria rotation. This method, which is not used as much as it probabl%f
should be, gets around the risk of a “deceptive” g, as fpointed out in connection wit
the PCI and PF1. The method begins with a principal factor analysis. The factor axes
are then rotated in such a way as to meet two criteria (called tandem criteria because
they are used in tandem) which ensure that a “deceptive” g cannot appear and that if
there really is a g in the matrix, it will show up. The tandem criteria are based on the
following two principles: (1). 1ftwo variables are correlated, they should appear on the
samefactor. (I1). If two variables are not correlated, they should not appear on the same
factor. A principal factor rotated to these criteria and that has significant positive loadings
in every variable qualifies as a general factor. (Invented by Andrew L. Comrey, the
tandem method of factor rotation is fully described in the textbook by Comrey & Lee
[hl992, pp. 194-204], The authors also provide a computer program for it, available from
the publisher of their textbook.)

iv. Confirmatoryfactor analysis. This method permits one to hypothesize any particular
factor model, for example, models that do or do not have a general factor, and to test
statistically how well the observed correlations fit the model. Competing models (e.g.,
one with a g factor and one without) are compared in terms of an index of the data’s
“‘goodness of fit”" to the hypothesized model. The presence or absence of a general factor
can be tested in this way, as can hypotheses about the number of factors in the matrix
and precisely which variables should have substantial loadings on each factor. The pro-
cedure yields estimates of all the factor loadings within the constraints of the particular
hypothesized model.

v. Hierarchical factor analysis. All of the above methods are sensitive to “psycho-
metric samﬁling error,” i.e., having quite unequal numbers of tests that represent different
factors in the test battery. A test battery composed of, say, ten memory tests, three verbal
reasoning tests, and three spatial reasoning tests, would not yield a very good g if it were
extracted by any of the methods mentioned so far. The overrepresentation of memory
tests would contaminate the g factor with memory ability (M); the PCI would really be
g + kM, where k is some fraction of the memory factor. Hierarchical factor analysis
(HFA) largely overcomes this problem by rotating the factor axes (obtained from a
principal factor analysis) so as to obtain as clear-cut oblique group factors (in this case,
numerical, verbal, and spatial) as possible, and then extracting g from the correlations
among the group factors. If there 15 no general factor in the matrix, the group factors
will not be correlated and therefore cannot yield a g. For these reasons, a hierarchical
factor model is generally preferred for estimating the g factor and representing the other
factors in the matrix. A two-strata hierarchical analysis is not feasible, however, unless
there are enough different kinds of tests to produce at least three group factors (with a
minimum of three tests per factor). A correlation matrix that is suitable for the Spearman
model, for example, would not lend itself to a hierarchical analysis.

3. The seven primary mental abilities that were well identified by Thurstone’s factor
analyses of a great many tests and for which he devised “ factor-pure” tests were: verbal
comprehension, reasoning, word fluency, numerical ability, spatial visualization, percep-
tual speed, and associative memory. Since Thurstone’s time, many more primary ability
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factors have been identified. (See Carroll, 1993a, for the most comprehensive coverage
of this subject.?1

4. Although the bifactor model superficially may seem to resemble the hierarchical
model, there are certain important differences involving the rank of the correlation matrix
represented by each model (the rank of the correlations represented by the hierarchical
model is one less than that of the bifactor model). Also, the bifactor model, because it
derives g directI%/ from the original correlation matrix, has fewer mathematical constraints
than the hierarchical model, which derives g from the correlations among the first-order
factors (see Jensen & Weng, 1994). Thus the bifactor model can be called a *top-down”
factor analysis, whereas the hierarchical model is a “bottom-up” factor analysis. The
computational procedures of the bifactor model are now most easily done by means of
the LISREL-VII computer program, and as both the bifactor and hierarchical models can
be specified in LISREL, the goodness of fit index can be used to determine which model
better represents the factor structure of the variables.

5. Although hierarchical factor analysis with the Schmid-Leiman (1957) orthogon-
alization is the most appropriate form of exploratory factor analysis and has been widely
used in the last two decades, it (like virtually all other exploratory factor models) is
rapidly being supplanted by confirmatory factor analysis implemented by the computer
software package LISREL (an acronym for Linear Structural RELations) devised by the
Swedish statistician Karl Joreskog (Joreskog & Sorbom, 1989). Essentiallﬁ/ the same
orthogonalized hierarchical factor model can be obtained with LISREL, with the added
advantage of an objective statistical comparison Q‘or goodness of fit to the data) with
other factor models, such as the bifactor model, that may be more suitable, depending
on the nature of the correlation matrix. In analyzing a variety of artificially devise
correlation matrices in which all the factors are known exactly, we have found that the
LISREL method of estimating the factors seems to show the best overall batting average.

6. The original correlation matrix can also be reconstituted from the factor loadings
given in Table 4.2, by the rule that the correlation between any two variables is the sum
of the products of their loadings on each factor. For example, the correlation between
VI and V2 (in Table 4.1) is reconstituted from their factor loadings (in Table 4.2) as
follows: (.72 X .63) + (.3487 X .3051) = 56.

7. Readers should be warned against misinterpreting the meaning of the word “es-
timate” when it is used in the context of empirical science, statistics, or factor analysis.
In popular Farlance “estimate” usually means merely a guess or a rough calculation, as
when a building contractor quotes an estimate of the final cost of a construction job. In
science, however, it refers to a measurement that inevitably has some associated probable
degree of inaccuracy, which is true of all measurements in empirical science, although
of course measurements differ in their degree of accuracP/. But the hypothetical true
measurement always remains unknown and is in principle unknowable. It is usually
possible, however, to determine the probable error of a measurement and to state whether
or not the measurement is sufficiently accurate for its intended J)urpose. Comparing the
weights of different atoms obviously requires a very different degree of Erecisiqn than
comparing the weights of hogs. The term “estimate” can be dispensed with only in pure
mathematics, in which a quantity can be defined exactly but does not pertain to any
reality outside of itself. In statistics (and factor analysis) the concept of estimate presup-
poses a true measurement or value that can be estimated with some specified degree of
accuracy ﬁor “probable error”). In statistics, the true value is that which would be found
if every element (i.e., person, item, object, or whatever) in the total population of such
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elements had been measured, rather than just a sample of these elements. In the factor
analysis of abilities, the sampled “elements” are of two kinds: a defined population of
persons (e.g., all American-born, English-speaking ten-year-olds) and a defined popula-
tion of mental ability tests fg the more than 200 published tests classified as mental
ability tests listed in the ninth edition of the Buros Mental Measurements Yearbook). The
“estimate” obtained from the analysis of a sample of the Fopulation itself is not in the
least inexact (assuming the calculations were done correctly), and therefore it is not an
estimate of some characteristic of the sample per se. However, the precise value of a
characteristic (e.g., a mean, a correlation coefficient, or a factor loading) obtained from
the sample (called a statistic) is an estimate of that characteristic in a population (called
a parameter). A statistic has a precisely known standard error. SE (or probable error,
PE, which is .6745 SE), which is a function of the samgle size. The sample value (or
statistic) has a 50 percent chance of falling within + 1 PE of the population value (or
parameter). In the case of factor analysis, the estimated parameters (the factors themselves
and the variables’ factor loadings) are also subject to one other source of variation (or
error) in addition to samplin? error (both for subjects and for tests, as sampled from
specified populations of people and tests), namely, the particular method of factor anal-
ysis that is used. The results of different methods of factor analysis vary when they are
applied to one and the same correlation matrix. (This is the main subject of the article
by Jensen & Weng, 1994.)

8. The congruence coefficient (rc) is an index of factor similarity. Like the Pearson
correlation coefficient (r), it is scaled to range from -1 to 0 to +1. A value of rc of
+.90 is considered a high degree of factor similarity: a value greater than +.95 is gen-
erally interpreted as practical identity of the factors. The rcis Ereferred to the Pearson r
for comparing factors, because the rc estimates the correlation between thefactors them-
selves, whereas the Pearson r gives only the correlation between the two column vectors
of factor loadings. Pearson r is based on standardized deviations from the mean of each
variate, whereas rc is based on raw deviations from zero. Comparing the definitional
formulas for r and rc side-by-side shows how they differ. Say we wish to assess the
similarity of two factors, here labeled X and Y (e.g., suppose the same battery of n tests
was given to subject samples drawn from two different populations [called X and Y] and
after factor analyzing the battery within each sample, we wish to know how similar a
particular factor in one sample 'is to the presumably corresponding factor in the other
sample). So the n factor loadings of each of the n tests for each sample can be arrayed
as two-column vectors (i.e., a column of the n factor loadings for each sample). The
separate loadings are here called X and Y, with standardized values zxand zr)

Pearson r = X(z, 7y)in
Congruence coefficient rc = XXY//EX2XY2

Showing the formulas for r and rcin terms of the original measurements, X and Y, will
make the difference between the two coefficients more apparent, showing that r is based
on the deviation of the factor loadings from the local mean, whereas rc is based on the
factor loadings’ deviations from zero:
XX - X)(Y-Y)
X XY - Y)3

\»I<(>£X- '0)%%('- 02))! - jllx L
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It should be noticed that the Pearson r, being based on standardized factor loadings,
cannot reflect a difference between the means of the loadings, whereas the rc does so.
That is one advantage of rc over r. One reason that rc is used instead of r to compare
factors is illustrated In the following example. Consider the following two sets of factor
loadings on hypothetical factors X and Y, which are hardly similar factors, much less
the same factor. To save space on this pa%e, the loadings are here presented as a row
vector rather than as a column vector (which is the conventional form in a factor matrix.)

Factor Loadings
Factor X: 9 8 1 6 5 4 3 2 1
Factor Y. 43 2 1 0 -1 -2 -3 -4

The'Pearson r = 1.00 gives the very misleading impression that the factors are identical.
The coefficient of congruence rc = 46. A rc of this size indicates that the factors are
distinctly different factors, though not absolutely unrelated.

The main virtue of rc, however, is that it estimates the theoretical correlation (Pearson r)
between the truefactor scores of each of the compared factors. (It is mathematically the ex-
act correlation in the case of principal components.) Gorsuch (1983) states: “ In the case of
orthogonal components where the factor scores have means of zero and variances of one,
the result of calculating coefficients of congruence on the factor pattern is identical to cor-
relating the exact factor scores and is, indeed, a simplified formula for that correlation™ (p.
285). (I have tested this empirically and found it to be accurate within the limits of rounding
errors in the third decimal place. The approximation of rcto the actual correlation between
estimated factor scores in the case of prmci{)al factorsand a hierarchical g is almost as good
as for the exact solution given for principal components.)

Another way of defining the congruence coefficient 1s in terms of the locations of the
factor axes based on the same set of variables (tests? obtained in two subject samples.
Say we calculate and then plot on graph paper the first principal axis of a set of tests
given to Group A, and then superimpose upon this %raph a plot of the first principal axis

ased on the same set of tests given to Group B. The cosine of the angle between these

two principal axes, then, is the congruence coefficient. With perfect congruence the angle
between the axes has 0 degrees, and the cosine of 0 equals L The cosine of 90 degrees
is 0 (no congruence); and the cosine of 180 degrees is -1. A congruence coefficient of
+.99 corresEonds to an angle of 8.1 degrees.

9. Tne root mean square difference (RMSD) between two vectors is simply the
square root of the mean of the s%uared differences between each pair of factor loadings.
In the above example (Note 8), the RMSD = 0.5, which is a very large value compared
to the sizes of the factor loadings. It, too, indicates that these factors are quite different.

10. Ree & Earles, 1991a.

11 Detterman & Daniel, 1989.

12. By analogy with the concept of “true”-score in classical test theory and the for-
mulation of the correlation rn, between obtained scores (0) and true-scores (t), the cor-
relation between the obtained g and the true g is given by the following formula (Kaiser
& Caffrey, 1965):

= jl(nl(n -1)(L - V],
where n is the number of tests and X is the eigenvalue of the first principal component

of the correlation matrix. Accordingly, the reliability of the factor is rM2. (See Jensen &
Weng, 1994, for further discussion of this formula.)
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13. Irvine & Berry (1988); see particularIK Chapter 5, by Royce, who summarizes the
main findings, giving references to most of this literature; also see “ factor analysis” and
"g" in the Index of the Irvine & Berry book for other references to cross-cultural factor
analytic studies.

14. Jensen, 1983.

15. Jensen, 1985a; Jensen & Reynolds, 1982.

16. Nothing of fundamental empirical or theoretical importance is revealed by the
frequency distribution per se of the scores on any pchhometric test composed of items.
This is true regardless of whether we are dealing with raw scores or standardized scores
or any otherwise transformed scores. Therefore, It would be trivial and pointless to review
the empirical test literature regarding the form of the distribution of mental test scores.

In a given population, the form of the distribution of raw scores (i.e., number of items
passed) is entirely a function of three interrelated item characteristics: (1) the average
Frobability of gettin? the correct answer by chance, i.e., by pure guessing, (2) the averagie
evel of difficulty of the items (as indexed by the percentage of the population that fails
them), and (3) the average correlation between items. Item difficulty is completely under
the test constructor’s control. Score increments due to chance guessing are a function of
the number and quality of the alternatives in multiple-choice items and the nature of the
instructions to subjects regarding the penalty for guessing at the answer instead of omit-
ting response when uncertain (e.g., total score based on number of right minus number
of wrong answers). The item intercorrelations can be controlled to a considerable degree
(but never completely) through item selection. Hence, in constructing a test it is possible,
within broad limits, to produce almost any desired form of frequency distribution of the
raw scores in a given population.

If we have no hasis for arguing that the obtained scores have true measurement prop-
erties in addition to merely having a rank-order correlation with the latent trait that they
measure—and this seems to be typically the case for psrchometric test scores—the pre-
cise form of the obtained score distribution is essentially arbitrary. The very most that
we can say in this case is that (within the limits of measurement error? our test scores
have some monotonic relation to whatever the test really “measures.” [f we could truly
measure whatever latent variable, such as g, accounts for the variation in the obtained
scores on an absolute scale (i.e., one havin% a true zero and additivity of scale intervals),
the form of its population distribution could turn out to be quite different from that of
the test scores we have actually obtained.

Certain forms of distribution are simply more useful than others, psychometrically and
statistically, and it is this consideration that mainly determines the form of the distribution
test constructors decide to adopt. The aims of maximizing the statistical discriminability
of scores throughout a fairly wide range of talent and of obtaining a fair degree of internal
consistency reliability (i.e., interitem correlation) are what Iar?ely dictate item selection.
The test scores that result under these conditions of item selection typically (and nec-
essarily) have a symmetrical and more-or-less “bell-shaped” frequency distribution. It
is not truly the normal (or Gaussian) curve, although it usually resembles it closely. By
juggling item characteristics the test constructor can get a distribution that reasonably
approximates the normal curve. Or the scores can be transformed mathematically to
approximate a normal distribution. (Such “normalized” scores are obtained by convert-
in(f; the raw scores to ranks, then converting these to percentile ranks, and then, by
reference to a table of the areas under the normal curve, converting these to normal
deviates, i.e., normalized z scores.) The reason for thus normalizing a score distribution
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is not mainly theoretical, but statistical. The normal curve has certain mathematical prop-
erties that make it extremely useful in statistical analysis and interpretation.

The argument is often made on theoretical grounds, however, that the main latent trait
reflected by most complex cognitive tests—namely g—should be normally distributed
in the general population. This argument, if accepted,Justifies and indeed demands that
1Qs (or any other t{pe of scores on any hi%hly g-loaded tests) should be purposely scaled
50 that the form of their population distribution closely approximates the normal distri-
bution. What can be said for this argument? There are three main facets:

First, there is the argument by default: Unless there is some compelling reason to
suppose that the form of the distribution of g is something other than normal, we might
as well assume that it is normal, which is at least statistically convenient.

Second, there is the argument from the Central-Limit Theorem in mathematical statis-
tics, which essentially states that the distribution of a composite variable representing
the additive effects of a number of independent elements (components, causes, or influ-
ences) rapidly approaches the normal distribution as the number of elements increases.
This should be the case for g, to the extent that we can argue on various theoretical and
empirical ?rounds that individual differences in g are the result of a great many different
adaitive erfects: for example, individual differences in the efficiency of a number of
different cognitive processes, each of which is somewhat independently conditioned by
polygenic inheritance interacting with a multitude of different environmental influences
encountered throughout the course of development since the moment of conception. The
population distribution of any variable with such multiple additive determinants, theo-
retically, should approximate the normal curve.

Third, there is the argument by analogy with human characteristics that actually can
be measured on an absolute scale, such as height, brain weight, neural conduction ve-
locity, sensory acuity, choice reaction time, and digit span memory (i.e., the number of
digits that can be recalled entirely correctly after one presentation on 50 percent of the
trials). We may reasonably presume that individual differences in each of these variables
has multiple determinants, just as in the case of g. Indeed, we find that in very large
samples of the general population the distribution of each of these variables (measured
on an absolute scale) approximates the normal curve. Marked deviations from the normal
curve usually occur in the regions beyond t2a from the mean of the distribution. These
deviations from normality can usually be explained in terms of certain rare genetic or
environmental effects that override the multiple normal determinants of variation. This
line of argument by analogy makes it quite plausible that g (or any other complexly
determined trait) is normally distributed, but it cannot prove it. Also, the argument by
analogy is weakened by the fact that not all complexly determined biological variables
that can be measured on an absolute scale necessarily conform to the normal distribution.
Age at death (beyond five years), for example, has a verK negatively skewed distribution,
because the mode is close to 75 years and the highest known limit of human longevity
is about 113 years. (Below age five, the age of death is distributed as a so-called J curve,
with the mode immediately after birth.)

Fourth, the assumption of a normal distribution of g reveals a remarkable consistency
between various population groups that show a given mean difference éin a units) on
highly g-loaded tests, such as 1Q tests. By knowing the means and standard deviations
of two (Population groups on such a measure, and by assuming that the latent trait, g,
reflected by the measurements has a normal distribution in each group, one can make
fairly accurate estimates of the percentages of each group that fall above or below some
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criterion that is not measured by any psychometric technique but is known to be corre-
lated with g to some extent, such as number of years of education, occupational level,
or as being judged by nonpsychometric criteria as mentally retarded or as intellectually
gifted. Even though these percentages may vary widely from one criterion to another,
when the percentages are transformed to normal deviates (obtained from tables of the
normal curve), the differences between the groups’ normal deviates on various g-related
criteria show a considerable degree of constancy. This could not happen if the distribution
of g were not approximately normal.

Probably the best answer at present concerning the distribution of g is that, although
we cannot determine it directly by any currently available means, it is a reasonable
inference that it approximates the normal curve and there is no good reason for assuming
that the distribution ofg is not approximateI% normal, at least within the middle range
of about four standard deviations. Most psychometricians implicitly work on the statis-
tically advanta?eous assumption of normality, and no argument has yet come forth that
it is theoretically implausible or adversely affects any practical uses of g-loaded tests.
But the question is mainly of scientific Interest, and a really satisfactory answer to it
cannot come about through improved measurement techniques per se, but will become
possible only as part and parcel of a comprehensive theory of the nature of . If we have
some theoretical conception of what the form of the distribution should be in a population
with certain specified characteristics, we can use random samples from such a population
to validate the scale we have devised to measure g. The distribution of obtained meas-
urements should conform to the characteristics of the distribution dictated by theoretical
considerations.

17 The g factor scores are simply the linear weighted sum of an individual’s stan-
dardized subtest scores, each subtest score weighted by its g loading. The Full Scale 1Q
is based on an unweighted sum of the standardized subtest scores. With as manr as
twelve subtests entering into the composite, the weighted and unweighted sums will be
highly correlated. A theorem put forth by Wilks %938) offers a mathematical proof that
the correlation between two linear composites having different sets of (all positive)
weights tends toward 1as the number of positively intercorrelated elements (.g., sub-
tests) in the composite increases. For this reason, practically nothing is gained by ob-
taining g factor scores (instead of unweighted composite scores) from a multitest battery
such as the Wechsler scales, the General Aptitude Test Battery (GATB), and the Armed
Services Vocational Aptitude Battery (ASVAB). When g factor scores were obtained on
the ASVAB (with ten subtests) for 9,173 recruits, they were correlated +.991 with the
unweighted composite scores (Ree & Earles, 1991a).

One occasionally encounters an erroneous interpretation of the “percentage of vari-
ance” (or Broportion of variance”) attributed to the g factor in a factor analysis of
battery of subtests, for example, the Wechsler battery consisting of twelve subtests. The
“proportion of variance” attributed to a given factor in this case refers only to the
average of the variances (the squared factor loadings) of each of the seﬁarate subtests.
The square root of the average proportion of variance due to (Say) g in the n subtests is
simply the best representation of the average of the g loadings of the separate subtests.
The g loading of the composite score (i.e., the sum of the subtest scores), if it could be
included in the same factor analysis with all the subtests without affecting their g load-
ings, would be much larger than the average of the g loadings of the separate subtests,
assuming a fair number of subtests. Spearman (1927, Appendix, pp. Xix-xxi) derived the
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formula for the g loading of the total, or composite, score based on a number of subtests
for each of which the g loading has been determined by factor analysis:

= A+ RINCETLHPD °7

where

/my = the correlation between total score (composite of all subtests) and g (i.e., the g loading

of the total score).

£ = the sumof...

r,x = each subtest’s squared correlation with g (i.e., each subtest’s squared g loading).
For example, applying this formula to the g loadings of the nine variables (VI ... V9)
in Table 4.2 (p. 81), whose average is only J.2542 =.504, the g loading of a composite
score based on all nine variables Is .883.

18. Jensen, 1980a, pp. 314-315.



Chapter 5
Challenges to g

Viewpoints and theories antithetical, or in some cases mistakenly
thought to be antithetical, to the large body of psychometric evi-
dence supporting the presence of a predominant general factor, ? in
the domain of mental abilities are reviewed. The proponents of the
specificity doctrine, which holds that mental tests measure only a
collection of bits of knowledge and skills that happen to be valued
by the dominant culture in a society, as well as those who hold that
individual differences in mental abilities reflect only differences in
opportunities for learning certain skills, Iargely of a scholastic na-
ture, or the contextualists who claim that mental ability is not general
but is entirely specific to particular tasks and circumstances, have
not produced any empirical evidence that contradicts the existence
of the ubiquitous g factor found in any large and diverse collection
of mental tests. There are, however, more rigorous critiques of g.
Guilford’s Structure-of-Intellect (SOI) model, which claims 150
separate abilities, is supported only by a type of factor analysis that
mathematically forces a large number of narrow factors to be un-
correlated, even though all the various ability tests that are entered
into the analysis are correlated with one another. Guilford’s claim
of zero correlations between ability tests is unsupported by evidence;
the few zero and negative correlations that are found are attributable
to sampling error and other statistical limitations. o
Cattell’s _theorr of fluid intelligence (Gf) and crystallized intelli-
%_ence (GcR is reflected as second-order factors in tests that are either
ighly culture-reduced (Gf? or highly culture-specific (Gc) and is
particularly valid in culturally and educationally heterogeneous pop-
ulations. The greater the homogeneity in the population, however,
the higher is the correlation between Gf and Gc. The correlation
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between these second-order factors is represented in a hierarchical
factor analysis as a single third-order factor, namely g. Typically
there is a near-perfect correlation between Gf and g, so that when
the second-order factors are residualized, thereby subsuming their
common variance into g, the Gf factor vanishes. In other words,
Cattell’s Gf and the third-order factor, g, turn out be one and the
same.

Guttman’s radex model, a multidimensional scaling method for
spatially relpresentlng the relations between diverse mental tests, per-
fectly parallels the relationships shown in a hierarchical factor anal-
ysis. Tests’ g loadings derived from factor analysis are displayed
spatially in the radex model by the tests’ proximity to the center of
the circular array, with the most highly g-loaded tests being closest
to the center. _ o _

_Gardner’s theor?/ of seven independent “intelligences” is contra-
dicted hy the well-established correlations between at least four of
these “intelligences” (verbal, logical-mathematical, spatial, musical,
all of which are substantially g loaded; the factorial structure of two
of the “intelligences” (interpersonal and intrapersonal) has not been
determined, so their g loadings remain unknown: and one ability
(kinesthetic) probably does not fall into the mental abilities domain
as defined in Chapter 3. There is no |ncomPat|b|_I|ty between g and
the existence of neural modules that control particular abilities.

Sternberg’s componential and triarchic theories, which are some-
times mistakenly thought to be incompatible with g theory, are
shown to be entirely consistent with it. Sternberg’s theory explains
the existence of g In terms of information-processing components
and metacomponents rather than in terms of any unitary process or
property of the brain, a subject to be considered in Chapter 8.

Virtually all present-day researchers in psychometrics now accept
as a well-established fact that individual differences in all complex
mental tests are positively correlated and that a hierarchical factor
model, consisting of a number of group factors dominated by g at
the apex (or the hqhest level of generality), is the best representation
of the correlational structure of mental abilities.

The previous chapter documented the evidence i_n_supi)or_t of the concept of
a general factor as the most important source of individual differences in mental
abl|l'[3/_. The fact that g can be extracted in a hierarchical analysis from an?/ large
and diverse battery of mental tests itself proves the existence of g, at [east at
the level of factor anaysm. Moreover, certain reliable empirical phenomena that
are intrinsically related to g call for explanation, for example: (1) the existence

of positive correlations among all mental tests however diverse; (2) tests differ
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with some consistency in their average correlation with many other tests, and
the rank order of various tests” average correlations with other tests is roughly
similar to the rank order of the tests’ g loadings. In fact, a test’s g loading is a
more refined and more accurate measure of the test’s average correlation with
every other test, stripped of the correlation the test has with other tests that are
like itself in type of information content and skill required, that is, the features
from which the first-order group factors arise. _

Given these empirical corollaries of g, one might ask why there is any ar-
gument at all over either the existence or the meaning of g. While g theory is
far and away the prevailin% view among the majority of practicing psychome-
tricians and authorities on human intelligence, agreement Is not universal.

The arPuments against g theory can be grouped ,into two broad categories:
() verbal arguments, and {2)_mathem_at|ca_l and statistical arguments. The first
category has Broduced little if anything in the way of an alternate research
program or a body of data to be explained. It will, therefore, be given only a
cursory examination. The second category includes important studies, concepts,
and analyses. While | will show that none of these arguments disconfirms, or
even weakens, g theory, they have provided important tests and additional data
andf hlave thereby refined and extended our knowledge of g and its practical
usefulness.

VERBAL ARGUMENTS

THE SPECIFICITY DOCTRINE

‘The viewpoint that | have dubbed the specificity doctrine[] is the belief that
“intelligence” consists of nothing other than a learned repertoire of many bits
of knowledge and skills, and that environments differ in the opportunity they
afford each individual to acquire these various bits of knowledge and skills.
Therefore, peaple’s repertoires of knowledge and skills differ to varying degrees,
1Q tests are designed to sample some very limited and selected portion of all
these environmentally acquired bits of knowledge and skill, particularly those
elements to which the socially dominant group attaches special value as requi-
sites for_?ammg and maintaining their status. A few actual guota_tlons, each
from a different source, may reveal the flavor of the specificity doctrine perhaps
better than this general definition of it.

[Mjodern science is looking at intelligence as a set of skills and techniques by
which a person represents information from the environment and then acts upon
that information in such a way as to produce more and more abstract ideas....
IQ tests must be recognized as artificial tools to rank individuals according to
certain skills.

1Q tests measure the degree to which a particular individual who takes the test

has experience with a Earticular piece of information, the garticular bits of know!-
edge, the particular habits and approaches that are tested by these tests.
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Each person functions in a unique way. The fact that she or he comes out with
[an IQ% score that is above average or below average is an artifact of the technique
we have used to measure the trait.

Children can be taught to do intelligence tests just as they can be taught to do
English, arithmetic, chess, and crosswords.

Intelligence testing is a political expression of those groups in society who most
successfully establish behavior they value as a measure of intelligence.

Note especially that the key words the specificity doctrine uses to describe “in-
telligence” and 1Q tests are skills, techniques, and bits ofknowledge. What these
terms have in common is not just the implication of particularity, but the idea
that intelligence is a learned, taught, or trained skill (like doing the manual of
arms). Presumably, an%one can acquire such a specific skill through proper train-
ing and practice (in the military, basic training is built on precisely that as-
_sumptmng). Therefore, a person’s Iack_mg a particular skill or bit of knowledge
implies only a failure to have acquired it, either by a fluke, or for lack of
exposure to it in the person’s culture, or lack of proper education, or of interest,
necessity, motivation, or opportunity. This particularistic interpretation of “in-
telligence” is esi)eciall(}/ alluring to the egalitarian viewpoint. If “intelligence”
consists only of learned skills, and if 1Q tests are just contrivances for sampling
those skills and bits of knowledge valued bY the dominant segment of sometr,
then the implications of observed individual and gro_ui) differences in “intelli-
gence” are at best minimal or at worst a crY_ for social action. _

At first glance, the premise that the “intelligence” tested by IQ tests is purely
learned has obvious commonsense validity. How, one might reasonably ask, can
a person possibly answer questions if the answers hadn’t been learned, or display
skills that hadn’t been acquired? A test item and its correct answer are easily
conceptualized as the stimulus (S) and the response ﬁR)_m the behavioristic
theories of S-R conditioning and learning. Neurologically intact organisms pre-
sented with a particular stimulus can learn to make a particular response to it
after repeated trials of the S-R sequence in which each trial is followed by
reward (for the correct response) or punishment (for the incorrect response). The
view that all complex human abilities are entlrey the result of such conditioning
or Iearnln%, and thus reflect nothing but the individual’s environmental experi-
ences, is the legacy of the “radical behaviorism” school of psK_chongy_founded
in the 1920s bﬁ ohn B. Watson (1878-1958). One of the historic figures in
American psychology, Watson’s most famous and often quoted words (from
Behaviorism, 1924), which will probably outlive anything else he ever wrote,
best expresses this point of view: “Give me a dozen_ healthy infants, well-
formed, and my own specified world to bring them up in and I’ll guarantee to
take any one at random and train him to become any type of sBemaIlst | might
select—doctor, lawyer, artist, merchant-chief and, yes, even beggar-man and
thief, regardless of his talents, penchants, tendencies, abilities, vocations, and
race of his ancestors.”
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~ “Intelligence” as Learned Behavior. From the 1930s to the 1970s, Amer-
ican psychology was predominantly behavioristic, thou%h not entirely of the
“radical” variety espoused by Watson. On the whole, behaviorism did much to
help ﬁsychology break away from speculative philosophy and to make it a
branch of the natural sciences. For his pioneering role in this effort, Watson
deserves an honored place in the history of behavioral science. The behaviorist
a_pi)ro_ach unquestionably advanced the science of conditioning and learning, a
field in which some of the great figures in the history of behavioral science—
Ivan Pavlov, E. L. Thorndike, Clark Hull, and B. F. Skinner—earned their fame.
Behaviorism has especially dominated that branch of psychology generally
known as experimental psychology. It also contributed methods and tools that
a_reI now used in such diverse research areas as pharmacology and neurophy-
siology.

Bugthhere were some psychological phenomena that behaviorism proved un-
able either to explain or to understand. Behaviorism’s greatest inadequacy was
its unwillingness even to consider the field of differential psychology. Largely
as a result of the behaviorism that so pervaded American psychology for almost
half a century, and its conspicuous inahility to Fro_vide a coherent account of
the main phenomena associated with individual differences, differential ﬁsy-
8ho|ggy was virtually excluded from mainstream psychology for at least three
ecades.

Meanwhile, the main research tools of differential psychology— mental tests—
developed independently into what became another major branch of psychology
in its own right, namely, psychometrics._PsYchometriqs developed as a substan-
tively nontheoretical technology for reliably measuring individual differences
and _vahdatmg the practical use of the measurements for making decisions and
predictions about individuals. The genuine success of psychometric technology
In achieving its practical aims was amply demonstrated by the utility of psy-
chometric tests in the diagnosis of school learning problems, college admissions,
personnel selection, and the assignment of recruits to different specialized train-
Ing schools in the armed services. No other branch of psy_chology could claim
practical aplpll_catlons with such conspicuously consequential and economically
demonstrable impact.

Psychometric technology, however, was not expressly concerned with the
nature of just what it is that is measured by mental tests (as, for example,
Spearman was). It focused on proving the reliability and practical predictive
validity of the measurements. Traditionally this purely practical orientation has
emphasized the manifest features of tests and their measurement properties per
se, rather than the latent traits that contribute to their variance. By latching on
to the former aspect of mental tests and ignoring the latter, a few latter-day
Watsonians still try to explain “intelligence” or IQ and the psychometric data
strictly in terms of behavioristic theories of learning.2

The hehavioristic approach attempts to understand 1Q (or other mental test
scores) in purely behavioral terms by applying the methods of experimental
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psychology to a “task analysis” of the specific behavior called for by single
test items or a very narrow class of similar items. When subjects are trained on
one type of task typical of certain mental test items, there is a “transfer of
training” (that is, an increased proficiency in performance on similar tasks that
have not been specifically trained). This is one of the principles of learning that
is invoked to account for the correlation hetween various test items. However,
it is a further principle that the amount of transfer decreases sharply as the
similarity between the trained and untrained task requirements decreases. Trans-
fer of training cannot, therefore, explain the substantial correlations repeated|
found between highly dissimilar items. To explain the correlations between dif-
ferent kinds of items or tests, behavioristic theorists invoke yet another princi-
Ble—the learning of general strategies, or systematic procedures, for solving
road classes of problems. The learned strategies that are invoked to explain
high correlations between ver>r dissimilar tasks must be made so all-
encompassing as to be predicdvely vacuous. Most often, however, the cause of
interitem correlations is s!mpI?/_ |%nored, because it cannot be explained con-
vmcmﬁly in strictly behavioristic terms, . o
If the only source of individual differences is past learning, it is hard to
explain why individual differences in a variety of tasks that are so novel to all
of the subjects as to scarcely reflect the transter of training from prior learned
skills or problem-solving strategies are still highly correlated. Transfer from
prior learning is quite task-specific. It is well known, for example, that memory
span for digits (i.e., repeating a string of n random digits after hearing them
si)oken at a rate of one digit per second) has a moderate correlation with 1Q. It
also has a hlﬂh correlation with memory span for random consonant letters
presented in the same way. The average memory SEan_ in the adult population
IS about seven digits, or seven consonant letters. (The inclusion of vowels per-
mits the grouping of letters into pronounceable syllables, which lengthens the
memory span.) Experiments have been performed in which persons are given
rolonged daily practice in digit span memory over a period of several months.
igit span memory increases remarkably with practice; some persons eventually
become able to repeat even 70 to 100 digits without error after a single pres-
entation.BLBut this developed skill shows no transfer effect on 1Q, provided the
1Q test does not include digit span. But what is even more surprising is that
there is no transfer to letter span memory. Persons who could repeat a string of
seven letters before engaging in practice that raised their digit span from seven
to 70 or more digits still have a letter span of about seven letters. Obviously,
Fracticing one kind of task does not affect any general memory capacity, much
ess g.
W%at would happen to the g loadings of a battery of cognitive tasks if they
were factor anaIKzed both before and after subjects had been %lven prolonged
Fractlce that markedly improved their performance on all tasks of the same kind?
know of onIY one study like this, involving a battery of cognitive and percep-
tual-motor skill tasks. 4 Measures of task performance taken at intervals during
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the course of practice showed that the tasks gradually lost much of their g
loading as practice continued, and the rank order of the tasks’ pre- and post-
practice ¢ loadings became quite different. Most striking was that each task’s
specificity markedly increased. Thus it appears that what can be trained up is
not the g factor common to all tasks, but rather each task’s specificity, which
reflects Individual differences in the _sP_e_cmc behavior that is peculiar to each
task. By definition a given task’s specificity lacks the power to Fredlct perform-
ance significantly on any other tasks except those that are very close to the given
task on the transfer gradient.

The meager success of skills training designed for persons scoring below
average on typical g-loaded tests illustrates the limited gain in job competence
that can be obtained when specific skills are trained up, leaving % unaffected.
In the early 1980s, for example, the Army Basic Skills Education Program was
spending some $40 million Ber year to train up basic skills for the 10 percent
of enlisted men who scored below the ninth-grade level on tests of reading and
math, with up to 240 hours of instruction lasting up to three months. The pro-
gram was motivated by the finding that recruits who score well on tests of these
skills learn and perform better than low scorers in many army jobs of a technical
nature. An investigation of the program’s outcomes by the U.S. General Ac-
counting Office (G.A.0.), however, discovered very low success rates. Only a
small percentage of the training progiram’s enrollees completed the program
successfully, in terms of achieving the level of competence required for adequate
performance of manyg’obs. But to remedy the problem, the G.A.O. suggested
more highly specific torms of skills training. 1l recommended that the Army
carry out task analyses to determine the specific skills re%tfired for each partic-
ularmilitary job and provide training for just those skills. 5 The outcome of this
approach was not reported, but as will be seen in Chapter 9, there is massive
evidence that g is reflected even in individual differences in the outcome of
training highly specific skills.

In jobs where assurance of competence is absolutely critical, however, such
as airline pilots and nuclear reactor operators, government agencies seem to have
recognized that specific skills, no matter how well trained, tho_u?h essential for
job performance, are risky if they are not accompanied by a fairly high level of
g. For example, the TVA, a leader in the selection and training of reactor op-
erators, concluded that results of tests of mechanical aptitude and specific job
knowledge were made?uate for predicting an operator’s actual performance on
the job. A TVA task force on the selection and training of reactor operators
stated: “intelligence will be stressed as one of the most important characteristics
of superior reactor operators... .intelligence distinguishes those who have
merely memorized a series of discrete manual operations from those who can
think through a problem and conceptualize solutions based on a fundamental
understanding of possible contingencies.” B This reminds one of Carl Bereiter’s
clﬁver dgflmnon of “intelligence” as “what you use when you don’t know
what to do.”
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It is also interesting that the conception of “ intelligence” as a mere repertoire
of learned skills conflicts absolutely with the notion of “intelligence” that is
implicit in common Ian%uage. usage. For example, try substituting the word
“intelligence” in place of the italicized word in each of the foIIowm? sentences:
“He learned math in school.” His mother taught him music." “Although she
was at the top of her class in Latin, she has since forgotten most of it.” “She
picked up her accent from her Scottish grandmother.” Obviously, the word
“intelligence” has evolved in common Ian?ua e to mean some quality or at-
tribute, however ill-defined, that is essentially different from Iearnmg per se or
from the acquisitions of learning in the form of knowledge and skills. However,
people often infer a person’s “intelligence” from their impression of the per-
son’s knowledge and skills. The idea of learning ability (e.?., characterizing
someone as a “fast learner”) is closely associated with “intelligence” in com-
mon expression. While the acquisitions of IearninP (knowledge and skill) and
IearnlnF ability are commonly perceived as correlated, they also remain con-
%eptgualy distinct. (The relation of learning ability to g is discussed in Chap-
er

~ Closely related to the notion of “intelligence” as a repertoire of specific skills
Is the idea of competence. Some psychologists disparage or belittle the concept
of g and the use of highly g-loaded tests, and argue that tests of “competence”
should be used instead. No one denies the reality or value of competence, loosely
defined though it is. But to the extent that actual examples of competence in-
volve something much more general than demonstrated cap_ab|l|t%/ in a specific
situation calling for well-learned skills, its main ingredient is pro ablr g. Com-
petence is not a unitary trait, but a combination of traits: mostly g plus certain
personality factors plus resourcefulness and perseverance in bringing one’s ac-
quired skills and know-how to bear in certain situations. Aside from prior dem-
onstrated competence in a fairly broad sphere of activity, by far the best
predictor of competence is a highly g-loaded test hattery. (The predictive validity
of g for a wide variety of competence in “real life” situations is the topic of
Chapter 9.)

The specificity doctrine and theories of individual differences based exclu-
sively on learning principles are contradicted further by several important phe-
nomena in the ability domain. _ _

_The most distinctive aspects of mental maturation cannat be explained exclu-
sively in terms of learning. Few children at age five are able to copy a diamond-
shaped figure (); most five-year-old children cannot even be taught to do it
with specific training. Yet by age seven more than 50 percent can do it easily
without any prior training. A child cannot copy (much less draw from memory)
a f|%ure_ that he or she cannot conceptualize. It is the abstract conceptualization
of the figure that makes it g loaded, and that is why this task is used in Binet’s
test and other tests of children’s %eneral ability. Certain figures cannot be ade-
quately conceptualized until the child reaches a certain level of mental maturity
related to brain development,
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~ The causa] underpinnings of mental development take place at the neurolog-
ical level even in the absence of any specific environmental inputs such as those
that could possibly explain mental growth in something like figure copying in
terms of transfer from prior learning. The well-known “Case of Isabel” is a
classic example. B From birth to age six, Isabel was totally confined to a dimly
lighted attic room, where she lived alone with her deaf-mute mother, who was
her only social contact. Except for food, shelter, and the presence of her mother,
Isabel was reared in what amounted to a totally deprived environment. There
were no toys, picture books, or gadgets of any kind for her to pIaK with. When
found by the authorities, at age six, Isabel was tested and found to have a mental
age of one year and seven months and an Ig of about 30, which is barely at
the imbecile level. In many ways she behaved like a ve(rjydyoung child; she had
no speech and made only croaking sounds. When handed toys or other unfa-
miliar objects, she would immediately put them in her mouth, as infants nor-
mally do. Yet as soon as she was exposed to educational experiences she
acquired speech, vocabulary, and syntax at an astonishing rate and gained six
years of tested mental age within just two ¥ears. By the age of eight, she had
come up to a mental age of elﬂht, and her level of achievement in school was
on a par with her af};e-mates. This means that her rate of mental development—
gamm? six years of mental age in only two years—was three times faster than
that of the average child. As she approached the age of eight, however, her
mental development and scholastic performance drastically slowed down and
proceeded thereafter at the rate of an average child. She graduated from high
school as an average student. _ _ _
~ What all this means to the g controversy is that the neurological basis of
information processing continued developing autonomously throughout the six
years of Isabel’s environmental deprivation, so that as soon as she was exposed
to a normal environment she was able to learn those things for which she was
dev_eloi)mental(ljy “ready” at an extraordinarily fast rate, far beyond the rate for
typically reared children over the period of six years dunm}; which their mental
age normall?/ increases from two to eight years. But the fast rate of manifest
mental development slowed down to an average rate at the Fomt where the level
of mental development caught up with the level of neurological development,
Clearly, the rate of mental development during childhood is not just the result
of accumulating various learned skills that transfer to the acquisition of new
skills, but is largely based on the maturation of neural structures. N
Another refutation of the attempt to explain variation in mental ability as
Burely differences in learned skills is the fact that the size of the correlations
etween various abilities that are exclusively due to the abilities” g loadings
(that is, correlation excluding group factors) cannot be explained in terms of
learning and transfer or general problem-solving strategies. These explanations
ma){ be idly invoked, but they have no predictive power. Is there ani/ prmmgle
of earnm% or transfer that would explain or predict the high correlations e-
tween such dissimilar tasks as verbal analogies, number series, and block de-
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signsl Could it explain or Fredict the correlation between pitch discrimination
ability and visual perceptual speed, or the fact that they both are correlated with
each of the three tests mentioned above? o

_Finally, to the extent that a theory of mental ability tries to explain individual
differences solely as the result of learning, it is doomed to refutation by the
evidence of behavioral genetics, which shows that a preponderant proportion of
the variance of 1Q (even more so of g) consists of genetic variance. An indi-
vidual’s genes are certainly not subLect to learning or experience. But it is cer-
tainly a naive mistake to suppose that the high heritability of g implies that a
great variety of learning experience is not a Ere[e uisite for successful perform-
ance on the tests that measure g. What high heritability means is that individual
differences in test scores are not mainly attributable to individual differences in
opportunity for the prerequisite learning. (A review of recent developments in
the genetics of mental ability is Presented in ChaPter 1) o

Contextualism. This is a fairly recent idea—I would call it an |deology—
that |s_m|stake_nlﬁ/ thought to challenq_e P It reallﬁ does nothing of the kind.
What it essentially boils down to is little more than another argument about
how “intelligence” should be defined. The general answer given by contex-
tualists is that no one cross-cultural definition of “intelligence” is possible in
behavioral or psychometric terms, because “intelligence” 1s just whatever kinds
of behavior are typlcall¥ valued in any particular cultural context. Examples are
usually drawn from cultures that are most different and remote from modem
Western civilization.

Contextualism argues, for example, that some cultures might consider Einstein
“unintelligent” if it were found that he could not throw a spear skillfully enough
to fell a wild boar in the bush. That Einstein spent his time scribbling formulas
like E = me2 would probably be seen as a mental disorder in this culture that
valued hunting skill above all other abilities. The behavior that one culture
values as “intelligent,” it is argued, may be seen as maladaptive in some other
culture. Beliefs, motives, skills, and actions are perceived as “intelligent” only
in terms of what certain persons consider effective or rewarding in a particular
context. Thus criminal and antisocial acts, provided they escape the law while
seeming to benefit the Iperpe_trat(_)r,_ may be admired as “Intelligence” in certain
subcultures. Contextualism is trivial from the standpoint of research on mental
ability because it provides no answer for the wide range of individual differences
that exists even when the total context of ﬁerformance is held constant (as, for
example, among full siblings reared togetner). The interpretations of “intelli-
gence” offered by cultural relativism and contextualism indeed st_ren?t_hen my
contention in Chapter 2 that attempts to define “the essence” of “intelligence”
are scientifically unproductive.9
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MATHEMATICAL AND STATISTICAL ARGUMENTS

The following challenges to g are considerably more serious and sophisticated
than those mentioned thus far. They have had a stron?er and more enduring
influence on research and theories of mental ability. Although some are quite
elaborate theories, only their specific aspects that may seem to pose a challenge
to the construct of g are discussed here.

GUILFORD'S “STRUCTURE-OF-INTELLECT” MODEL

While he was director of aviation psychology for the U.S. Air Force durin
World War II, the eminent psycholo?wt Joy Paul Guilford §1897-1987_?_ devel-
oped his widely known Structure-of-Intellect (SOI) model of human abilities. 1L
Guilford’s thinking was more diametrically opposed to Spearman’s than was
any other theorist’s. Guilford’s theory does not recognize the existence of g and
formally has no place even for second-order ?roup factors. But it also proved
to be an unconvincing and short-lived challenge—one might say pseudo-
challenge—to g theory. Carroll’s summary of the SOI model fairly represents
the viewpoint of most present-day researchers in this field: “Guilford’s SOI
model must, therefore, be marked down as a somewhat eccentric aberration in
the history of intelligence models; that so much attention has been paid to it is
disturbing, to the extent that textbooks and other treatments of it have given the
imprelssilon that the model is valid and widely accepted, when clearly it is
not.” I'

The SOI model is termed afacet model. The model presupposes three facets
of atuhtg, each with several forms: Contents (visual, auditory, symbolic, se-
mantic, behavioral), Products (units, classes, relations, systems, transformations,
|mpI|cat|onsJ, and Operations (cognition, memorK, divergent production, con-
vergent production, and evaluatmng. Each of the three facets can be represented
as one dimension of a rectangular prism containing 5 X 6 X 5 = 150 cells.
Each cell is one of the abilities postulated by the SOI. Each of the 150 abilities
is thus derived by the intersection of one form of each of the three facets, as
shown in Figure 5.1. Guilford found or devised at least 100 tests that he assigned
to different cells of the SOI. Some forty or fifty cells remained unfilled by actual
tests, but sugsgested the kinds of tests that would need to be developed to fill
them. In the SOI model, separate or independent abilities are smjpla/ postulated
by the model according to a predetermined scheme. Tests are devised to measure
each of the postulated” abilities. Many existing tests can be classified into one
of the SOI categories. _

Auditory digit span memory, for example, would fall into the cell created by
the intersection of Contents-m&xmvr X Products-units X Operatlons-memorr.
Visual digit span memory would fall into a different cell on one facet, namely
Contents-visua\, with the other facets remaining the same. According to the
model, the abilities represented in each of the 150 cells are assumed to be
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Figure 5.1. Guilford’s facet model, known as the Structure-of-Intellect (SOI), in which
each cell, created by the intersection of a particular form of each of the three facets
(Contents, Products, Operations), defines a distinct ability. The SOI is really a schema
for classifying or generating a wide variety of cognitive tests rather than a theor%/ of
mental ability. The SOI does not map onto the factors derived from any form of hier-
archical factor analysis. (The Structure-of-Intellect model, J. P. Guilford, in B. B. Wol-
man, ed., Handbook ofintelligence: Theories, measurements, and applications, Copyright
® 1985. Reprinted by permission of John Wiley & Sons, Inc.)

uncorrelated. In fact, however, auditory and visual digit span memory are per-
fectly correlated (after correction for attenuation) in the normal population.12
(The correlation Is made less than perfect by including persons who have a
temporal lobe lesion, which results in a form of aphasia that impairs processing
of auditory but not visual information.) Many other tests that are placed in
different cells of the SOI are also hi?hly correlated.B

Any form of factor analysis that allows the extraction of a general factor has
no trouble finding a very robust g in any sizable collection of Guilford’s tests
despite their assignment to distinct cells of the SOI. Guilford nonetheless argued
that the 150 cells were orthogonal, or uncorrelated, primary factors. His empir-
ical demonstration of so many orthogonal factors, however, relied on a technique
known as targeted orthogonal rotation. AptIY named Procrustes, this method
literally forces tests that were specifically selected or designed to measure the



Challenges to g 117

SOI abilities to have si%nificant loadings onlg on particular factors, the number
and definitions of which are predetermined by the SOI model. This cannot be
accepted as evidence that the 150 abilities in different cells of the SOI are not
intercorrelated, since Guilford’s Procrustes method of orthogonal rotation fore-

ordains uncorrelated factors. In brief, Guilford simply assumed a priori that g
does not exist, and he eschewed any type of factor analysis that would allow ¢

to appear. _ -
iéro Correlations between Abilities. Guilford’s contention that g is unten-
able probably originated, at least in part, from his observation that some con-
siderable number of cognitive tests showed correlations with each other that are
not mgmﬁcant!jy different from zero. The finding of nonsignificant correlations
in Guilford’s data based on U.S. Air Force personnel led to his extensive re-
view14l of the 7,082 correlations among various SOI tests accumulated over
some fifteen years. He concluded that about 24 percent of the correlations were
not significantly greater than zero. For a good many years, this claim was in
fact considered the chief item of evidence against g theory.
~Guilford’s analysis and conclusion, however, have since been found falla-
cious. The nonsignificant and near-zero correlations he found in his data were
the result of several artifacts: sampling error, restriction of the range-of-talent,
attenuation due to measurement error, and the inclusion of some tests of “di-
vergent thinking™ that do not gua_lify as tests of ability as it is defined in Chapter
3. The 7,082 correlations in Guilford’s study show a normal frequency distri-
bution, with the number of zero and negative correlations no greater than would
be theoretically expected because of chance error. When proper corrections are
made for restriction of range and attenuation, all of the correlations are above
zero, with a mean of +.45.111 With the collapse of Guilford’s claim of zero
correlations between mental abilities, there remains no hona fide evidence in the
SOI model that contradicts the basic premise of g theory that all mental tests
are positively correlated.

SAMPLING THEORIES OF THORNDIKE AND THOMSON

The sampling theories of ¢ do not really question the existence of g as a
factor analytic construct, yet it is often mistakenly believed that they somehow
challenge or disprove the “true” existence of g. While acknowledging g as a
factor, sampling theory interprets it as representing not a unitary property of the
mind or brain, such as Spearman’s hypothesis of “mental energy,” but as the
overlap of complex mental tests that draw upon different samples of the myriad
uncorrelated “elements” that, in various combinations, constitute the different
mental abilities measured by tests. _

Sampling _theorg, though not called b}/ that name until later, seems to have
originated with Edward Lee Thorndike ( 874-19_492, America’s first major abil-
ities theorist. Thorndike was most famous for his theory of leaming, which he
named connectionism. It held that learning consists of “selecting and connect-
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Figure 5.2. lllustration of the samplinghtheory of ability factors, in which the small circles
represent neural elements or bonds and the Iargie circles represent tests that sample different
sets of elements (labeled A, B, and C). Correlation between tests is due to the number of
elements they sample in common, represented by the areas of overlap. The overlap of A-B-
C is the general factor, while the overlaps of A-B, A-C, and B-C are group factors. The non-
overlapping areas are the tests’ specificities. Source: Bias in mental testing by Arthur R.
Jensen, Fig. 6.13, p. 238. Copyright ® 1980 by Arthur R. Jensen. Reprinted with permission
of the Free Press, a Division of Simon & Schuster, and Routledge Ltd.

ing” stimuli (S) and responses (R). The S-R connections were called bonds.
Thorndike thought of these bonds in neural terms, presumably as synaptic con-
nections. He hypothesized that individuals differ in the total number of potential
bonds they are able to acquire through learning and experience. But as a staunch
hereditarian, he believed that individual differences in the number of nerve cells
available for acquiring such bonds are innate. Successful performance on any
given mental test item would involve the activation of some limited set of the
S-R bonds, and any test composed of a wide variety of items would therefore
involve a great many S-R bonds, Different tests composed of a variety of items
would inevitably tap some of the same bonds, and the fact that various tests
sample some of the same bonds in common is what causes the tests to be
correlated. The sampling theory can be depicted in terms of the elements sam-
pled by different tests, as shown in Figure 5.2.

Thorndike came to these conclusions even as ear!jy as 1903, a year before
Spearman’s g entered the picture. Of course, Thorndike immediately saw the
opposition between his connectionist interpretation and Spearman’s idea that test
intercorrelations reflect some underlying unitary cause.

In 1923, a young British psychologist, Godfre?/ Thomson (1881-1955), came
to spend a year in Thorndike’s department at Columbia University. At that time,
Thomson was already known as the sharpest critic of Spearman’s theory of
mental ability as a unitary factor, and it was partly on that basis, along with his
expertness in mathematics and statistics, that Thorndike sought him for a posi-
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tion on the Columbia faculty.16 After a year at Columbia, however, Thomson
accepted a distinguished professorship at Edinburgh University and became fa-
mous in his own right, being one of the _onlg three British psychologists (along
with Sir Frederick Bartlett and Sir Cyril Burt) ever knighted. Thomson an
Thorndike were of like mind regarding the interpretation of Spearman’s % but
because of Thomson’s superior understanding of factor analysis, he was able to
formalize Thorndike’s argument in mathematical terms. It was Thomson’s par-
ticular formulation that became known as the sampling theory of mtelh?en_ce_.

Thomson demonstrated mathematically that various-sized groups of digits
randomIY sampled from a large pool of |%|ts (each equally represented) could
be correlated with each other in terms of the number of digits any two random
samples had in common.T He showed that the correlations amon%,a number of
groups of randomly sampled dIFItS displayed the same kind of hierarchy that

pearman had found for mental tests, and that Spearman’s two-factor theory
(i.e., a general factor + specific factors) could be demonstrated for the groups
of random digits that he Penerated by tossing dice. The random 1hence uncor-
related) digits theoretlcal?]/ corresgond to the multitude of neural elements or
“bonds™ originally hypothesized YThorndike, while the various-sized groups
into which they were randomly selected correspond to mental tests. Thomson
correctly argued from this random sampling demonstration that, although Spear-
man’s g can indeed he extracted from the matrix of test intercorrelations by
means of factor analysis, Spearman’s h){pothems that g reflects some unitary
cause, such as the general level of neural or mental “energ%/” available to the
brain’s activity, is not a necessary explanation ofgi or of the all-positive cor-
relations among mental tests. These correlations could be explained just as well,
and perhaps more parsimoniously, by the overlai) of the multiple uncorrelated
causal elements that enter into performance on all mental tests. To simulate the
results of the factor analysis of mental tests, the sampling model only requires,
in Thomson’s words, “that it be possible to take our tests with equal ease from
any part of the causal background; that there be no linkages among the bonds
which will disturb the random frequency of the various possible combinations;
in other words, that there be no ‘faculties’ in the mind. . .. The sampling theory
assumes that each ahility is comﬂosed of some hut not all of the bonds, and
that abilities can differ very markedly in their ‘richness,” some needing very
many ‘bonds,” some only a few.” 18 Thomson’s formulation appears quite plau-
sible and has attracted many subscribers.19On these terms, it seems at least as
plausible as Spearman’s unitary “mental ener?y” theory of g.

A major criticism of Thomson’s version of sampling theory (and the same
can probably be said of Spearman’s “en_ergﬁ”) is that, as originally formulated,
It is unsusceptible to falsification and is thus empirically vacuous. The psy-
chometrician Jane Loevinger expressed this view as follows:

The sampling theory hardly qualifies as a true theory, for it does not make any

assertion to which evidence is relevant. Perhan the large number of adherents to

this view is due to the fact that no one has offered evidence against it. But until
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the view is_defined more sharply, one cannot even conceive of the p053|b|l|t%/ of
contrary evidence, nor, for that matter, confirmatory evidence. A statement about
the human mind which can be neither supported nor refuted by any facts, known
or conceivable, is certainly useless. Bridgman and other philosophers of science
would probably declare the sampling theory to be meaningless.

The plausibility of sampling theory gains its strength from two undeniable ob-
servations that are consistent with it. First, it is a fact that the brain is composed
of a great many neural elements and some large number of these necessanIK
play a role in any kind of mental activity. The second is that the degree to whic
mental tests are correlated with each other is related to the complexity of the
mental operations they call for. More complex tests are highly correlated and
have larger g Ioadm%s than less complex tests. This is what one would predict
from the sampling theory: a complex test involves more neural elements and
would therefore have a greater probability of involving more elements that are
common to other tests.

But there are other facts the overlapping elements theory cannot adequately
explain. One such question is why a small number of certain kinds of nonverbal
tests with minimal informational content, such as the Raven matrices, tend to
have the highest g loadings, and wh%/ they correlate so highly with content-
loaded tests such as vocabulary, which surely would seem to tap a largely dif-
ferent pool of neural elements. Another puzzle in terms of sampling theory is
that tests such as forward and backward digit span memory, which must tap
many common elements, are not as highly correlated as are, for instance, vo-
cabulary and block designs, which would seem to have few elements in com-
mon. Of course, one could argue trivially in a circular fashion that a higher
correlation means more elements in common, even though the theory can’t tell
us why seemingly very different tests have many elements in common and
seeminglg similar tests have relatively few.

Even harder to explain in terms of the sampling theory is the finding that
individual differences on a visual scan task (i.e., speed of scanning a set of
digits for the presence or absence of a “target” digit), which makes virtually
no demand on memory, and a memory scan test (i.e., speed of scanning a set
of digits held in memory for the presence or absence of a “target” d|gi|t) are
perfectly correlated, even thou?_h they certainly involve different neural proc-
esses. 2l And how would sampling theory explain the finding that choice reac-
tion time is more highly correlated with scores on a nonspeeded vocabulary test
than with scores on a test of clerical checka speed? Another apFarent stum-
bling block for sampling theory is the correlation between neural conduction
velocity (NCV) in a low-level brain tract (from retina to primary visual cortex)
and scores on a complex nonverbal reasoning test (Raven), even though the
higher brain centers that are enﬁage_d in the complex reasoning ability demanded
by the Raven do not involve the visual tract. ,

Perhaps the most problematic test of overlapping neural elements posited by
the sampling theory would be to find two (or more()] abilities, say, A and B, that
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are highly correlated in the Peneral population, and then find some individuals
in whom ability A is severely impaired without there being any impairment of
ability B. For example, looking back at Figure 5.2, which illustrates sampling
theory, we see a large area of overlap between the elements in Test A and the
elements in Test B. But if manK of the elements in A are eliminated, some of
its elements that are shared with the correlated Test B will also he eliminated,
and so performance on Test B (and also on Test C in this diagram? will be
diminished accordingly. Yet it has been noted that there are cases of extreme
impairment in a particular ability due to brain damage, or sensory deprivation
due to blindness or deafness, or a failure in development of a certain ability due
to certain chromosomal anomalies, without any sign of a corresponding deficit
in other highly correlated abilities.22 On this point, behavioral geneticists Will-
erman and Bailey comment: “Correlations between phenotypically different
mental tests may arise, not because of any causal connection am_on? the mental
elements required for correct solutions or because of the physical sharing of
neural tissue, but because each test in part requires the same ‘qualities’ of brain
for successful performance. For example, the efficiency of neural conduction or
the extent of neuronal arborization may be correlated in different parts of the
brain because of a similar epigenetic matrix, not because of concurrent func-
tional overlap.” 2 A simple analogy to this would be two indePendent electric
motors (analogous to specific brain functions) that perform different functions
both running off the same battery (analogous to g). As the battery runs down,
both motors slow down at the same rate in performing their functions, which
are thus perfectly correlated although the motors themselves have no parts in
common. But a malfunction of one machine would have no effect on the other
machine, although a sampling theory would have predicted impaired perform-
ance for hoth_machines, _ - N

Cognitive Process Theories. Sampling theorf need not be limited to positing
an indefiniteI% large number of undefined elements or hypothetical neural
“honds” as the units of sampling. The idea of elementary cognitive processes
(ECPs, also called information processes) has also been proposed as a basis for
a sampling theory of g and the group factors. The advantage of ECPs is that
they are few in number, capable of being operationally defined, and can be
measured at the behavioral level, though not always directly in an isolated form,
by the use of elementary cognitive tasks (ECTs). The ECPs are processes such
as stimulus apprehension, encodm? of stimuli, discrimination, choice, retrieval
of information from short-term or long-term memory, transformation or manip-
ulation of information in working memory, and response inhibition or response
execution,

The laboratory tasks (ECTs) used to measure these ECPs are so simple that
virtually all persons can perform them. The only reliable individual differences
are in response times and the degree of consistency of response times over many
repeated trials for different individuals. Individual differences in these simple
measures of the efficiency of information processing are correlated with scores
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on various psychometric tests to the degree that the tests are ¢ loaded. It has
been h\épothesized that various psychometric tests involve different subsets of
the ECPs to varying degrees and that the most highly g-loaded tests are those
that call upon a larger number of the ECPs or upon those ECPs that most
crucially determine capacity for information processing (analogous to a com-
puter’s central processing unit). This line of theory and research is an important
recent development in the science of human abilities (see Chapter 8).

Behavioral Repertoire Theory. One of the leading researchers on human
abilities, Lloyd G. Humphreys, has long espoused what can be described as a
pragmatic behavioristic sampling theory of “intelligence.” 23 It represents the
purest form of scientific positivism one is likely to find in all of psychology,
outside the writings of B. F. Skinner and his most literal disciples. Humphregs
favors Thomson’s sampling theory, but prefers that the units of sampling be
¢ phenotﬁplc,” that is, a repertoire of ohservable behavior. _

Humphreys is not in the least a critic of g theory, but he has his own rather
unique definition of it, although he seems fo ﬁrefer the term “general intelli-
gence.” He has consistently defined it within the positivism-behaviorist bound-
aries, as follows:

Intelligence is the acquired repertoire of all intellectual (cognitive) skills and
knowledge available to the person at a particular point in time. Individual differ-
ences in intelligence are monotonically related to the size of this repertoire. To
avoid circularity, intellectual is defined by the consensus of experts working in
the area. The repertoire is acquired during development, but it is acquired, stored,
and retrieved by a biological organism. Thus there is both a genetic and an en-
vironmental substrate for the trait.... A test cannot measure the entire repertoire,
but it can measure a broad representative sample of the elements. (1994, p. 180)

| believe that a scientific construct or theorr should not have to deﬁend upon a
consensus of experts %or of anyone else) for its validity, although there may
well be a consensus that certain data or empirically tested predictions are in
accord with the construct. This is especially so for a theory that strives so hard
to be positivistic. Also, in the advanced sciences, theoretical constructs, as g is,
are not defined in terms of a “repertoire” of all their multifarious effects, but
in terms that account for these effects. As Eysenck noted: “Physicists do not
define gravitation in terms of its consequences, such as the apple falling on
Newton’s head, planetar% motions, the tides, the shapes of the planets, the move-
ments of the moon, the bulging of the equator, the existence of black holes, the
earth’s rate of precession, galaxy formation, the movements of comets, or the
existence of asteroids. They define gravitation as that which is responsible for
all these events, and clearly no aﬁreement would ever be reached if definitions
were phrased solely in terms of the consequences of gravitational forces!” 24

CATTELL'S THEORY OF FLUID AND CRYSTALLIZED ABILITIES

Several years after Raymond B. Cattell (b. 1905) earned his Ph.D. degree
(1929) under Spearman, developments in mental testing led him to the hypoth-
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esis that Spearman’s ¢ is not a unitary factor but a composite of two quite
different general factors, either of which may dominate depending on the nature
of the tests that are factor analyzed. In Cattell’s thinking, these two presumably
new, semigeneral factors completely replaced Spearman’s single overarching g.
Cattell termed them fluid intelligence and crystallized intelligence, now conven-
tionally symbolized as Gfand Gc.5

Gfmight be called fluid reasoning, or the capacity to figure out novel prob-
lems. 1t is indeed the “eduction of relations and of correlates™ as these are
demonstrated in mental tests (or life situations) in which sr:ecific prior learned
knowledge, skills, algorithms, or strategies are of relatively little use. In Cattell’s
words, 5 Gf *is an expression of the level of complexity of relationships which
an individual can perceive and act upon when he does not have recourse to
answers to such complex issues alreaay stored in memory” (p. 99). Gfis most
loaded in tests that have virtually no scholastic or cultural content, such as
perceptual and figural tests like Raven’s matrices, or in verbal tests that depend
mainly on figuring out the relationships between certain words when the mean-
ings of all the words themselves are highly familiar.

Ge could be called consolidated knowledge. As described by Cattell® Gc
“arises not only from better educational opportunity but also from a history of
persistence and good motivation in applying fluid intelligence to apf)roved areas
of learning” (p. 96). Gc therefore reflects scholastic and cultural knowledge
acquisition. Cattell theorizes that a person’s Gfis invested in the person’s learn-
ing experiences throughout the life span. As children grow up and their oppor-
tunities and interests differentiate, their Gf is invested in different subjects to
different de?rees. But in large part, individual differences in Gf determine in-
dividual differences in Gc among persons with similar educational and cultural
opportunities. Persons high in G/tend to acquire more Gc (i.e., they reap greater
returns on their initial investment) from their opportunities for learning than
persons of lower Gf. Persons from very different cultural backgrounds, however,
may differ markedlx in the Gc appropriate to anr one culture, even though they
may be equal in Gf. But each person’s G¢ would closely parallel his or her Gf
in the person’s own culture.

Ge is most highly loaded in tests based on scholastic knowledge and cultural
content where the relation-eduction demands of the items are fairly simple. Here
are two examples of verbal analogy problems, hoth of about equal difficulty in
terms of percentage of correct responses in the English-speaking general poF-
Flagog, buthhe first is more highly loaded on Gfand the second is more highly
oaded on Gc.

L Temperature is to cold as Height is to
(as) hot (b) inches () size (d) tall (g) weight

2. Bizet is to Carmen as Verdi is to
() Aida (b) Elektra (c) Lakme (d) Manon () Tosca
(Answers: 1, d; 2, 4)
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Gfand Gc typically emerge as higher-order (usually second-order) factors in
any large collection of tests given to a highly heterogeneous subject sample in
terms of educational or cultural background. In factor analyses based on groups
that are quite homogeneous in these respects, such as schoolchildren of the same
age and social-cultural back%round, Gfand Gc often are not clearly differentiated
and amalgamate into a single general factor. But in the general population Gf
and Gce are clearly discerned, and the psychological distinctions that Cattell
makes between them are valid. The major exception is Cattell’s prediction that
the heritability% of Gf is greater than that of Gc. AIthou%h this may be true in
culturally or linguistically heterogeneous samples for which some of the Gc-
loaded tests may be inappropriate or culturally biased measures, the usual finding
is that Gfand Gc have about the same heritability. In fact, the heritability of
scores on scholastic achievement tests is about the same as that on the best tests
of Gf. In terms of Cattell’s “investment” theory, one could say that persons’
standing on tests of Gc quite closely reflects the amount of Gf they had to invest
in the kinds of content that typically compose highly Gc-loaded tests.

Since the discovery of Gfand Gc, Cattell and his former student John Horn
have identified a number of other “general” factors (better called broad factors)
that emerge from large and diverse batteries as second-order factors, such as Gs
gnsual inspection speed), Gv (visual-spatial reasoning), Ga 1aud|tory thinking),

g (quantitative reasoning independent of Gc), and Gr (fluency In recall of
learned information, as in s(s)eed of naming familiar objects). These broad abil-
ities, thou%h each is labeled G (with a distinguishing subscript), are of course
not general to the whole matrix of tests. Along with Gfand Gc, they are cor-
related second-order factors from which a higher-order factor, or g, can be ex-
tracted. But Cattell and Horn prefer not to extract the third-order factor, or gi
contrary to the practice of most factor analysts. The Cattell-Horn model of abil-
ities, therefore, is called a truncated hierarchy. That is, it lacks the apex of the
hierarchy of factors, which is ? Cattell has stated in italicsa that "there can be
no such thin? as a categorical general factor” (p. 87). (By “categorical” here
he presumably means “uniquely determined” or “invariant” across factor anal-
yses of different groups of tests.) But this objection to extracting g from the set
of second-order factors, such as Gf, Gc, and all the other second-order factors
listed above, provided they are all present in the analyzed battery, does not take
into consideration the degree of invariance of the estimates of g that would
actually be found across different test batteries in which all of these second-
order factors could be identified. The departure from perfect invariance would
most likely be small.

At the time that only two factors, Gfand Gc, stood at the highest level of
Cattell’s “truncated” hierarchy, there was a valid reason not to extract a third-
order %_The reason is not that g doesn’t exist in the test batterﬁ, but that a third-
order hierarchical ¢ is mathematically indeterminate when there are no more
than two second-order factors. That is, there is only one correlation (i.., the
correlation between the two second-order factors, e.g., Gfand Gc) and all that
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can be determined is the geometric mean of the these factors’ g loadings, which
is equal to the square root of the correlation between the two second-order
factors. Although we can know the average of the two factors’ g loadings, we
can’t know the exact g loading of each factor separately, and ipso facto we
cannot properly calculate the ? loadings of each of the tests in the battery or
calculate the g factor scores of the subjects who took the tests.

‘What happens when a very large battery of tests yielding Gfand G, along
with all the other second-order factors listed above (and a good many other
second-order factors not listed here), are subjected to a hierarchical factor anal-
ysis in which the analysis is carried all the way, allowing a third-order g to
emerge? This has been done in five independent studies by the Swedish psr-
chomctrician Jan-Eric GustafssonZ/ and also by others, all with the same result.
Gustafsson found Gf and Gc and most of the other above-mentioned second-
order factors, and quite a few others. But Gustafsson’s most interesting and
important fmqu, which was consistent in all five studies, was that the third-
order g is perfectly correlated with Gf, so that when all the second-order factors,
including Gf, were residualized (i.e., the common-factor part of each second-
order factor that went into the g factor was removed), Gf completely disap-
?eared. Gfwas subsumed into the single, higher-order g. The other second-order
actors remained, alth,ough their substantial common variance was absorbed into
the g. The residualized Gc remained as an exclusively verbal-numerical-
educational factor. The residualized second-order factors represented mostly
types of test content, such as verbal and numerical in Gc and figural content in
Gv, but some second-order factors (e.g., auditory perception and memory) rep-
resent processes that operate on many types of content. In brief, given a wide
variety of tests in the factor analysis, Gtand g appear to be one and the same
factor, or at least to be so highly correlated as to make Gf redundant for all
practical purposes. _ _ _

Despite Gustafsson’s impressive demonstration, however, some psychologists
argue that there are too few large-scale studies at present to permit a definitive
conclusion about the equivalence of Gfand g.2* There are probably sufficient
data in the Cattell-Horn data banks to permit a definitive conclusion if the data
were analyzed by conflrmatorr factor analysis expressly to test this hypothesis.
Such an analysis would be well worth performing for its theoretical significance.

Width and Altitude of Intellect. E. L. ThorndikeZ2 hypothesized the exis-
tence of two aspects of mental ability, termed width and altitude, which are
somewhat akin to Gc and Gf, respectively. Width is measured by the number of
different kinds of things a person knows that are fairly easy to know— for ex-
ample, common vocabulary and general information items ‘that some 50 to 60
percent of the general population can answer correctly. Altitude is measured by
various kinds of reasoning problems in which information content is much less
important than relation eduction. The items range in complexity, and hence level
of difficulty, from problems that can be solved by 95 %ercent of the general
population“to items that can be solved by fewer than 5 percent. A person’s
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aItitudtle score reflects the level of complexity of the problems that the person
can solve,

Much to Thorndike’s surprise, his tests of altitude and width were almost
?erfectly correlated. They were not distinct aS}Eegts_of intellect at all, but re-
lected one and the same general ability, org. his is very much like the high
correlation typlcallﬁ found between Gfand Ge and the near equivalence of Gf
and g. It is a safe bet that if tests of a very wide variety of Ge types of items
(much like Thorndike’s test of “width of intellect”) were factor analyzed, they
would yield a general factor that is correlated probably as much as +.90 with
the general factor extracted from tests composed entirely of Gf types of items.
In fact, the items of the Verbal and the Performance scales of the Wechsler
Intelligence Scale for Children (WISC) correspond rather closely to Gc and Gf
ttypes of tests, respectively. In the national standardization sample, a general
actor extracted from just the Verbal scale subtests is correlated .80 with the
general factor extracted from just the Performance scale subtests. The average
g loading of the Verbal and Performance scales is therefore (.80 = .89. This is
almost as high as the reliability of IQ on the WISC, and correction for attenu-
ation would bring this average g very close to unity. _
It appears that the g extracted from a wide variety of tests with re?ard 0
information content and task demands is in effect a distillate of some relatively
small number of basic cognitive processes that enter into performance on this
wide variety of test items. The variance associated with the wide variety of
knowledge content and Sﬁecmc skills tapped by the many diverse tests is
“strained out,” so to speak, by the factor analytic procedure, most of it heing
left in the tests” specificities, while some of it goes into the first-order factors,
and less into the second-order factors. Little, if any, gets into the third-order
factor, or g, which therefore is like a distillate obtained from many diverse
abilities, qualitatively unlike any of them and reflecting individual differences
only in the overall efficiency of cognitive processes.

MULTIDIMENSIONAL SCALING AND GUTTMAN'S RADEX
MODEL

Louis Guttman (1916-1987), the eminent Israeli psychometrician, devised a
method for representinq the relationships between various mental tests, which
he called a radex model.2) Because Guttman’s radex does not use the terminol-
ogy of factor analysis and appears to have little resemblance to it, especially
making no mention of g (or of group factors), some psychologists have mistak-
enly believed that it contradicts g theory or does away with ¢ altogether.

The radex is obtained by what Guttman called “smallest_sFace” analysis,
using nonmetric multidimensional scahn%. It is a Ela_nar spatial representation
of the degree of smlanty between tests based on their correlations (or actually
the inverse of their correfations). That is, the larger the correlation between any
two tests, the smaller is the distance separating them. If each of many tests Is
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Figure 5.3. A radex representation of various ability tests given to 241 high school
students. The factor clusters (Gf, Gv, G, MS, PS, CS) are superimposed. (From Mar-
shalek, Lohman, & Snow, 1983. Used with permission of Ablex.)

represented as a dot in a spatial arra¥, the dots are scattered over a roughly
circular area. In man%/ applications of the radex plot to different batteries of
diverse mental tests, the cognitively most complex tests are found to congregate
near the center of the circle (i.e., they are the tests that have the highest average
correlations with other tests). Radiating out from the center are tests of lesser
complexity (and lower average correlations). Proximity to the center, therefore,
indicates greater complexity and greater generality (i.e., higher intercorrelations).

The other notable feature of the radex is that tests that are similar in content
(such as verbal, numerical, spatial, and memory) fall into different sectors of
the circle. The circle can be divided up, like cutting a pie, such that each slice
contains a particular type of tests. In other words, the locations of the tests in
the circular space (the radex) indicate %3) their degree of complexity and gen-
erality (i.e., average correlation with other tests), and (b) their degree of simi-
larity to other tests in terms of content. A radex representation of a large battery
of tests is shown in Figure 5.3. Note that Raven’s matrices test, which 15 usually
the most highly g loaded in many factor analyses, lies closest to the center of

the radex o _ _
In this analysis, as in others, Richard Snow and his co-workers at Stanford
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University have found that a hierarchical factor analysis of the same battery of
tests almost perfectly maps onto Guttman’s radex.3 That is, every test’s degree
of proximity to the center of the radex corresponds to the size of the test’s
(inverse) g loading, and every test’s proximity to the midline of the particular
sector in which it Is located corresponds to the size of the test’s (inverse) loading
on the Tgroup factor. The set of tests that identify a group factor in the hierar-
chical factor analysis falls within the same sector of the radex. In short, Gutt-
man’s radex model amounts to a spatial representation of a hierarchical factor
analysis. That a method other than factor analysis orders tests spatially in such
close accord with their g loadings as obtained from factor analysis further sup-
ports g theory.

GARDNER'S SEVEN “FRAMES OF MIND™ AND MENTAL
MODULES

Howard Gardner has been perceived as a critic of g theory and of tests that
mainly reflect g, such as the Q. | suspect that this is partly, if not largely, the
basis of the popularity accorded Gardner’s views, especially in educational cir-
cles, as many teachers feel desperate over the wide range of individual differ-
ences displayed in their classes. I a child has a low 1Q and is doing poorly in
school, there are, according to Gardner’s theory, 131 several other kinds of “ in-
telligence”™ in one or more of which the child may excel. Two of the seven
“intelligences” claimed by Gardner—linguistic and logical-mathematical—
would conmderablY overlap the conventional 1Q. The remamln(}; five “intelli-
gences” are spatial, musical, bodily-kinesthetic, and two kinds o Pers_onal “in-
telligences,” ‘intrapersonal, or the perception of one’s own eellnEs, and
interpersonal, or the perception of others’ feelings, motives, and the like (also
called “social intelligence” ). As exemplars of each of these “intelligences”
Gardner mentions the following famous persons: T. S. Eliot (linguistic), Einstein
Iogipal-mathemqticalg,. Picasso (spatial), Stravinsky (musical), Martha Graham
bodily-kinesthetic), Sigmund Freud&ntrapersonal{, and Mahatma Gandhi (in-
terpersonal). In an interesting book B3l Gardner gives biographical analy{ses_of
each of these famous creative geniuses to illustrate his theory of multiple “in-
telligences” and of the psychological and developmental aspects of socially
recognized creativity. When | ﬁersonally asked Gardner for his estimate of the
lowest 1Q one could possibly have and be included in a list of names such as
this, he said, “About 120.” This would of course exclude 90 percent of the
%eneral population, and it testifies to the threshold nature of g. That is, a fairly

igh level of g is a necessary but not sufficient condition for achievement of
socially significant creativity.

Gardner’s seven “intelligences” were not arrived at through the factor anal-
ysis of psychometric tests, but are identified in terms of several kinds of cate-
gorical criteria, such as the extent to which an ability can be impaired or
preserved in isolation by brain damage, the existence of idiots savants and prod-
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igies in the particular ability, a common set of information-processing opera-
tions, a distinct developmental history, evolutionary plausibility, type of
encoding in a symbolic system, modular or domain-specific abilities revealed
by laboratory tasks, and the finding that psychometric tests such as 1Q have low
correlations with at least three of Gardner’s seven “intelligences.” _

~ The boundaries of these criteria seem vague or elastic and one can easily
imagine other “ m_telll?_ences” that could be admitted br such criteria. Why Is
there)ono “sexual intelligence” (Casanova) or “criminal intelligence” (AL Ca-
pone)’

Some of Gardner’s seven “intelligences” cIe_arI?/ correspond to well-identified
group factors, such as linguistic (or verba_l?_, logical-mathematical (or quantitative
reasoning), and spatial. Tests of these abilities are all highly g loaded, and many
elements of musical aptitude have been found to be moderately g loaded ésee
Chapter 8, p. 223). Other of Gardner’s “intelligences” are not yet quantified or
measurable in a way that makes it possible at present to assess their% loadings
or their place in the factor analytic hierarchy. Some may not meet the criteria
of mental abilities as set forth in Chapter 3, but are rather products of psycho-
metrically identified abilities and certain personality traits @ee Chapter 14, pp.
572-578). The comEIeter nonquantitative nature of Gardner’s theorizing about
“intelligences” makes it impossible to assess their relative importance in terms
of variance accounted for in the total range of human variation or in terms of
their predictive validity in real-life situations.

As interesting as his theory of “multiple intelligences” may seem from the
standpoint of literary psychology, in which Gardner has no betters, it is hard to
see that it contributes anything substantively new to the taxonomy of abilities
and personality discovered by factor analysis.

In fact, it is hard to {usufy calling all of the abilities in Gardner’s system by
the same term— “intelligences.” If Gardner claims that the various abilities he
refers to as “intelligences” are unrelated to one another éwhich has not been
empirically demonstrated?}, what does it add to our knowledge to label them all
“intelligences™ ? All of them, of course, are abilities gas defined in Chapter 3),
several qualify as group factors, and at least three of the seven are known to be
substantially g loaded. To assign to the remaining traits the label “ intelligences”
makes no more sense to me than regarding chess-plarmg_abnny an athletic skill.
(After all, playing chess requires some little physical activity, and chess players
are jokingly called “wood pushers™). Bobby Fisher, then, could be claimed as
one of the world’s greatest athletes, and many sedentary chess players might be
made to feel %ood by being called athletes. But who would believe it? The skill
involved in chess isn't the kind of thing that most people think of as athletic
ability, nor would it have any communality if it were entered into a factor
analysis of typical athletic skills. Gardner’s analogous extension of the ordinary
meaning of “ intelligence” probabI% serves more to make people feel good than

to advance the science of mental ability. N _
In summary, | find nothing in Gardner’s writings that could be considered a
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technically meaningful or coherent criticism of g theory. Gardner is at his best
in writing about persons with some unusual accomplishment to illustrate his
theory of different kinds of “intellit[]ences.” Galton, in his Hereditary Genius
(1869), recognized that a high level of general ability is a necessary but not
suffictent condition for outstanding achievement. Besides an above-average level
ofg, an _excep_tionall?/ synergistic combination of special abilities or talents and
personality traits is always found in the kinds of outstanding exemplars of Gard-
ner’s several kinds of “intelligences,” such as the famous persons mentioned
above. Most psychomtricians would probably agree with the criticism of Gard-
ner’s theory of “multiple intelligences” in a recent textbook3 on “intelli-
gence” - “I'have arqued that a consideration of several sources of evidence used
y Gardner to establish the existence of independent intelligences may be used
to support the existence of a superordinate general intelligence factor. Thus |
find his taxonomy to be arbitrary and without empirical foundation. Neither his
rejection of a superordinate general factor [?] nor the specific subset of intelli-
?ences that he postulates appears to have a firm theoretical or empirical basis™

) | | |
Modular Abilities. Gardner invokes recent neurological research on brain
modules in support of his t_heorK.aBuI there is nothing at all in this research
that conflicts in the least with the findings of factor analysis. It has long been
certain that the factor structure of abilities is not unitary, because factor analysis
applied to the correlations among anK large and diverse battery of ab|I|;}/ tests
reveals that a number of factors (although fewer than the number of different
tests) must be extracted to account for most of the variance in all of the tests.
The g factor, which is needed theoretically to account for the positive correla-
tions between all tests, is necessarily unitary only within the domain of factor
analysis. But the brain mechanisms or processes responsible for the fact that
individual differences in a variety of abilities are positively correlated, giving
rise to g, need not he unitary. Whether the neural basis of g is some unitary
(p:rr(])cess %r) a number of distinct processes is a separate empirical question (see

apter 8).

Some of the highly correlated abilities identified as factors probably represent
what are referred to as modules. But here is the crux of the main confusion,
which results when one fails to realize that in discussing the modularity of
mental abilities we make a transition from talking about individual differences
and factors to talking about the localized brain processes connected with various
kinds of abilities. Some modules may be reflected in the primary factors; but
there are other modules that do not show up as factors, such as the ability to
acquire language, quick recognition memory for human faces, and three-
dimensional SP_ace perception, because individual differences among normal per-
sons are too slight for these virtually universal abilities to emerge as factors, or
sources of variance. This makes them no less real or important. Modules are
distinct, innate brain structures that have developed in the course of human
evolution. They are especially characterized by the various ways that informa-
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tion or knowledge is represented by the neural activity of the brain. The main
modules thus are linguistic (verbal/auditory/lexical/semantic), visuospatial, ob-
ject recognition, numerical-mathematical, musical, and kinesthetic.

~ Although modules generally exist in all normal persons, they are most strik-
ingly highlighted in two classes of persons, (a% those with highly localized brain
lesions or pathology, and #b) idiots savants. Savants evince striking discrepan-
cies between amazing proficiency in a particular narrow ability and nearly all
other abilities, often showing an overall low level of general ability. Thus we
see some savants who are even too mentally retarded to take care of themselves,
yet who can perform feats of mental calculation, or play the piano by ear, or
memorize pages of a telephone directory, or draw objects from memor%/ with
photographic accuracy. The modularity of these abilities is evinced by the fact
that rarely, if ever, is more than one of them seen in a given savant.

In contrast, there are persons whose tested general level of ability is within
the normal range, yet who, because of a localized brain lesion, show a severe
deﬂm_encY in some’ particular ab|||t¥, such as face recognition, receptive or ex-
pressive language dysfunctions (aphasia), or inability to form long-term mem-
ories of events. Again, modularity is evidenced by the fact that these functional
deficiencies are quite isolated from the person’s total repertoire of abilities. Even
in persons with a normally intact brain, a module’s efficiency can be narrowly
enhanced through extensive experience and practice in the particular domain
served by the module. , _

Such observations have led some researchers to the mistaken notion that they
contradict the discovery of factor analysis that, in the general population, indi-
vidual differences in mental abilities are all positively and hierarchicallkl cor-
related, making for a number of distinct factors and a higher-order general tactor,
or g. The presence of a general factor indicates that the workings of the various
modules, though distinct in their functions, are all affected to some degree by
some brain characteristic(s), such as chemical neurotransmitters, neural conduc-
tion velocity, amount of dendritic branching, and degree of myelination of ax-
ons, in which there are individual differences. Hence individual differences in
the specialized mental activities associated with different modules are correlated.

A'simple analo?y_might help to explain the theoretical compatibility between
the positive correlations among all mental abilities and the existence of modu-
larity in mental abilities. Ima%me a dozen factories (“persons”), each of which
manufactures the same five different gadgets (“modular abilities” ). Each ?adget
is produced by a different machine (“module™). The five machines are all con-
nected to each other by a gear chain that is powered by one motor. But each of
the five factories uses a different motor to drive the ﬁear chain, and each fac-
tory's motor runs at a constant speed different from the speed of the motors in
any other factory. This will cause the factories to differ in their rates of output
of the five gadgets (“scores on five different tests” ). The factories will be said
to differ in overall efficiency or capacity, because the rates of output of the five
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gadgets are positively correlated. If the correlations between output rates of the
?adgets produced by all five factories were factor analyzed, they would yield a
arge general factor. Gadgets’ output rates may not be perfectly correlated, how-
ever, because the sales demand for each gadget differs across factories, and the
machines that produce the gadgets with the larger sales are better serviced, better
oiled, and kept in consistently better operating condition than the machines that
make low-demand gadgets. Therefore, even though the five machines are all
driven by the same motor, they differ somewhat in their efficiency and consis-
tency of operation, making for less than a perfect correlation between the rates
of output. Now imagine that in one factory the main drive shaft of one of the
machines hreaks, and it cannot produce its gadget at all (analogous to localized
brain damage affecting a single module, but notdg). In another factory, four of
the machines break down and fail to produce gadgets, but one machine is very
well maintained because it continues to run and puts out gadgets at a rate com-
mensurate with the speed of the motor that powers the gear chain that runs the
machine (analogous to an idiot savant).

STERNBERG'S COMPONENTIAL AND TRIARCHIC THEORIES
OF “INTELLIGENCE”

Robert J. Sternberg, an eminent psychologist at Yale University, is an
astoundingly prolific contributor to the literature on mental abilities. Because he
is also known as a critic of what he has called the ?-ocentric theory of “intel-
ligence,” he has been categorized by some psychologists (and by many jour-
nalists in the popular é)ress) as being an anti-g theorist. This is wrong, as there
is nothing in any of Sternberg’s writings that in the least contradicts anything
that | am saying about g. In the words of Sternberg (and his coauthor M. K.
Gardner):3 “We interpret the preponderance of evidence as overwhelmingly
supporting the existence of some kind of general factor in human intelligence.
Indeed, we are unable to find any convincing evidence at all that militates against
this view” (p. 231).

Sternberg’s theory doesn’t posit anything instead of g, but attempts essentially
two things: to explain g and to sugplementg (and the major group factors found
in psychometric tests) with other broad classes of individual difference variables
that contribute to successful coping in “real life” situations.

Sternberg’s explanation of g falls within the purview of his componential
theory of cognition. A component is really a hypothetical construct, defined as
an elementary information process that operates upon internal representations of
objects or symbols. Metacomponents are higher-order executive processes that
govern the deployment and coordination of the more elemental components
needed for solving a specific problem. The g factor reflects individual differences
mainly in the metacomponents; the greater the demand made upon them by a
given task, the greater is its g loading. This is the gist of Sternberg’s theory,
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albeit oversimplified, but to say more would go beyond the scope and purpose
of this chapter.3

Sternberg’s aim to make ability theory more comprehensive is represented in
his triarchic theory, which embraces the componential th_eorr but also includes
“social intelligence” and “tacit _knowl_ed_%e” (i.e., practical knowledge about
the particular context of one’s coping activity that is not acquired through formal
instruction). These are really achievement variables that reflect how different
individuals invest g in activities as affected by their particular opportunities,
interests, personality traits, and motivation (see Chapter 14, pp. 575-578). Be-
yond this, it would be an injustice to try to describe the triarchic theory in less
%han 3} full chapter.3 What is important to note here is that it is not antithetical
0 g theory.

NOTES

1 Jensen, 1984a.

2. The most serious and detailed attempt at a theoretical formulation of “intelli-
gence” in terms of “social learning theory” is exiJounded by Staats and Burns (1981).
They call it a “social behaviorism theory™ of intelligence. In their words, “The theory
states, in summary, that intelligence consists of specific repertoires—systems and skills—
learned according to specified Iearnin([] principles” (p. 241). A classic interpretation of
mental abilities in terms of transfer of learning is the presidential address to the Canadian
Psychological Association by G. A. Ferguson (1956).

Ericsson, 1988.
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experts’ cqncefnons of “intelligence” has been presented by Sternberg, Conway, Ketron,
& Bernstein (1981).

8. Davis, 1947. Also see the book by Clarke & Clarke, 1976.
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on SOI, are Guilford, 1967, 1985.

11 Carroll, 1993a, p. 60. Pp. 57-60 of Carroll’s book provide a fairly thorough yet
succinct critique of the SOI model.

12. Jensen, 1971a.

13 I'spoke to Guilford personally about this several years before he died, mentioning
that | had found large correlations between tests that differ on all three facets of the SOI.
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He replied that the significant correlations were most likely due to not rigorously con-
trolling for age and “sample heterogeneity” (i.e., including different races or social
classes in the same analysisg). However, even when these variables are strictly controlled,
the tests remain highly correlated. His comment about race and social class, however,
led me to look at within-family correlations between tests, which completely rules out
variance due to race and social class. | found that within-family correlations between
different tests are about the same as the correlations obtained in the general population
(see Chapter 7, also Jensen, 1980D).

14. Guilford, 1964.

15. Alliger, 1988,

16. Jongich, 1968.

17. Thomson (1951) formalized sampling theory as follows; The correlation between
tests i and | when there is only one common factor is ) = Jippj), where p, and pj are
the proportions of the total number of available “bonds” sampled by tests I and |,
respectively. The correlation between tests 1 and | when the tests have both a general
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of “bonds” having the proportion t of the total pool of available “bonds.” The corre-
lation between tests 1 and | due to just the common group factor is rg = J(p,pj)t -
JiPPi)- The_loadings of tests i and j on the "g” factor are Jp(and jpr The loadings of
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tively.

1& Thomson, 1951, p. 324,

19. Interesting and instructive examples of the application of Thomson’s sampling
theory to the interpretation of empirical data are provided by one of Thomson’s best-
known students, A. E. Maxwell (1972a, 1972h) and Maxwell, Fenwick, Fenton, & Dol-
limore (1974).

20. Loevinger, 1951, pp. 594-595.

21. Jensen, 1987c.

22. Willerman & Bailey, 1987, p. 943. Eysenck (1987a) gives a quite comprehensive
account of the deficiencies of sampling theory and contrasts it with Spearman’s theory
in terms of recent evidence on the brain correlates of g. Much of this evidence is pre-
sented in more detail in Chapters 6 and 8.

23. Humphreys, 1971, 1976, 1984, 1989, 1994, These are Humphreys’ major state-
ments of his view of “intelligence” and its social importance. | consider them well
worth reading for all their important factual information and their great clarity of thought,
although | believe his behavioral sampling definition of g does not really (1ualify 2 a
theory. It seems to me to be purely descriptive, not leading to interesting causal inferences
or predictions, and therefore scientifically rather sterile. I'have spelled out elsewhere my
critical view of Humphreys’s insistence on a strictly behavioristic sampling theory (Jen-
sen, 1984b, 1994d?1. Except for this, which is reallg/ a disagreement about the f)hilosophy
of science rather than about the facts of mental abilities, | always find myself in agree-
ment with Humphreys on methodological and empirical issues and have learned much
from reading his work. 1 fully agree that a science of mental ability has to begin with
objective behavioral description and measurement of the phenomena that need to be
explained, but | find little of interest in the theoretical explanation of these phenomena
expressed in Humphreys’ contributions.

24. Eysenck, 1987a, p. 269.

25. Cattell (1971). This tome is Cattell’s major work on abilities and one of the great
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works in the history of mental abilities research, probabl¥ second only to Spearman’s
The Abilities of Man (1927). Although Cattell’s wonderfully comprehensive book (as of
1971) covers much more than just his own unique contributions, it remains the definitive
treatise on his own contributions. His discovery of fluid and crystallized abilities is
presented in Chapter 5, and subsequent chapters spell out the details of his “investment”
theory of “intelligence.” Cattell’s line of theorizing has been carried on, extended, and
refined by his outstanding student John Horn, now one of the leading ability theorists in
his own ri?ht. Three major articles by Horn (1985, 1986, 1989) provide a comprehensive
account of the more recent theory and research on the Cattell-Horn theory of abilities,
particularly as fluid and crystallized abilities are related to the growth and decline of
mental abilities across the life span.

26. Heritability is the proportion of population variance in a phenotypic trait that is
attributable to genetic factors. It is a major topic in Chapter 7.

21. Gustafsson (1988). This is one of the important articles of the last decade; it
summarizes much of Gustafsson’s important work on the hierarchical factor analysis of
abilities and cites many related studies b% other Scandinavian psychometricians and stat-
isticians. It is highly recommended for those with some technical background.

28. Carroll (1993a) has done a Schmid-Leiman hierarchical factor analysis of Gus-
tafsson’s data (to which Gustafsson had applied a hierarchical analysis using confirmatory
factor analysis [LISREL]) and found that a weakly identified second-order Gf remained
after the extraction of the third-order . In a footnote (p. 114), Carroll suggests that his
exploratory analgsis of Gustafsson’s data leaves the question of the equivalence of Gf
and g unsettled, but that his analysis of Gustafsson’s data “should by no means be taken
as a conclusive negative answer to the question of their equivalence.” However, the
third-order ¢ obtained by Carroll is undoubtedly highly congruent with the g obtained
by Gustafsson,

29. Thorndike, 1927, Chapters XI and XII.

30. Guttman & Levy, 1991. This is Guttman’s posthumously published summary
statement of his thinking about the measurement of “intelligence.” It contains references
to virtuallg all of Guttman’s publications on the measurement and analysis of mental
abilities. Guttman’s prescription for mental test construction is afacet approach, which
is especially useful in composing classes of tests with similar characteristics in terms of
stimulus and response modalities, contents, and other formal features. The radex dis-
cussed in the present text, for example, is for “paper-and-pencil” tests, the radex rep-
resentation of which is one horizontal slice of a vertical cylinder. Other “slices” of the
cylinder are radexes for tests that are given orally, and for tests that involve thsicaI
manipulation of objects. In every “slice,” a test’s proximity to the center of the cylinder
corresponds to its g loading.

31, Snow, Kyllonen, & Marshalek, 1984. This is probably the most informative and
comprehensive discussion of the radex (and related models) | have found in the literature.
Also see Marshalek, Lohman, & Snow (1983) for an emi)irical demonstration of the
similarity between the radex and a hierarchical factor model.

32. Gardner, 1983. This is the main exposition of Gardner’s theory of “multiple in-
telligences.”

33. Gardner, 1993,

34. Brody, 1992.

35. Fodor, 1983. A book edited by Detterman (1992) contains several interesting pa-
pers on the concept of modularity.
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36. Sternberg & Gardner, 1982. This is probably the most detailed account of Stern-
berg’s explanation of g in terms of the metacomponents in his componential theory.

37. For a fairly succinct explication of the componential theory, see Sternberg (1980),
which is followed by a number of critical commentaries. Kline (1991) criticizes the
componential aspect of Sternberg’s theoriq on the grounds that the components are a
priori, or “non-contingent,” concepts and hence unamenable to empirical test, a criticism
that, if fully justified, would seem to nullify the.actual explanatory aim of the compo-
nential theory, rendering the theory merely a collection of semantic truisms. The same
complaint is echoed by Messick (1992), who has written what is probably the most
comprehensive and penetrating critical essay-review of both Sternberg and Gardner, com-
paring and contrasting their theories with each other and with the hierarchical factor
analytic models of Burt, Vernon, and Cattell.

38. The triarchic theory is succinctI)F explicated in Sternberg (1984b) followed by
critiques by twenty-one psychologists. The theory is presented more fully in Sternberg
(1985, 1988) and his latest theory and evidence for what he calls “ practical intelligence”
and “testing common sense” are presented in Sternberg, et al., 1995. In a clever and
informative essay, Sternberg (1987) contrasts his theory of intelligence with my own
views.



Chapter 6
Biological Correlates of g

The fact that psychometric g has many physical correlates ?roves
that g is not just a methodological artifact of the content and formal
characteristics of mental tests or of the mathematical proiJerties of
factor analysis, but is a biological phenomenon. The correlations of
g with physical variables can be functional (causal), or genetically
pleiotropic (two or more different phenotypic effects attributable to
the same gene), or genetically correlated' through cross-assortative
mating on both traits, or the nongenetic result of both being affected
by some environmental factor (geg nutrition?. The physical char-
acteristics correlated with g that are empirically best established are
stature, head size, brain size, frequency of alpha brain waves, latency
and amplitude of evoked brain potentials, rate of brain glucose meta-
bolism, and general health. _ o

The general factor of learning and problem-solving tasks in infra-
human animals has some properties similar to the g factor in hu-
mans, and experimental brain lesion studies suggest that a task’s
loading on the general factor is directly related to task complexity
and to the number of neural processes involved in task performance.

It is clear that g, since it is a product of human evolution, is
strongly enmeshed with many other organismic variables.

Hierarchical factor analysis has solved the taxonomic (froblem of dealing with
the myriad mental abilities that have been observed and measured. The factors
discussed so far, however, concern variables entirely within the realm of con-
scious, intentional performance on psychometric tests, wherein g appears as a
predominant and ubiquitous factor. _ _

Is g a phenomenon that is entirely confined to the psychometric and behav-
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joral realm in which it was discovered, or does it extend beyond Ipsy_chometric
tests and factor analysis, even heyond behavior, to the broader biological, phys-
ical realm? The answer to this question has two important and related aspects.

First, psychometric tests were never intended or devised to measure anything
other than purely behavioral variables. Constructors of 1Q tests, in fact, have
tried to eliminate any source of test item variance that might reflect individual
differences in physical attributes such as muscular strength and sensory acuity.
Certainly there has never been the least intent that mental tests should reflect
any strictly anatomical or 'ohysmlogmal variables, which are directly measurable
by other methods. It would therefore be most surprising and remarkable if 1Q
tests were significantly correlated with physical variables. Yet they are. 10—
especially the g factor of IQ tests—is correlated with a variety of physical
variables. What does this mean? For the time being, about all one can say with
certainty is that whatever is measured by 1Q tests-—mostly gl— IS somehow en-
meshed” in a host of orqam_smlc variables and therefore involves something be-
yond the purely psychological or behavioral. It also proves that g is not just an
artifact of the way psychometric tests are constructed, nor is g a mere figment
of the arcane mathematical machinations of factor analysis. Obviously, a cor-
relation hetween psychometric g and a physical variable means that g is some-
how connected with underlying biological systems. _ _

The second, and {)erha S more important, (iuesuon for understanding ? IS
much more complicated: How and why is g related to certain physical variables?
No single answer can suffice for every physical variable that is related to g,
because not all such variables are related to g for the same reason. In each case,
the reason may be ontogenetic, that is, occurring within the time span of the
individual’s own development; or it may be phylogenetic, that is, having come
about during the biological evolution of the species. And the correlation may
also be genetic, or environmental, or both. Each of these possibilities invites
further analysis and explanation. Although certain analytic methodologies nar-
row down the type of possible explanations of why a particular physical variable
is correlated with g, at this point most e_xFIanat_io_ns are still conjectural.

From a scientific standpoint, it is crucial to distinguish between the two t)ﬁpes
of correlation that can exist between a behavioral variable (e.g., 1Q) and a phys-
ical variable (e.g., height). Such a correlation can represent either an intrinsic
relationship or an extrinsic relationship between the variables. The easiest way
to show how one “zeroes in” on the nature of the observed correlation between
a behavioral and a physical variable is simply to describe the methodology and
its rationale.11
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STATISTICAL METHODS 10R STUDYING BIOLOGICAL
CORRELATES OF g

INTRINSIC AND EXTRINSIC CORRELATION

Intrinsic Correlation. A correlation is intrinsic if variables X and Y are
functionally related. That is, variation in one variable is inexorably related to
variation in the other. Provided the correlation is statistically significant, its
absolute size says nothing about whether the correlation is intrinsic or extrinsic,
(If the correlation is not significant, there is no evidence of any real relationship.)
Variable Y maY be affected by many other variables besides X (and vice versa),
or both variables may have multiple causes, so in either case the correlation
between X and Y may be small. The correlation rXY is classed as intrinsic or
functional, however, only if there is a causal connection between them. Running
speed (a behavioral variable) and leg length (a physical variable), for example,
are intrinsically correlated.

An intrinsic relationship cannot be eliminated by selective breeding. If X and
Y are intrinsically correlated, genetic selection exclusively for trait X will also
affect trait Y as It appears in the offspring. However, some genetic traits are
intrinsically correlated in this way without there necess_ariIK being any apparent
functional, or dlrectlr_causal, connection between their phenotypes. This phe-
nomenon is called pleiotropy, which means that the same gene (or genes) that
affects X also affects Y. Even though X and Y may not be functionally related,
they are intrinsically related because of their connection with the same gene(s).
tl)t IS dt,herefore impossible to eliminate the correlation between them by selective

reeding.

An intrinsic or functional correlation can also be caused by an environmental
factor that affects hoth traits, assuming individual differences due to the envi-
ronmental factor. If the correlation hetween size of biceps and weight-lifting
ability is .20 in a class of high school boys none of whom has practiced weight
I|ft!nﬁ, and then a random half of the class is given a year of daily practice in
weight lifting, the correlation between biceps size and weight-lifting perform-
ance in the whole class might increase to .40. At least some part of the increase
in the correlation from .20 to .40 is environmental. Another hypothetical ex-
am_FIe: Half of the schoolchildren selected at random are %iven an optimum
daily supplement of vitamins and minerals, which has the dual effect of increas-
ing growth rate (hence greater height at a given age) and reducing the number
of days per year that children are absent from school because of iliness. In the
whole population of this school, therefore, one would find a negative correlation
between pupils” height and their amount of absenteeism (i.e., greater height goes
with fewer absences). This is an environmentally caused, functional correlation
resulting from the fact that some part of the variance in height and in absten-
teeism 15 directly attributable to individual differences in nutrition. The negative
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correlation between height and absenteeism will remain as long as there are
differences in the pupils™ nutrition.
_Extrinsic Correlation. Here there is no functional or directly causal rela-
tionship between variables X and Y. Yet they may be phenotypicalle/ correlated
for either genetic or environmental reasons, or hoth. There are mainly two ways
that X and” Y can be genetically correlated in the population: (1) by plelotropg,
that is, one gene affecting two éor more) phenotypically different traits, and (2)
by simple genetic correlation due to the common assortment of the different
genes for the different traits.
~ When there is a spousal correlation between two phenotypically or genotﬁp-
ically distinct traits, It is termed cross-assortative mating for the two traits. That
IS, %ers_ons’ standing on trait X is correlated with their mates’ standm?_ on trait
Y. Unlike pleiotropy, a simple genetic correlation can be created or eliminated
by selective hreeding, but both traits have to be selected, because there is no
direct causal connection between them. Different sets of genes influence each
trait. The g_en_es for the different traits get assorted together in the gametic cre-
ation of individuals because of the parents’ cross-assortative mating for the traits.

An example will show how cross-assortative mating works. Assume there is
zero correlation between height and eye color (blue or brown) in the population,
that is, one could not predict people’s eye color from a knowledge of their height
any better than chance. Then suppose it becomes a general custom for tall people
to seek out blue-eyed people as mates (and vice versa) and for short people to
seek out brown-eyed people (and vice versa). (This 1s an example of cross-
assortative mating for height and eye color.) After several ﬂenerations of such
cross-assortative mating, we would find that the genes for tallness and the genes
for blue eyes would have become sorted together in the offspring of many
families, and the same would be true for shortness and brown eyes, so that in
the ﬁopulatlon_as a whole there would be a correlation between individuals’
height and their eye color. Individuals who have inherited genes for tallness
would be more likely also to have inherited genes for blue eyes. But the hqh
association of blue eyes with tallness could just as well have gone in exactly
the opposite direction if it had been the custom for tall people to seek out brown-
eyed mates and short people to seek out blue-eyed mates. In other words, there
is no functional or causal connection between height and eye color. The con-
nection between them could perhaps be called a “cultural” correlation, because
a cultural custom in this population influenced mating preferences and so
brought about this adventitious or extrinsic correlation of height and eye color.
Although variation in each trait is highly genetic, the covariation (or correlation)
between them is nonfunctional (i.e., neither affects the other) and extrinsic (i.e.,
theTy are not caused by the same genes). o _

he distinction between intrinsic and extrinsic correlation is very important
for m_terpretlnﬁ the correlation between a physical and a psychological variable,
described in the second part of this chapter. If the correlation is not intrinsic, it
provides no clues to the biological underpinning of the psychological variable.



Biological Correlates of g 141

Method of Distinguishing between Intrinsic and Extrinsic Correlation.
This distinction between intrinsic and extrinsic correlation cannot be made if all
we know is the correlation between X and Y in a group of individuals. To
determine that, we also need to know the correlation between X and Y in a
large group composed of pairs of full siblings who were reared to%ether. (Sib-
lings are individuals who have the same two biological parents and thus have,
on average, approximately 50 percent of their segregating genes in common.
Segregating genes are genes that have two or more alleles and contribute to the
genetic variance in the trait; there are about 100,000 such functional gene loci
In the human genome. Dizygotic twins will serve as well, as they are like or-
dinary siblings except that twins are gestated at the same time.) Every pair of
siblings must come from a different set of biological parents and must have
grown up together in the same family environment.

There is no statistical reason to expect the correlation between traits X and
Y in this group of siblings (taken as individuals) to be significantly different
from the correlation between X and Y obtained in a comparable group composed
entirely of unrelated persons randomly sampled from the same population. The
great advantage of obtaining rXY'in a group made up of sibling pairs is that the
obtained rXY 1s a composite of two distinct correlations, each of which can be
determined: the between-families correlation (BF/-) and the within-families cor-
relation (WFr).

The between-families correlation of X and Y (BFrXSY§) is the correlation he-
tween Xs (the sums of the siblings’ scores in each pair on variable X) and Ys
(the sums of the siblings’ scores In each pair on variable Y).

The within-families correlation of X and Y (WFrXiYl) is the correlation be-
tween X( (the signed difference between the 5|bI|n%s’ scores in each pair on
variable X) and Yt (the signed difference between the siblings’ scores In each
pair on variable Y).
~ Assuming there is a true (gopulation) correlation between X and Y based on
individuals (IrXY), it is Ip033| le for the true values of BFrXY and WFrXY both
to be some absolute2 value greater than zero, or for either correlation to be zero
while the other correlation IS greater than zero.3

What can the BF and WF correlations tell us? The answer is rather hard to
explain but important to understand.

A BFrXY = 0 means that if IrXY > 0 it cannot be attributed to any systematic
influence(s) on both X and Y in which families (here defined as the average of
the siblings in each family) differ from one another. Though BFryy = 0 and Iy
> 0 is theoretically possible, it would seem hl%h|y improbable, and in fact, an
instance has not yet been found. Empirically, when the 1rXY is greater than zero,
the BFrXY is always greater than zero.

A WFrXY = 0 means that there is no relation between X and Y within fam-
ilies; that is, there is no systematic tendency for the sibling who is more extreme
in X also to be more extreme in Y. If the hypothesis that WFrXY = 0 cannot
be statistically rejected in a large sample or In a meta-analysis4 of many inde-
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pendent samples, it completely rules out any intrinsic (functional or pleiotropic)
correlation between X and Y. The correlation must therefore be attributable to
influences on X and Y that exist only between families, that is, influences that
differ from one family to another. The usual cause of this situation where BFrXY
> 0 and WFrXY = 0 is population heterogenei%, whereby two (or more) var-
iables are associated in different subpopulations but the variables are not func-
tionally or pleiotropically related. élee the hypothetical example given above
of a correlation between height and eye color.) The correlation may be due to
anf/ genetic or environmental or cultural factors that are related (but not causally
related) to both X and Y. A clear-cut example: In a heterogeneous population
comFosed of two subpopulations, Anglo-Americans and Chinese-Americans, we
would find a correlation hetween hair color (black vs. not black) and hilingual-
ism (English only vs. English + Cantonese). This correlation would not exist
within families (assuming most Chinese-American siblings speak both English
and Cantonese and most Anglo-Americans speak only English). The correlation
would exist only between families. Of course, there is no intrinsic (functional
or pleiotropic) connection between people’s hair color and their tendency to
bilin%ualism. If there were an intrinsic relationship, it would show up as a WF
correlation, assuming everyone had equal opportunity to acquire a second lan-

uage.
! V\g}hy is a simple genetic correlation between X and Y in the population found
only between families but not within families? The answer is known as Mendel’s
law of segregation and independent (i.e., random) assortment of %enes: Each
5|blln? receives a random one-half of each parent’s genes, and because the
complement received by each sibling is a random assortment of the parental
genes, the single genes affecting any two (or more) genotypically distinct traits
are not correlated In the individual’s genotype any more than would be expected
by chance, which by definition is a population correlation of zero. (Just as the
heads/tails outcome of tossing one coin is uncorrelated with the outcome of
tossing another coin.)

A WFrXY > 0 is also an important findin_%._lt implies there is something that
affects two distinct traits in one (or some) sibling(s) but not in the other(s). This
something can be either genetic (i.e., pleiotropic) or environmental (e.g., an
ilness in-one sibling, but not in any others, that adversely affects both Ehysmal
and mental growth and would therefore result in a WF correlation between
height and I(%). The WF correlation therefore is intrinsic, that is, it represents a
functional or a pleiotropic relation. _ _

Most studies of the correlation between 1Q and Eh sical variables are based
on individuals and do not permit determination of BF and WF correlation. But
both BF and WF correlations have also been obtained in some studies. The
theoretically more important relationships between psychometric and physical
variables are those that are intrinsic, as indicated by a significant WF as well
as a BF correlation. In the review that follows, it will be noted whether each
correlation is extrinsic, intrinsic, or of unknown status.
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But before reviewing the empirical evidence, one other methodological issue
must be considered, namely, whether the correlation between a phrsical variable
and a factorially complex psychometric test, such as 1Q, is a correlation hetween
the_phlysmal variable and the g factor or is a correlation between the physical
variable and some psychometric factor other than ¢,

THE METHOD OF CORRELATED VECTORS

Because most of the variance in 1Q is g, it is quite improbable that the cor-
relation between 1Q and some >Jahysmal variable %say X) does not involve g. We
can generally assume that if X is correlated with Q, it is also correlated with
0. Belter evidence would come from a correlation between measurements of X
and g factor scores, but even that would not be absolutely definitive, because
factor scores are only estimates of the true factor scores and the method of
calculating factor scores may leave the scores slightly “contaminated” with bits
of non-g variance from lower-order factors and specificity. | have proposed a
method, called the method of correlated vectors, that can determine whether
there is a correlation between g and X (or any other factor and X). However, it
does not tell us the numerical value of the correlation between g and X (which
can only be estimated by the correlation between g factor scores and X). But it
can prove that there is a correlation between g and X and it can show whether
any other factors (independent of g) are or are not correlated with X.

Explaining how the method of correlated vectors works may possibly seem
dauntingly complicated to all but the statistical-minded. (It is explained in detail
with a real worked example in Api)end|x B.) Readers who do not feel compelled
to understand the technical details should skip to the next section, in which
examples of results obtained by this method are shown graphically for certain
biological correlates of g (e.g., evoked brain potentials). o

In the present context, a vector (V) is defined 3|mf)ly as a column consisting
of a number (n) of quantitative elements (hence it is also called a column vector).
A vector may be a column composed of each of the n tests’ factor loadings on
a particular factor; or it may be a column composed of each of the n tests’
correlations with some single variable, X, that is experimentally independent of
the set of tests from which the factor loadings are derived. ZFQr example, X
could be measures of subjects’ height, visual acuity, reaction time, socioeco-
nomic status, or whatever, so long as variable X has not entered into the cal-
culation of any elements in the vector of factor loadings.) If the factor is g, for
example, the vector of g can be symbolized Vg, and the correlation (r) between
Vg and the vector of X would be symbolized rVgVx. (The value rVgVx is, of
course, not the correlation between ¢ and X per se, but the correlation between
the#)arallel column vectors of g and X.)

If rVgVx is significantly greater than zero, it is proof that g and X are cor-
related, but only after a possible artifact has been ruled out. This artifact arises
If the column vector composed of the tests” reliability coefficients is correlated
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with either Vgor Vx or both. Each of the elements in both V and Vx, of course,
is affected by measurement error in the test scores from which each element is
derived. The various tests’ reliability coefficients may differ considerably, with
the consequence that the relative sizes of the elements in the two vectors, and
therefore also their rank order, will be partly determined by the differences in
their reliability,

Because each test’s reliability affects its corresponding elements in both
and Vi, there is the possibility that the correlation between Vgand Vx (whether
it is significant or not) is an artifactual result of the fact that both vectors are
correlated with the vector of the test’s reliability coefficients, VIv This possibility
can be ruled out by the statistical device known as Bartial correlation. (If A and
B are correlated with each other, and A or B [or both] are correlated with C,
one can statistically remove the effect of C from the correlation between A and
B, ymldmg the partial correlation between A and B, written rABC. Variable C
Is said to be “partialed out” of the correlation between A and B.)

If the correlation between Vgand Vx with Vnpartialed out remains significant,
it means that their correlation is not an artifact of the tests’ variable reliability
coefficients. If, however, the partial correlation between Vs and Vx with V,
partialed out is not significant, a further analysis is needed. Each of the elements
In V and Vx must be corrected for attenuation, which removes the measurement
error from each element, provided there are highly reliable estimates of each
tests” reliability coefficient. (A test’s g loading is corrected by dividing it by the
square root of the test’s reliability coefficient. A test’s correlation with X is
corrected in the same way. If the reliability coefficient of X is available, the
test’s correlation with X can be corrected by dividing it by the square root of
tr}exp)roduct of the tests” reliability coefficient and the reliability coefficient
of X.

The Pearson correlation (r) between the vectors should be calculated, but it
needs to be supplemented by Spearman’s rank-order correlation. Because the
Pearson r is a parametric statistic based on the assumption that each of the
correlated variables is normally distributed in the population, and because this
assumption may not be tenable for the correlated vectors, the statistical signif-
icance of r cannot be tested rigorously. Therefore, a nonparametric measure of
correlation, such as Spearman’s rank-order correlation (rs), must also be calcu-
lated between the vectors. Its significance can be determined, as it does not
depend upon any assumptions about the population distributions of the corre-
lated variates. The significance of rs is based simply on what is known as a
permutation test. Given that each of the correlated column vectors has n ele-
ments, the significance level of an obtained rsis simply the probability (p) that
a value of rsas large as or larger than the obtained value would occur among
all possible permutations of the rank order of the n elements in the correlated
vectors. If the obtained value of rsbetween the vectors of g and X is significant
at some specified p value (e.g.,p < .01), we may conclude that a true correlation
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exists between ¢ and X, with the probability p that our conclusion is wrong and
the probability 1 - p that our conclusion is correct,

Researchers should be aware of two conditions that can militate against dem-
onstrating a statistically significant rs even when there is a true correlation be-
tween the vectors. The most obvious pitfall is havmgi] too few elements in the
vectors, because the 3|gn|f|cance of rs depends on the number («) of ranked
elements in one vector.5 (For example, with n = 10, the rsmust be at least .648
to be significant at the 5 percent level, orp < .05.) Therefore, when n is small,
the method of correlated vectors lacks statistical power and incurs considerable
risk of wrongly accepting the null hypothesis that the true correlation between
the vectors is zero when In fact it is greater than zero. (In statistics this is known
as a Type Il error.*) The other danger lies in not having a sub!]ect sample large
enough to ensure hiFth reliable elements in each vector. The less variation
there is among the elements, the more accurate each of them must be to show
up in their true rank order. Each of the elements in the vectors, of course, has
some sampling error (which is inversely related to the square root of the subject
sample size), and the smaller the sampling error, the more accurate will be the
obtained correlation between the vectors. ?Note: The effect ofsamFImg error is
entirely distinct from the effect of measurement error, which involves the com-
plement of the measurement’s reliability coefficient, i.e., 1 —rxx) When the
true correlation between two vectors is greater than zero, _samgling error in the
vectors’ elements reduces the size of the obtained correlation between the vec-
tors as compared to the size of their true correlation.

What all of this essentially means for using the method of correlated vectors
is that when a statistically significant correlation between vectors emerges it has
done so against severe odds and is therefore a quite secure phenomenon. But
the steep odds against finding a significant correlation between vectors also
means that a correlation that falls just short of significance at the .05 level (say,
p[ < .10 or p < .15) must be interpreted cautiously, mindful of the risk of a

ype 1l error.

RESEARCH FINDINGS ON THE BIOLOGICAL
CORRELATES OF g

SPECIFIC BIOLOGICAL CORRELATES OF IQ AND g

Because a very comprehensive and detailed review of this subject has been
presented elsewhere,7 it will suffice here to give only a synopsis of the main
empirical findings. See the more detailed review for references to the specific
studies that support each finding. _ o _

In most of the studies described, the physical variable is correlated with scores
on an 1Q test or other highly g-loaded test. In a few studies in which a number
of different tests are correlated with the same physical variable, it is possible to
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apply the method of correlated vectors to determine if the physical variable is
correlated specifically with the g factor. The word in parentheses after each
heading tells whether the biological correlate of mental ability is extrinsic, in-
trinsic, or undetermined. (See discussion earlier in this chapter [and in Appendix
B] for definitions of extrinsic and intrinsic.)

Body Size (Extrinsic). It is now well established that hoth height and weight
are correlated with 1Q. When age is controlled, the correlations in different
studies range mostly between +.10 and +.30, and avera(]]e about +.20. Studies
based on siblings find no significant within-family correlation, and gifted chil-
dren (who are taller than their age mates in the general population) are not taller
than their nongifted siblings.

Because both height and 1Q are highly heritable, the between-families cor-
relation of stature and 1Q probably represents a simple genetic correlation re-
su_Itmﬁ_ from cross-assortative mating for the two traits. Both height and
“intelligence™ are highly valued in Western culture and it is known that there
Is substantial assortative mating for each trait.

There is also evidence of cross-assortative mating for height and 1Q; there is
some trade-off between them in mate selection. When short and tall women are
matched on 1Q, educational level, and social class of origin, for example, it is
found that the taller women tend to marry men of higher intelligence (reasonably
inferred from their hi%her educational and occupational status% than do shorter
women. Leg length relative to overall height is regarded an important factor in
judging feminine beauty in Western culture, and it is interesting that the height
x 1Q correlation is largely attributable to the leg-length component of height.
Sitting height is much less correlated with 1Q. If there is any intrinsic component
of the height x I? correlation, it is too small to be detected at a significant
level even in gune ar?e samples. The two largest studiesBltotaling some 16,000
sibling pairs, did not find significant within-family correlations of 1Q with either
height or weightécontrpllin_g for age) in males or females or in blacks or whites.

Head Size and Brain Size (Intrinsic). There is a great deal of evidence that
external measurements of head size are significantly correlated with 1Q and other
highly g-loaded tests, although the correlation is quite small, in most studies
ranging between +.10 and +.25, with a mean r « +.15. The only study using
g factor scores showed a correlation of +.30 with a composite measure of head
size hased on head length, width, and circumference, in a sample of 286 ado-
lescents. B Therefore, it appears that head size is mainly correlated with the g
component of psychometric scores. The method of correlated vectors applied to
the same sample of 286 adolescents showed a highly significant rs = +.64
between the g vector of seventeen diverse tests and the vector of the tests’
correlations with head size. The head-size vector had nonsignificant correlations
with the vectors of the spatial, verbal, and memory factors of +.27, .00, and
+.05, respectively.

In these studies, of course, head size is used as merely a crude proxy for
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brain size. The external measurement of head size is in fact a considerably
attenuated proxy for brain size.

The correlation between the best measures of external head size and actual
brain size as directly measured in autopsy is far from E]erfect, being around
+.50 to +.60 in adults and slightly higher in children. There are specially de-
vised formulas by which one can estimate internal cranial capacity (in cubic
centimeters) from external head measurements with a fair degree of accuracy.
These formulas have been used along with various statistical corrections for age,
body size (height, weight, total surface area), and sex to estimate the correlation
between 1Q and brain size from data on external head size. The typical result
is a correlation of about .30. _

These indirect methods, however, are no longer necessary, since the technol-
ogy of magnetic resonance imaging (MRI) now makes it possible to obtain a
three-dimensional picture of the brain of a living person. A highly accurate
measure of total brain volume (or the volume of any particular structure in the
brain? can be obtained from the MRI pictures. Such quantitative data are now
usually extracted from the MRI Pmt_ures by computer. _

To date there are e|th MRI studies2 of the correlation between total brain
volume and 1Q in healthy children and young adults. In every study the corre-
lations are significant and close to +.40 after removing variance due to differ-
ences in body size. (The correlation between body size and brain size in adult
humans is between +.20 and +.25.) Large parts of the brain do not subserve
cognitive processes, but govern sensory and motor functions, emotions, and
autonomic regulation of physiological achvﬂg/. Controlling body size removes
to some extent the sensorimotor aspects of brain size from the correlation of
overall brain size with 1Q. But controlling body size in the brain x [Q corre-
lation is somewhat problematic, because there may be some truly functional
relationship between brain size and body size that includes the brain’s cognitive
functions. Therefore, controIIinP body size in the 1Q x brain size correlation
may be too conservative; it could result in overcorrecting the correlation. More-
over, the height and Weié]ht of the head constitute an appreciable proportion of
the total body height and weight, so that controlling total body size could also
contribute to overcorrection by removing some part of the variance in head and
brain size along with variance in general body size. Two of the MRI studies
used a battery of diverse cognitive tests, which permitted the use of correlated
vectors to determine the relationship between the column vector of the various
tests’ g factor loadings and the column vector of the tests’ correlations with
total brain volume. In one studK,"Oﬂbased on twenty cognitive tests %iven to
forty adult males sibling pairs, these vectors were correlated +.65. In the other
study, 1108 based on eleven diverse cognitive tests, the vector of the tests’_ﬁ
loadings were correlated +.51 with the vector of the tests” correlations wit
total brain volume and +.66 with the vector of the tests’ correlations with the
volume of the brain’s cortical gray matter. In these studies, all of the variables
entering into the analyses were the averages of sibling pairs, which has the effect
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of increasing the reliabilit?/ of the measurements. Therefore, these analyses are
between-families. A problematic aspect of both studies is that there were no
3|%n|f|c_ant within-family correlations between test scores and brain volumes,
which implies that there is no intrinsic relationship between brain size and g.
To conclude that the within-family correlation in the population is zero, how-
ever, has a high risk of being a Type Il error, %iven the unreliability of siblinﬁ
difference scores (on which within-family correlations are based) and the sma
number of subjects used in these studies. Much larger studies based merely on
external head size show significant within-family correlations with 1Q. Clearly,
further MRI studies are needed for a definitive answer on this critical issue.

Metabolically, the human brain is by far the most “expensive” organ in the
whole body, and the body may have evolved to serve in part like a “power
Pack” for the brain, with a genetically larger brain being accommodated by a
arger body. It has been determined experimentally, for example, that strains of
rats that were selectively bred from a common stock exclusn(elyé to be either
good or poor at maze learning were found to differ not only in brain size but
also in body size.L 1 Body size increased only about one-third as much as brain
size as a result of the rats being selectively bred exclusively for good or poor
maze-learning ability. There was, of course, no exFIicit selection for either brain
size or hody size, but only for maze-learning ability. Obviously, there is some
intrinsic functional and genetic relationship between learning ability, brain size,
and body size, at least in laboratory rats. Although it would be unwarranted to
generalize this finding to humans, it does suggest the hypothesis that a similar
relationship may exist in humans. It is known that body size has increased along
with brain size in the course of human evolution. The observed correlations
between brain size, body size, and mental ability in humans are consistent with
these facts, but the nature and direction of the causal connections between these
var[?btl)?s cannot be inferred without other kinds of evidence that is not yet
available.

The 1Q X head-size correlation is clearly intrinsic, as shown by significant
correlations both between-families (r = +.20, p < .001) and within-families (r
= +.11, p < .05) in a large sample of seven-year-old children, with head size
measured only by circumference and 1Q measured by the Wechsler Intelllgience
Scale for Children. 12 (Age, he|%ht, and weight were staﬂshcallY controlled.)
The same children at four years of age showed no significant correlation of head
size with Stanford-Binet 1Q, and in fact the WF correlation was even negative
(-.04). This suggests that the correlation of 1Q with head size (and, by Infer-
err:pl%,hbr%in sizeg is a developmental phenomenon, increasing with age during
childhood.

One of the unsolved mKsteri_es regarding the relation of brain size to I(% IS
the seemln? paradox that there is a considerable sex difference in brain size (the
adult female brain being about 100 cm3 smaller than the male) without there
being a corresponding sex difference in 1Q.23 It has been argued that some 1Q
tests have purposely eliminated items that discriminate between the sexes or
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have balanced-out sex differences in items or subtests. This is not true, however,
for many tests such as Raven’s matrices, which is almost a pure measure of g,
yet shows no consistent or significant sex difference. Also, the differing g load-
Ings of the subscales of the Wechsler Intelligence Test are not correlated with
the size of the sex difference on the various subtests.' L The correlation between
brain size and 1Q is virtually the same for both sexes.

‘The explanation for the well-established mean sex difference in brain size is
still somewhat uncertain, although one hypothesis has been empirically tested,
with positive results. Properly controlling (by regression) the sex difference in
body size diminishes, but by no means eliminates, the sex difference in brain
size. Three plausible hypotheses have been proposed to explain the sex differ-
ence (of about 8 percent) in average brain size between the sexes despite there
being no sex difference in g;

L Possible sexual dimorphism in neural circuitry or in overall neural con-
d_uctilon velocity could cause the female brai to process information more effi-
ciently.

2. The brain size difference could be due to the one ability factor, independ-
ent of g, that unequivocally shows a large sex difference, namely, spatial vi-
sualization ability, in which only 25 percent of females exceed the male median.
Spatial ability could well depend upon a large number of neurons, and males
may have more of these “ spatial ability” neurons than females, thereby increas-
ing the volume of the male brain.

3. Females have the same amount of functional neural tissue as males but
there is a greater “packing density” of the neurons in the female brain. While
the two previous hypotheses remain purely speculative at present, there is recent
direct evidence for a sex difference in the “packing density” of neurons.Z In
the cortical regions most directly related to cognitive ability, the autopsied brains
of adult women possessed, on average, about 11 percent more neurons per unit
volume than were found in the brains of adult men. The males and females
were virtually equated on Wechsler Full Scale 1Q (112.3 and 1106, respec-
tively). The male brains were about 12.5 percent heavier than the female brains.
Hence the greater neuronal packln? density in the female brain nearly balances
the larger size of the male brain. OF course, further studies based on histological,
MRI, and PET techniques will be needed to establish the packing density hy-
pothesis as the definitive explanation for the seeming paradox of the two sexes
differing in brain size but not differing in 1Q despite a correlation of about + .40
between these variables within each sex group.

Myopia and 1Q (Intrinsic). It has long been known that myopia, or near-
sightedness, is related to high 1Q. The evidence, reviewed elsewhere, ZLis based
on many studies and huge samples. In terms of correlation the r is about +.20
to +.25. Myopia is h|gh(|jy heritable and a single gene that controls the shape
of the e>{eball has been identified as mainly responsible. Myopia in adolescents
and adults can be predicted by ocular examination in infants as young as one
year of age.



150 The g Factor

The “near-work” hypothesis that myopia is solely caused by excessive use
of the eyes for “near-work” such as reading, sewing, and the like has been
largely discredited by modern researchers. Major chromosomal anomalies, such
as trisomy 21 (Down’s syndrome), which override the effects of the normal
polygenic causes of individual differences in mental ability and result in severe
mental retardation, militate against reading and most other forms of “near-
work.” Yet the incidence of myopia among persons with these conditions is the
same as in the general population. Also, myopia has high heritability, As myopia
i a continuous trait, it apFears that an interaction between a genetic predispo-
sition and at least some slight de%ree of engagement in “near-work,” such as
most schoolwork, during childhood are necessary to produce a degree of myopia
in adolescence or adulthood that calls for corrective eyeglasses.
~ Individual differences in de_(lyree of mYopia and in 1Q are positively correlated
in the general population. Children in classes for the intellectually gifted (I%>
130), for example, show an incidence of myopia three to five times greater than
the Incidence among puplls in regular classes.

The question arises of whether the relation of myopia to 1Q is an intrinsic or
extrinsic correlation (as defined on pages 139*10). The correlation could well
be extrinsic due to population heterogeneity in both myopia and _I(?, because
various racial groups aiffer in the incidence of myopia and also differ, on av-
erage, in 1Q. To find the answer to this question, the degree of myopia was
measured as a continuous variable (refraction error) bty means of optical tech-
niques in a group of sixty adolescents selected only for high 1Qs (Raven ma-
trices) and their less gifted full siblings, who averaged fourteen 1Q points lower,
a difference equivalent to 0.920. The high-1Q subjects differed significantly from
their lower-1Q siblings in myopia by an average of 0.39a on the measure of
refraction error. 2 In other words, Since there is a wj'r/zm-families correlation
between myoina and 1Q, the relationship is intrinsic. However, it is hard to think
of any directly functional relationship between myopia and 1Q. The data are
most consistent with there being a pleiotropic relationship. The causal pathway
through which the genetic factor that causes myopia also to some extent elevates
g (or vice versa) is unknown. Because the within-family relationship of myopia
and 1Q was found with Raven’s matrices, which in factor analyses is found to
have nearly all of its common factor variance on g,n it leaves virtually no doubt
that the 1Q score in this,case represents g almost exclusively.

Electrochemical Activity in the Brain.Z8 Neurons are cells that act much
like an electrical storage battery with a capacitor that cumulates electrical po-
tential by the unequal concentration of positive and negative ions (Na+and CI”)
on either side of the cell membrane. Nerve impulses are propagated through an
electrochemical process that occurs at the cell membrane, whereby the positively
and negatively charged ions of common salt, or sodium chloride ﬁsodlum Na+
and chlorine CI"), neutralize each other, creating an action potential that rapidly
progresses down the length of the neuron’s tube-like axon at speeds up to about
100 meters per second. This wave of depolarization of ions down the axon is
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of course extremely slow compared to the flow of electricity in a wire, because
the action potential moving through the axon is due to the depolarization of ions
(electrically charged atom%, whereas in a wire it is only the atoms’ free electrons
that flow, and with much less resistance than is met by the ions.

The speed of nerve conduction is a positive function of the diameter of the
axon and its degree of myelination. The myelin sheath, composed of fat, sur-
rounds the axon and acts like the insulation on an electric wire. When the neuron
is stimulated by a sense organ or at its synaptic connection with an adjacent
neuron, it sets off a change in the permeability of the axonal membrane that
rapidly moves through the length of the neuron, allowing the positive and neg-
ative fons to come together, thereby creating the action potential. The nerve
impulse is propagated down the length of the axon. Neurotransmitters at the
synaptic connections with other neurons then repeat the process. Neural exci-
tation is thereby transmitted from some part of the bodr, through the spinal
cord, to some region of the brain, and from one region of the brain to another.
When this happens simultaneously in millions of neurons, as is always the case
in the intact brain, the fluctuating potentials in specific regions of the brain can
be detected by electrodes attached to the scalp. These fluctuating potentials are
often called brain waves. They can be amplified and recorded on a moving paper
tape or photographed on an oscilloscope.

The technical process of recording brain waves is called eIectroencephanF-
raphy (EEG). The waves (i.e., electrical potentials) fluctuate above zero ampli
tude (negative waves, labeled N) and below zero amplitude (positive waves,
labeled P). The waves can be described in terms of their frequency (measured
in Hz, or number of cycles Eer second) and amplitude (measured in microvolts,
(V). The number of times the wave crosses the zero point in a specified period
of time is a measure of “zero-crossings.” , ,

EEG waves differ in frequency and amplitude when obtained from different
parts of the brain (according to electrode placement) and in different states of
the subject, such as deep sleep, dreaming sleep, relaxed wakefulness with eyes
closed, wide-awake attentiveness to stimuli, and ongoing purposive thinking or
problem solving. Within the differing general characteristics of the brain waves
Mncally obtained under these various conditions there are reliable individual

ifferences in fre%uency and amplitude. The correlation between these individual
measurements of EEG waves and 1Q has been the subject of hundreds of studies.
It is Fossmle here to ?lve only a brief summary of the typical findings. Excellent
detailed reviews"d ot this research are available for anyone who wishes to delve
further into the more specialized details of this very complex field.

Two main classes of EEG data have heen studied in relation to 1Q: (ll) natural
(termed spontaneous) EEG rhythms occurring in various states of sleep and
wakefulness, and (2) the average evoked potential (AEP) to a specific stimulus.
EEG waves contain a ?reat deal of background “noise” due to random neural
activity, and the signal-to-noise ratio is so low that it is hard to obtain very
reliable measures of individual differences in normal EEG records for any of
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the characteristic EEG waves. This drawback is virtuall}/ eliminated, however,
for the average evoked potential_(AEPf), which consists of the average of usually
hundreds of wave samples obtained from one person in response to a specific
stimulus. Whatever is consistent (i.e., signal) is enhanced; whatever is random
(i.e., “noise™) is averaged out. (Similar techniques of signal extraction are used
In radar and sonar systems.) Individual differences in the AEP waves are
therefore clearly discernible. Various individual difference measurements are
obtainable from these AEP records and can be correlated with scores on psy-
chometric tests.

SPONTANEQUS EEG CORRELATES OF g

Among the simple, nonaveraged EEG waves, the frequency of the alpha wave
has most often shown correlations with 1Q. These range between zero and about
+.60. The alpha rhgthm consists of relatively intermediate brain waves, in the
range of 7.5 to 12.5 Hz, that occur when the subject is in a state of relaxed
wakefulness, with eyes closed. The alpha freguency in Hz is usually averaged
over a number of one-second intervals selected at random from an EEG record-
ing that can last several minutes. The studies of the correlation between the
alpha frequenc¥ and 1Q are consistent only in showmg a positive relationship,
that is, higher 1Q is directly related to a higher alpha frequency. This su%gest_s
a relationship between alpha frequency and 1Q. The cause of the relationship is
unknown, but hypotheses, such as more sustained attention in high-1Q subjects,
have been suggested. Beyond that fact, however, the literature seems too chaotic
to warrant averaging the results of many studies. Their methodologies are far
from standardized and the various methodologies are seldom replicated. The
results of all these studies probably reflect “method variance” as much as any-
thing else. The unsystematic nature of this particular body of EEG research on
alpha waves (and other nonaveraged brain waves) increases the risk of a statis-
tical Type | error in drawing conclusions from a meta-analysis of all the avail-
able evidence.

The problem of the excessive “noise” level in nonaveraged EEG records is
now being overcome by the application of newly developed nonlinear, mathe-
matical analyses based on deterministic chaos theorr, and recent research on the
relation of EEG to 1Q has become methodologically more sophisticated. This
research suggests that it is the complexity of EEG waves, more than their fre-
quen_C}/, that Is positively related to 1Q. 2L Complexity here refers to the number
of different dimensions needed to describe the waves, which suggests that the
more complex waves are determined by the influence of more differentiated
Processes.

AVERAGE EVOKED POTENTIAL CORRELATES OF g

The AEP has shown more consistent and substantial correlations with IQ than
have spontaneous EEG waves. In the typical AEP experiment, the subject sits
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relaxed in a reclining chair. A recording electrode is attached to the scalp at the
vertex of the head and reference electrodes are clipped to the earlobes. At ran-
dom intervals, averaging a few seconds apart, a brief stimulus, such as a sharp
“click,” occurs and is reEeated over a period of several minutes. Each occur-
rence of the stimulus evokes a momentary change in the electrical potential of
millions of neurons in the cortex of the brain. For a given subéect, this evoked
potential is recorded during a “time-locked” segment of the brain waves that
immediately follow the onset of the evoking stimulus. All of the time-locked
segments of evoked potentials obtained in this manner during the testing session
are averaged by computer over a great mang trials. Since each characteristic
brain wave in response to the stimulus can be “lined up” precisely with the
onset of the stimulus, they can all be neatly averaged by computer, ﬁlvmg a
segment of brain waves fthe AEP) from which the random neural background
“noise” has been virtually eliminated.

Figure 6.1 shows a typical AEP record. The occurrence of the au_ditorF stim-
ulus Is indicated by the letter A, which is the zero point on the time [ine %n
milliseconds). The averaged fluctuations in voltage have characteristic peaks (N,
for negative deviation from the average baseline [zero] voltage) and troughs f
for positive dewatmn%. The several distinct waves are thought to reflect the
successive stages of the cognitive processing of the stimulus event by the cer-
ebral cortex.

In studying individual differences in the AEP, four of its features are meas-
ured: (12 the number of zero-crossings in a specified epach ﬁtlme interval from
2er0), (2) the latency, or the time elapsed between the stimulus and one of the
peaks or troughs or the average time of two or three such points; (3) the am-
plitude (in (@V) of a peak or trough, or their average; and (45) the complexity of
the wave in a specified epoch, that is, the length of the total waveform. This
last measure was originally obtained by laying a piece of string over the set of
waves and then measuring the length of the straightened string, or by tracing
the waves with a map wheel. (This measurement is now performed by a com-
puter.) When a specific person’s AEP is obtained several times, it is also possible
to compute the intraindividual variability of the AEP latency (or any of the
other indices), which is considered a measure of neural transmission errors.

All of these AEP measures have shown significant correlations with 1Q. Some
critics have claimed that the AEP discriminates only between mentally retarded
persons and those in the average and ahove-average range of 1Q. But this claim
Is disproved by the many studies that show significant correlations within groups
whose 1Qs are in the retarded, average, and gifted ranges of 1Q. Higher 1Q
subjects show shorter latencies (faster neural reaction?, more peaks and troughs
(more zero-crossings within a specified epoch), smaller amplitude in response
fo expected stimull (more efficient expenditure of neural e_nergy, as shown b
the positron emission tomography scan studies discussed in the next sectmn{
greater complexity (longer “string” measure) of the AEP waves, and lesser
Intraindividual variability (greater consistency) in each of these indices. Cor-
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Fl%ure 6.1. The avera%\e evoked potential (AEP), showing the waveform of a person
above-average 1Q. N and P are negative and positive potentials, respectively, num-
bered in temporal order. The arrow at A indicates the occurrence of the evoking stimulus,
which begins (at time 0) the time-locked epoch (of 500 msec), measured in milliseconds
(msec). Following point A there are twelve zero-crossings (i.e., the wave crossing the
baseling) in the 500-msec epoch. The latency of a given wave (say, N3 is the time
interval (measured in mseT) between the onset of the evoking stimu us (at time 0) and
the peak of the N, wave. The amplitude of a wave, measured in microvolts (nv), |s the
distance of the peak or trough) of the wave above (or below) theObaseIme The com-
plexity of the waveform is the length of the waveline (caIIed the “string” measure)
throughout the epoch (in this case 0 to 500 msec).

relations of these AEP variables with 1Q typically ranFe between about .30 and
F60 W|tg1t)he highest correlations found in"the interval between Pl and P2 (see

igure

The latency of the P3 (also called P300, because it occurs on average about
300 msec after the evokmg stimulus) shows significant correlations with 1Q in
some studies. The one study hased on g factor scores (derived from the Multi-
dimensional Aptitude Battery, which has ten subtests? found a correlation of
=36 < 058 between the P300 latency and the g factor scores.2L The later
components of the AEP beyond P300 have not been found to correlate with 1Q.

Even higher correlations between the AEP and Ig can be obtained by com-
bining some of the AEP indices, such as latency and intraindividual variability,
or from the difference between AEP indices obtained under different experi-
mental conditions that tap the influence of cognition on the AEP. An example
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of the latter is the index of “neural adaptability” (NA) invented by pioneer
AEP researcher Edward W. P. Schafer. 22 Essentially, the auditory AEP is ob-
tained under two conditions: (1) self-stimulation S?S) in which the subjhect self-
administers the auditory “clicks” by pressing a hand-held microswitch button
fifty times at random intervals averaging about two or three seconds; and (2)
random automatic stimulation (AS), In which the series of fifty “clicks” that
were self-administered by the subject in the previous condition are played back,
while the subject remains inactive. The neural adaptability (NA) score is the
ratio of the average amplitude of the evoked potential under automatic stimu-
lation (AS) to the amplitude under self-stimulation iSS), that is, NA = AS/SS.

Persons with high Ile show a larger NA score than those with lower 1Qs.
The expectancy of a self-administered “click” results in lower amplitude, the
more so the higher the 1Q. It appears that stimulus expectancy permits higher-
1Q subjects to conserve more brain energy than lower-1Q subjects. In this sense,
higher 1Q reflects a more efficient use of neural resources. Neural adaptability
in humans could have evolved through natural selection for greater efficiency
in the brain’s utilization of energy as well as selection for the greater cognitive
and behavioral capacities associated with increased brain size. =

In several studies, the NA index has shown correlations with 1Q in the +.50
to +.70 range. In one study, 22 for example, seventy-four normal adults ranging
in Wechsler 1Q from 98 to 135, with mean IQ of 118, showed a correlation
between NA and 1Q of +.66. As this subject sample had a restricted range of
1Q (the group’s standard deviation was only 9.2/15 = 61 as large as the SD in
the general population), one can correct the obtained correlation for range re-
striction to estimate the population correlation, which turns out to be +.82. This
is close to the population correlation between two highly g-loaded 1Q tests (e.g.,
the Wechsler and the Stanford-Binet%. _

Another measure derived by Schafer from the average amplitude of the
evokedJ)otennaI (EP) is the habituation of the EP. The amplitude of the EP i
recorded for each of 50 auditory “clicks” administered at a stimulus interval
of 2 seconds, while the subject relaxes in a reclining chair. It is found that the
amplitude of the EP gradually decreases over the 50 “clicks,” indicating that
“practice” (or expectancy) causes habituation, or a diminishing magnitude of
the cortical response to the repeated auditory stimulus. A simple measure of the
degree of habituation is the difference in average amplitude between the first 25
EPs and the last 25 EPs. This difference score is called the habituation index
(HI). Higher 1Q subjects show a greater degree of habituation, hence a higher
HI

Schafer used this index to test the hgpothesis that a mental test’s g loading
would predict its correlation with the EP habituation index, or HI, a nonbehav-
joral, physiological measure.2a In a group of fifty-two normal adults, ranging
in 1Q from 98 to 142, the correlation of the HI with the Full Scale Wechsler
1Q was +.59; corrected for restriction of 1Q range in this group, the correlation
rose to .73. Using the method of correlated vectors, the vector of each of the
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Figure 6.2. A scatter diagram of the correlation of the habituation index of the evoked

potential (EP) with the Wechsler Adult Intelligence Scale (WAIS) subtests plotted as a

function of the subtests’ g loadings. WAIS subtests are Vocabulary (V), Information (1),

Similarities (S), Picture Arrangement (PA), Arithmetic (A), Comprehension (C), Block

SDesigr(1D(SB)D), Object Assembly (OA), Picture Completion (PC), Coding (Cod), and Digit
pan (DS).

eleven Wechsler subtests’ correlations with the HI was correlated with the vector
of the subtests’ g loadings. (See Appendix B for a detailed explanation of this
analysis.) The Pearson correlation (r) between the two vectors is +.80; the
Spearman rank-order correlation (rs) is +.77 (p < .01). The scatter plot of the
correlated vectors is shown in Figure 6.2.24 The analogous Iplots for the vectors
of the three group factors mdei)endent ofg| (Verbal, Spatial, and Memory) that
were extracted from the Wechsler battery all showed near-zero correlations with
the EP habituation index.

A similar analysis, with the eleven Wechsler subtests and the AEP on 219
normal adolescents, was performed by Eysenck and Barrett.]2J Instead of usinﬁ
Schafer’s habituation index, they used a composite measure that reflected bot
the complexity of the AEP (i.e., the “string” measure described on p. 153) and
the intraindividual variance of the AEP waveform. This composite AEP index
correlated .83 with the Full Scale 1Q. The method of correlated vectors showed
a rank-order correlation of .95 between the vector of the eleven subtests’ cor-
relations with the AEP composite score and the vector of the subtests’ g load-
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int[]s. This correlation falls from .95 to .93 when the vector of the subtests’
reliability coefficients is partialed out.)

These studies argue strongly that psychometric g is closely related to the
electrophysiological information-processing activity of the brain and that g is
the main, or even the only, cognitive factor represented in the correlation be-
tween 1Q and the AEP. _

Cerebral Glucose Metabolism. The brain’s main source ofener?y is glucose,
a simple sugar. Its rate of uptake and subsequent metabolism by difterent regions
of the brain can serve as an indicator of the degree of neural energy expended
in various locations of the brain during various kinds of mental activity. This
technique consists of injecting a radioactive isotope of glucose (F-18 deoxyglu-
cose) into a person’s bloodstream, then having the Ferson engage in some mental
activity (such as taking an 1Q test) for about half an hour, during which the
radioactive glucose is metabolized by the brain. The isotope acts as a radioactive
tracer of the brain’s neural activiti. '

Immediately following the uptake period in which the person was engaged in
some standardized cognitive task, the gamma rays emitted by the isotope from
the nerve cells in the cerebral cortex can be detected and recorded by means of
a brain-scanning technique called positron emission tomography ﬁor ET scan).
The PET scan provides a Bicture, or mzyg, of the specific cortical location and
the amount of neural metabolism (of radioactive glucose) that occurred during
an immediately preceding period of mental activity. ,

Richard J. Hater, a leading researcher in this field, has written a comprehen-
sive review1&3 of the use of the PET scan for studying the physiological basis
of individual differences in mental ability. The main findings can be summarized
briefly. Normal adults have taken the Raven Advanced Progressive Matrices
(RAPM) shortly after they were injected with radioactive glucose. The RAPM,
a nonverbal test of reasoning ability, is highly g loaded and contains little, if
any, other common factor variance. The amount of glucose metabolized during
the thirty-five-minute testing period is significantly and inversely related to
scores on the RAPM, with negative correlations hetween —7 and -.8. In solv-
ing RAPM problems of a given level of difficulty, the higher-scoring subjects
use less brain energy than the lower-scoring subjects, as indicated by the amount
of glucose uptake. Therefore, it appears that g Is related to the efficiency of the
neural activity involved in information processing and problem solvmf‘;. Nega-
tive correlations between RAPM scores and glucose utilization are found in
every region of the cerebral cortex, but are highest in the temporal regions, both
left and right. _ B

The method of correlated vectors shows that g is specifically related to the
total brain’s glucose metabolic rate (GMR) while enf};]aged in a mental activity
over a period of time. In one of Haier’s studies,2l the total brain’s GMR was
measured |mmed|atelr after subjects had taken each of the eleven subtests of
the Wechsler Adult [ntelligence Scale-Revised (WAIS-R), and the GMR was
correlated with scores on each of the subtests. The vector of these correlations
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was correlated r — —79 (rs = —66, p < .05) with the correspondinP vector
of the subtests’ g loadings (based on the national standardization sample).

A phenomenon that might be called “the conservation of g and has been
onlr casually observed in earlier research, but has not yet been rigorously es-
tablished by experimental studies, is at least consistent with the findings of a
clever PET-scan study by Haier and co-workers. The “conservation of g™ refers
to the phenomenon that as people become more proficient in performing certain
complex mental tasks _throu?h repeated practice on tasks of the same tylpe, the
tasks become automatized, less g1 demanding, and consequently less g loaded.
Although there remain individual differences in proficiency on the tasks after
extensive practice, individual differences in performance may reilect less g and
more task-specific factors. Something like this was observed in a studyZh in
which subjects’ PET scans were obtained after their first experience with a video
game (Tefris) that calls for rapid and complex information _Processmg,_ visual
spatial ability, strategy Iearnm%, and motor coordination. Initially, playing the

etris game used a relatively large amount of glucose. Daily practice on the
video game for 30 to 45 minutes over the course of 30 to 60 days, however,
showed greatly increasing proficiency in playing the game, accompanied hy a
decreasing uptake of glucose and a marked decrease in the correlation of the
total brain glucose metabolic rate with g. In other words, the specialized brain
activity involved in more Erofmle_nt Tetris performance consumed less energy.
Significantly, the rate of change in glucose uptake over the course of practice
is positively correlated with RAPM scores. The performance of high-g subjects
improved more from practice and they also gained greater neural metabolic
_efﬁcienc;g during Tetris performance than subiects who were lower in g, as
indexed by hoth the RAPM test and the Wechsler Adult Intelligence Scale.

Developmental PET scan studies in individuals from earlﬁ childhood to ma-
turity show decreasing utilization of glucose in all areas of the brain as individ-
uals mature. In other words, the brain’s glucose uptake curve is inversely related
to the negatively accelerated curve of mental a?e, from early childhood to ma-
turity. The increase in the brain’s metabolic efficiency seems to be related to
the “neural pruning,” or normal spontaneous decrease in synaptic densi%. The
spontaneous decrease is %rea_test during the first several years of life. “Neural
pruning” apparently results in greater efficiency of the brain’s capacity for in-
formation ,orocessmg_. Paradoxical as it may seem, an insufficient loss of neurons
during early maturation is associated with some types of mental retardation.

Another stud¥]271 investigated glucose metabolic rate (GMR) as a function of
the “mental effort” exPended on a task. The investigators did not correlate
GMR with the same test for each individual, but compared Eroups of average-
and high-1Q subjects émean 1Q of 104 vs. 123) on easy tasks and on difficult
tasks that were equated for the same degree of either “easiness” or “difficulty”
within each group. Regardless of the task’s objective demands, tasks for which
90% of the responses were correct (within the average group, or within the high-
1Q group) were defined as “easy” for each group, and tasks for which only
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75% of the responses were correct (within each group) were defined as “ diffi-
cult.” In other words, the level of a task’s subjective difficulty was calibrated
relative to each group’s ab|I|t?/. For example, the average-1Q group could recall
6 digits backwards on 75% of the trials, whereas the high-| dqro_up could recall
7 digits on 75% of the trials, The measurements of GMR during these tasks
revealed a significant interaction between 1Q level and “mental effort” (i.e.,
level of difficulty relative to the individual’s general ability level). Average- and
high-1Q subjects hardly differed in GMR on the “easy” items but differed
markedly on the “difficult” items. The high-1Q subjects brought more “fuel”
to bear on the more difficult task. This increase in GMR by the |(r1h-IQ subjects
su&gests that more neural units are involved in their level of performance on a
difficult task that is b&yond the ab|I|tr of the average-1Q subjects.

Peripheral Nerve Conduction Velocity. Several studiesZ8 done in the 1920s
claimed rather surprisingly high correlations between nerve conduction velocity
(NCV) and 1Q, but their methods were primitive by modern standards of elec-
trophysiological research, and their results could not be replicated in later studies
in the 1930s. Interest in the subﬂ]ect became almost nonexistent. Then, in 1984,
a geneticist, T. Edward Reed, hypothesized individual differences in NCV as
the mechanism for the heritability of 1Q.28 The well-established heritability of
1Q, of course, implies some physiological basis of 1Q differences. Reed sug-
gested that inherited properties of the neuron that govern its conduction velocity
are causally related to 1Q. There are now five modem studies that have tested
Reed’s hypothesis. Four of the studies are based on the measurement of NCV
in peripheral nerves and one study is based on NCV in a brain tract,

Why should the hypothesis be tested on a peripheral nerve? Located outside
the central nervous system, peripheral nerves are not at all involved in the higher
thought processes or the kinds of problem soIvm? called for by 1Q tests. How-
ever, it I1s possible that the gropertles of neural tissue that are associated with
individual differences in NCV ‘may be more or less similar in all nerve cells
throu%hout both the Perlpheral and the central nervous systems. If this were true,
and it individual ditferences in NCV were related to the cognitive processes
reflected in g, then individual differences in NCV in peripheral nerves should
also be related to g. N _ _ _

Workmg from thls_supP05|t|on, Canadian psychologists Vernon and Mori
(1989, 1992) found a significant correlation of +.41 between NCV in the median
nerve of the arm (finger to wrist and wrist to elbow) and 1Q (Multidimensional
Aptitude Battery, or MAB) in a sample of eighty-five male and female college
students. A replication of this studg, based on eighty-eight students, found a
correlation of +.46. Using the method of correlated vectors, the vector of the
ten MAB subtests’ correlations with NCV was correlated +.44 with the vector
of the MAB subtests’ g Ioadin(};s.l’m It was all a very nice picture and bore out
Reed’s hygothesw to a tee. Unfortunately, it was at odds with two other studies
that were both performed at about the same time, in London and in Berkeley.

British psychologists Barrett, Daum, and Eysenck (1990), using advanced
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techni?ues, measured NCV i the ulnar nerve (finger to wrist) of both the right
and left hands of forty-four young adults and found near-zero correlations with
IQ (Raven Advanced Progressive Matrices, or RAPM). However, they did find
a significant and substantial negative correlation (—44) hetween 1Q and the
variability of NCV from trial to trial. 10"1(Each trial consists of a brief electrical
stlmula_tmn)ofthe nerve while recording the speed of its action potential between
two points.

.Atpthe same time, Reed and Jensen (1991), at Berkeley, measured 1Q (also
with the RAPM) and NCV in the median nerve of the arm (from wrist to elbow)
in 200 white male college students. The correlation between 1Q and NCV was
virtually zero, even though the reliability of the 1Q and NCV measurements was
ey high. g o o

0 here was an anomaly. Two apparentI){_ solid studies showed a significant
1Q x NCV correlation and two equally solid studies did not show any corre-
lation. The studies all had certain minor methodological differences which might
account for the contradictory results. But the mystery deepened when the exact
same procedures that were used in the two Canadian studies were repeated again,
this time with thirty-eight young adult females.23L The 1Q x NCV correlation
was virtually zero. This result prompted a reanalysis of the earlier Canadian
studies based on samples composed of both males and females. It was found
that the correlations for males and females were very different: males had much
higher correlations (over +.60) than females. This Is consistent with the failure
to find a correlation in the third Canadian study, based entirely on females, but
it is even more at odds with the two contradictory studies a/n Britain and in
Berkeley). Although these studies were based on largely male samples, they
found virtually zero correlations between 1Q and peripheral NCV. Still another
study, based on twins, also found no significant corrrelation between peripheral
NCV and 1Q, but did find substantial heritability of NCV.I3l

The mystery is compounded further by a recent study by a Turkish physiol-
ogist, Uner Tan, which found that peripheral NCV measured in the median nerve
had a near-zero correlation with 1Q (Cattell’s Culture Fair Test) in a mixed
group of forty-five men and thirty-seven women, but that there was a positive
correlation for men (r = +.63) and a negative correlation for women (r =
-.55). 13 Tan suggests that the correlation of NCV with g is affected by tes-
tosterone level. Clearly, the nature and degree of the relationship between g and
perépheral NCV remains a puzzle that must be resolved bf further research.
~ Brain Nerve Conduction Velocity. Reed and Jensen (1992) measured NCV
in the primary visual tract between the retina of the eye and the visual cortex
in 147 college males and found a significant correlation of +.26 (p = .002)
between NCV and Raven 1Q. (The correlation is +.37 after correction for re-
striction of range of 1Q in this sample of college students.) When the sample is
divided into quintiles (five equal-sized groups) on the basis of the average ve-
qutr_ of the P100 visual evoked potential 6V:P100), the average I1Q in each
quintile increases as a function of the V:P100 as shown in Figure 6.3.
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Figure 6.3. Mean 1Q in each quintile of nerve conduction velocity (V:P100) as meas-
ured in the visual tract in 147 male students. (From Reed & Jensen, 1992. Used with
permission of Ablex.)

A theoretically important aspect of this findinﬁ Is that the NCV (i.e., V:P100)
is measured in a brain tract that is not a part of the higher brain centers involved
in the complex problem solving requirea by the Raven test, and the P100 visual
evoked potential occurs, on average, about 100 milliseconds after the visual
stimulus, which is less than the time needed for conscious awareness of the
stimulus. This means that although the cortical NCV involved in Raven per-
formance may be correlated with the NCV in the subcortical visual tract, the
same neural elements are not involved. This contradicts Thomson’s sampling
theory of g, which states that tests are correlated to the extent that the%/ utilize
the same neural elements. But here we have a correlation between the P100
visual evoked potential and scores on the Raven matrices that cannot be ex-
plained in terms of their overlapping neural elements. In the same subject sam-
ple, Reed and Jensen found that althou?h NCV and choice reaction time (CRT)
are both significantly correlated with 1Q, they are not significantly correlated
with each other. 2R This suggests two largely independent processes contributing
to g, one linked to NCV and one linked to CRT. As this puzzling finding is
based on a single study, albeit with a large sample, it needs to be replicated
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before much theoretical importance can be attached to it. There is other evidence
that makes the relationship of NCV to g worth pursuing. For one thinF, the pH
level (hydroFen ion concentration) of the fluid surrounding a nerve cell is found
experimentally to affect the excitability of the nerve, an increased pH level (i..,
greater alkalinity) producing a lower threshold of excitability. 3L Also, a study
of 42 hoys, aged 6 to 13 years, found a correlation of .523 (p < .001) hetween
a measure of intracellular brain pH and the WISC-III Full Scale 1Q.|34 More-
over, the method of correlated vectors shows that the vector of the 12 WISC
subtests’ correlations with pH are significantly correlated with the vector of the
subtests’ g loadings (r = +.63, rs= +.53, p < .05). This relationship of brain
PH to g certainly merits further study.

Miscellaneous Physical Correlates of 1Q. A number of other phJsicaI cor-
relates of 1Q have been reported in the literature, as reviewed in detail else-
where. 18 Although the correlations are generally small, they are nevertheless
significant. In most cases, it has not been established whether the correlations
are intrinsic or extrinsic.

Among these physical correlates of 1Q are certain blood groups and particu-
larly the positive correlation of g with the number of homozygous genetic loci
(i.e., the same alleles at each locus on both chromosomes) for various blood
types, which indicates greater-than-usual genetic similarity of the individual’s
Barents. This would ensure less immunological risk of antigenic incompatibility

etween mother and fetus, a prenatal factor that can have subtle deleterious
effects on brain development in utero. The best-known antigenic incompatibility
between mother and fetus with potentially harmful effects on fetal development
is that for the Rh factor, which occurs in second-born (and later-born) children
when the mother is Rh-negative and the fetus is Rh-positive (having received
the Rh+ allele from the father). Dizygotic (DZ) twins who are discordant for
the Rh factor (and certain other blood antigens as well) show greater IQ differ-
ences than DZ twins who are concordant.

Another blood variable of interest is the amount of uric acid in the blood
(serum urate level). Many studies have shown it to have only a slight positive
correlation with 1Q. But it is considerably more correlated with measures of
ambition and achievement. Uric acid, which has a chemical structure similar to
caffeine, seems to act as a brain stimulant, and its stimulating effect over the
course of the individual’s life span results in more notable achievements than
are seen in Fersons of comparable 1Q, social and cultural background, and gen-
eral life-style, but who have a lower serum urate level. High school students
with elevated serum urate levels, for example, obtain higher grades than their
|Q-matched peers with an average or below-average serum urate level, and,
amusingly, one study found a positive correlation between university professors’
serum urate levels and their publication rates. The undesirable aspect of high
serum urate level is that it predisposes to gout. In fact, that is how the association
was originally discovered. The English scientist Havelock Ellis, in studying the
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lives and accomplishments of the most famous Britishers, discovered that they
had a much higher incidence of gout than occurs in the general population.

Asthma and other allergies have a much-higher-than-average frequency in
children with higher 1Qs (over 130), particularly those who are mathematically
Tfted, and this 1s an intrinsic relationship. The intellectually gifted show some

5 to 20 percent more aIIergws than their S|bl|ng13 and parents, The gifted are
also more apt to be left-handed, as are the mentally retarded; the reason seems
to be that the 1Q variance of left-handed persons is slightly greater than that of
the right-handed, hence more of the left-handed are found in the lower and upper
extremes of the normal distribution of 1Q.

Then there are also a number of odd and less-well-established physical cor-
relates of 1Q that have each shown up in only one or two studies, such as vital
capacity (i.e., the amount of air that can be expelled from the lungs), handgrip
strength, symmetrical facial features, light hair color, light eye color, above-
average basic metabolic rate (all these are positively correlated with 1Q), and
being unable to taste the synthetic chemical phenylthiocarbamide (nontasters are
higher both in g and in spatial ability than tasters; the two types do not differ
in tests of clerical speed and accuracy). The correlations are small and it is not
yet known whether any of them are within-family correlations. Therefore, no
causal connection with g has been established.

Finallﬁ, there is substantial evidence of a positive relation between ? and
general health or physical well-being.2& In a very large national sample of high
school students (about 10,000 of each sex) there was a correlation of +.381
between a forty-three-item health questionnaire and the composite score on a
large number of diverse mental tests, which is virtually a measure of g. By
comparison, the correlation between the health index and the students’ socio-
economic status %SES) was only +.222. Partialing out g leaves a very small
correlation (+ .073 hetween SES and health status. In contrast, the correlation
between health and g when SES is partialed out is +.326.

A General Factor in Infrahuman Animal Behavior. As there are no fun-
damental differences of a qualitative nature between various mammalian species
in the anatomy and neurophysiology of the brain, the science of animal behavior
generally supports the working hypothesis that interspecies variations in the
cognitive abilities inferred from ohserved differences in behavioral capacities
are not discrete gaps but rather quantitative gradations in the complexity of the
information-processing systems of mammals. Experimental animal psychology
has indeed made important contributions to understanding the basic operating
principles of behavioral capacities such as conditioning, learning, Ferception,
and problem solving and in discovering the brain mechanisms underlying these
functions. Because most animal behavior research has not focused on individual
differences in behavioral capacities within a é;iven species, exceedingly few in-
frahuman animal studies have been designed that resemble the factor analytic
research on ¢ in humans. Yet, judging from the three studies described below,
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animal experimental psych_olog%/ would appear to be a promising avenue for
testing hypotheses concerning the neural basis of g in humans. _

The earliest study, 3L by Robert L. Thorndike in 1935, was designed simply
to determine whether there is in fact a general factor in the abilities of albino
rats. (Comin? from twenty different litters of Iaborator%/ rats, they were probably
a mixture of genetically heterogeneous strains. The highly inbred or isogenic
strains used in most research tqdar are virtually the equivalent of monozygotic
twins, triplets, etc. I raised in similar laboratory conditions, they would probably
be unsuitable for such a study, as they would most likely have a too-limited
range of individual differences.) The nmetY rats in Thorndike’s study were given
nine distinct tasks that measured activity level and drive level, as well as speed
and accuracy of performance on several more cognitive tasks, such as condi-
tioned responses, learning mazes of various degrees of complexity, and puzzle-
box_problem solving. With a few exceptions, the performance measures were
?osmvely correlated, and factor analysis yielded a general factor that accounted
or about two-thirds of the common factor variance and about one-third of the
total variance. In this respect, at least, the results were similar to the factor
analyses of many psychometric batteries. To distinguish psychometric g from
the general factor found in animal studies, the latter is labeled G. Whether G
has certain psychological %as opposed to purely statistical) properties similar to
g is the open question. Thorndike’s analysis is not very enlightening on this
point, except that the less “cognitive” measures, such as activity level, drive,
and conditioning, had smaller G loadings, on average, than did the somewhat
more “cognitive” abilities assessed by mazes and puzzle-boxes. Judging from
the tests with the larger loadings on G and his personal observation of the rats’
performance on these tests, Thorndike interpreted the G factor as “docility—
maze-learning, intelligence, tameness” (p. 63). This modest conclusion was
hardly more than suggestive of an interesting hypothesis awaiting investigation,
namely, that the G loadings of rat “cognitive” tasks reflect task complexity.

A recent study, I8 by Britt Anderson in 1993, tested this hypothesis using a
enetically heterogeneous group of twenty-two male Long-Evans Iaborator¥ rats.
The rats were given tests selected to measure reasoning and problem so V|n?,
in which the rat must deduce a solution (not previously trained) that leads fo
food reward. The tests required a reasoned (novel), rather than a learned, re-
sponse. The specific tests involved preference for novelty (which, in human
infants, is correlated with later 1Q), and speed, accuracy, and response flexibility
in maze re_asoning problems. Short(ljy after _the'comﬁletion of testing, each rat
was autopsied and its brain removed for weighing. A factor analysis of the test
variables %nelded a G factor that accounted for 32.3 percent of the total variance.
The number of perfect trials on the maze reasoning task had the highest G
loading (.70); speed of reasonlnP was loaded .58; the least demanding task,
preference for novelty, had the lowest G loading (.43). Anderson concluded,
“_‘T]he general factor [GE)_may best be conceived of as relating to individual
ditferences in cognitive ability” (p. 101). Probably the most interesting finding
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of this study is that the G factor scores derived from the rat tests were correlated
with brain weight (r = +.48) to a degree not unlike that found between g and
brain size in humans. _ _

_ A third study, by Francis Crinella and Jen Yu in 1995, used a genetically
inbred strain of 120 adult male SpraPue-DawIey laboratory rats, in which there
are hardly any natural individual ditferences. Individual differences had to be
minimal as the aim of the experiment was to discover how much each specific
region of the brain was involved in each of the various hehavioral measures.
This was done surglcallﬁ bx creating small lesions in 48 specific brain sites
selected on the basis of the findings on the rat brain-behavioral correlates found
in previous research by Crinella and Yu.13L In the lesioned group, only one of
the 48 sites was lesioned in each pair of rats. A control group of 24 rats was
given the same surgical ﬁrocedure, but without creating a lesion at any site.
After full recovery from the operation, all 120 rats were tested in each of seven
diverse laboratory tests of learning and problem solving (reasoning). The per-
formance measures from this battery were all positively correlated and yielded
a ¢ factor that accounted for 34 percent of the total variance in the seven tests.
Probably the most important finding is the very high correlation between the
various tasks’ G loadings and the number of brain structures that are significantly
involved in task performance—a rank-order correlation of +.91. For example,
one of the most highly G-loaded (.812) tasks (a detour problem, which requires
reasoning) is significantly influenced by each of 17 brain structures, whereas a
relatively simple conditioned avoidance task, with a lowest G loading of only
08, significantly involved onI% four brain structures. The unlesioned control
group performed better on each of the tasks than did the lesioned group. The
vector of standardized mean differences between the unlesioned and lesioned
(U-L) %roups on each of the seven tasks had a significant rank-order correlation
of +.75 with the vector of G loadings for each of the tasks. The G factor
correlated —45 with the presence of any brain lesion—a higher correlation than
was found for any single test. In brief, there was a strong relation between a
task’s G loading and its degree of sensitivity to the effects of brain damage in
general. The authors suggest that “where the investigator is interested in de-
tecting presence of any type of neuropsychological deficit, as opgosed to damage
that only affects a particular cognitive/neural system, g would be the most sen-
sitive measure” (F{ 243). The results of this study lend support to the theory
that tests with higher g loadings involve proportionately more neural processes
than tests with lower g loading, even when studied in nonhuman animals.

NOTES

1 The rationale of this methodology is more fully explicated in Jensen, 1980b and
in Jensen & Sinha, 1993, _ o

2. The absolute value disregards the sign (+ or — of the value, hence it is also
called an unsigned value. Thus T = +.35 and r = -.35 have the same absolute value,
namely 13L The absolute value of x is signified by vertical braces, i.e., I.
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3. The definition of the true value of a correlation (symbolized bf the Greek letter
tho, p) is its value in some defined population. The value of p is usually unknown or is
unknowable. It can only be estimated. A correlation coefficient based on a random sample
of the population is an estimate of p. The standard error (SE) of this estimate is related
to the size of the sample; the larger the sample, of course, the more accurate is the
estimate. If p = 0 (i.e., the null hypothesis), the standard error (SE) of the observed
correlation in a sample of N subjects is SE = 1Ij§N — 1). Under the null hypothesis,
the frequency distribution of an Infinite number of correlation coefficients, each based
on a random sample of N subjects, will be normally distributed, with a mean = 0 and
a standard deviation (SD) = SE. When the sample-size is large (N > 500), a correlation
that differs from 0 by more than + 1.96 SE is said to be significant beyond the 5 percent
level of confidence {technically written as p < .05), meaning that the probability (p) of
finding a difference that large by chance (when p = 0) is less than 5 percent. (Chance,
in this case, is technically termed sampling error.) Hence we reject the null hypothesis
that p = 0. The 1 percent level of confidence, or p < .01, is £2.58 SE. (Note: Five
percent of the area under the normal curve falls beyond the limits of + 1.96 SD from
the mean; 1 percent of the area falls beyond £ 2.58 SD.) In the technical literature, the
correlation coefficient is usually accompanied by the probability that the obtained cor-
relation could have occurred mereIY by sampling errorf; for example, r = .35 (p < .01)
would mean that a correlation as large as .35 would be expected to occur by random
sampling (of sample size N) less than once in 100 samples If the true correlation (p) is
zero. Thus one can be at least 99 percent certain that the true correlation is not zero. In
fact, given only these data, the best estimate of the true correlation in this case is .35.
(Note: For small samples, or if the hypothesized value of p is different from zero, some-
what more complicated formulas are needed for an accurate test of the significance of
an obtained (sample) correlation or its difference from the hypothesized value (see Fisher,
1970, pp. 194-206).

4. Meta-analysis consists of various mathematical-statistical methods that permit one
to make statistical estimates of population parameters (e.g., mean, variance, correlation
coefficient, along with their significance level or confidence interval) from comparable
statistics that were derived from a number of independent studies (i.e., studies based on
different subjlect samples?. The results of a proper meta-analysis are generally more valid
Ehandthe results of any of the single independent studies on which the meta-analysis was

ased.

5. Itis unnecessarily laborious to compute the percentiles of the permutation distri-
bution needed to test the significance of rswhen n > 10, or even for smaller values of
n. Fortunately, there is a simple method for testing the significance of rs by means of
Student’s t test, which gives a very close approximation to the exact p values of the
permutation distribution: t = {(n —2)rs2(1 —rQ}V.z. For a full discussion of the per-
mutation distribution of rs, see Kendall & Stuart, 1973, Vol. 2, pp. 492-499.

6. The null hypothesis states that the true correlation is zero. The more that an em-
pirically obtained value of r departs from zero, the greater is the probability that the null
hypothesis is false and therefore should be rejected. A statistical test is specifically aimed
at rejecting the null hypothesis with a specified level of confidence (e.g., 5 percent chance
of being wrong by rejecting the null) when in fact the null hypothesis isfalse. But if the
statistical test rejects the null hypothesis when in fact the null hypothesis is true, stat-
isticians call this a Tyﬁe I error. If the statistical test does not reject the null hypothesis
when in fact the null hypothesis is false, it is called a Type Il error.
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7. Jensen & Sinha. 1993. This 100-page chapter is probably the most comprehensive
review of the world literature on the physical correlates of mental ability, excluding
pathological conditions, electrophysiological brain measurements, and brain biochemis-
try. The latter two topics are well reviewed in other chapters of the same book, edited
by P. A. Vernon (1993b). This is the most up-to-date and comprehensive book on the
blolo%lcal aspects of human mental ability, a “must” for all who wish to delve further
into this subject. The chapter by Eysenck (1993) discusses the hiology of intelligence in
relation to the philosophy of science.

8. Jensen (1980b) and Jensen & Johnson (1994).

9. Jensen, 1994f.

10. (a) Andreasen et al., 1993; (b) Egan et al., 1994: (c) Raz, Torres, et al., 1993; (d)
Wickett at al., 1994; (e) Willerman et al., 1991; (f) Wickett et al., 1996; (g) Schoene-
mann, 1997.

11 Hamilton, 1935.

12. Jensen & Johnson. 1994; also see Johnson, 1991, for additional evidence of a
within-families correlation between head size and 1Q.

13. Ankney, 1992,

14. Jensen, 1980a, pp. 622-627. This chapter affords a fairly comprehensive review
olf%soex differences in mental abilities and references to much of the literature prior to

15. Witelson et al., 1995.

16. Cohn, Cohn, & Jensen, 1988.

17. The Raven's g loading when factor analyzed among a large and diverse battery
of mental tests is typically about .80. If it were only the Raven’s specificity that was
involved in its correlation with myopia, one would not expect m{opia to be correlated
with any other mental tests in which matrix items are absent. In fact, however, myopia
is correlated with a wide variety of g-loaded tests and various g-loaded achievements
(Jensen & Sinha, 1993, pp. 212-217).

18. A much more detailed but admirably clear exposition of the basic electrochemistry
of the neuron and nerve conduction is given in R. F. Thompson, 1985, particularly Chap-
ter 3 and the Appendix.

19. The most comprehensive and ui)-to-date general summar% | have found is by
Deary & Caryl (1993?. Earlier, but still worthwhile reviews are by Eysenck & Barrett
(1985) and by Haier et al. (1983). Vernon (1993a) offers a briefer, less technical sum-
mary, which Includes reaction time and other physiological measures in addition to EEG
correlates of 1Q. More specialized and technical reviews are given by Barrett & Eysenck
(1994), who focus entirely on the latest techniques and findings of research on averaged
evoked potentials (AEPs), and by Polich & Kok (1995), who focus on only the P300
AEP and all of its reported correlates with individual differences in psychological vari-
ables, includin% memor sFan and 1Q. The extensive lists of references in all of the
articles cited above prozaby encompass some 90 percent of the total literature in this
field since about 1960.

20. Lutzenberger et al., 1992,

21. McGarry-Roberts et al., 1992. The P300 latency is generally considered a measure
of the time taken for stimulus aPprehension and evaluation. Its correlation with 1Q,
however, is often erratic and therefore not as well established as for the earlier potentials
(P100. P200), probably because the P300 is so complexly determined by so many bio-
logical variables, most of which are only indirectly related to cognitive ability. For a
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%ompgehensive review of the biological determinants of the P300, see Polich & Kok
1995).
22. Schafer & Marcus, 1973; Schafer, 1982.

23. Schafer, 1985.

24. Partialing out the vector of the subtests” reliability coefficients from the Pearson
r = +.81 between the EP vector and the g vector lowers the r to +.79. Obviously, the
r here is not attributable to the tests’ differing reliability coefficients.
25. Eysenck & Barrett, 1985, B 41 and Table 5.
26. (a{ Haier, 1993. For other brief reviews of PET studies (also EEG and AEP stud-
ies), see Vernon (1990) and Vernon & Mori (1990); (b) Haier et al., 1992.

21. Larson et al., 1995,

28. These studies are reviewed in Vernon, 1993a, p. 176.

29. Reed, 1984, 1988a, 1988h.

30. (a) Vernon, 1992, 1993a, p. 178; (b) Barrett, Daum, & Eysenck, 1990; (c) Reed
& Jensen, 1991,

31, (a) Wickett & Vernon, 1994; (b) Rijsdijk et al., 1995.

32. Tan, 199%.

33. Reed & Jensen, 1993,

34. (a) Lehmann, 1937; (b) Rae et al., 1996.

35. Jensen & Sinha, 1993.

36. Lubinski & Humphreys, 1992,

37. Thorndike, R. L, 1935.

38. Anderson, 1993.

39. Crinella & Yu (1995) provide references to many related studies.



Chapter 7
The Heritability of g

Individual differences in mental test scores have a substantial genetic
component indexed by the coefficient of heritability (in the broad
sense), that is, the proiJortion of the population variance in test
scores attributable to all sources of genetic variability. The broad
heritability of 1Q is about .40 to .50 when measured in children,
about .60 to .70 in adolescents and young adults, and approaches
80 in later maturity.

Environmental variance can be partitioned into two sources: (1)
environmental influences that are shared among children reared in
the same family but that differ between families, and (2) nonshared
environmental Influences that are specific to each child in the same
family and therefore differ within families. The shared environmen-
tal variance diminishes from about 35 percent of the total 1Q vari-
ance in early childhood to near zero percent in late adolescence. The
nonshared environmental variance remains nearly constant at around
20 to 30 percent from childhood to maturity. That is, virtually all
of the nongenetic variance in adult 1Qs is attributable to within-
family causes, while virtually none is attributable to the kinds of
environmental variables that differ between families. The specific
sources of much of the within-family environmental variance are
still not entirely identified, but a large part of the specific environ-
mental variance appears to be due to the additive erfects of a large
number of more or less random and largely thsic_a! events—de-
velopmental “noise” —with small, but variable positive and nega-
tive Influences on the neurophysiological substrate of mental growth.

More of the genetic variance in test scores is associated 